

NTK Platform File Functions

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software and any
documentation provided on CD-ROM.
Printed in the United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for licensed Newton platforms.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light bulb
logo, Macintosh, MessagePad, Newton,
Newton Connection Kit, and New York
are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.
Geneva, NewtonScript, Newton Toolkit,
and QuickDraw are trademarks of
Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG and/
or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation. Windows is a
trademark of Microsoft Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, ADC will replace the
media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

5/97

iii

Contents

Introduction 1
Change History 1

Newton 2.1 Platform File 1
Newton 2.0 Platform File 1

Using Platform File Functions 2
Views 2

ClearSelectionHilites 2
ViewIsOpen 3

Extras Drawer 3
GetPartCursor 3
GetPartEntryData 4
LaunchPartEntry 4
SetExtrasInfo 5
AddExtraIcon 6

Miscellaneous 7
CardFileSafeRemoveLayout 8
GetAllFonts 8
GetCalendarMeetingTypes 8
GetCalendarMeetingTypeInfo 9
GetCommPortInfo 9
GetCorrectInfo 10
GetMaskedPixel 11
GetPrinterName 11
GetTransport 12
MissingImports 12
RegGlobalKeyboard 13
UnRegGlobalKeyboard 14
RegNamesRouteScript 14
UnRegNamesRouteScript 15
ShowBusyBox 15
StringToKeyCodes 16
SupplantSoupDef 16

Summary of Functions 17

iv

Introduction

1

C H A P T E R

Introduction 0

The platform files—stored in a folder named Platforms in the same folder as NTK—
contain data tailored to different Newton products and a collection of Newton system
definitions. The platform files also contain a number of utility functions and definitions
for constants that reference them.

This document describes the additional functions provided by the NTK platform files
that were not previously documented in

Newton Programmer’s Reference

 or

Newton
Programmer’s Guide: 2.1 OS Addendum

. However, those platform file functions that are
included in these books are listed at the end of this document in the section “Summary
of Functions,” for completeness.

This document contains a change history, a brief description of how to call these
platform file functions, and then the functions are described, grouped by topic. A
summary of functions follows at the end of the document.

Change History 0

This section describes changes to the platform file functions since the last release of this
document (November 1995).

Newton 2.1 Platform File 0

A new platform file, “Newton 2.1,” (version 1.2b1) has been created to support the
Newton 2.1 platform. This platform file contains the same functions as the 2.0 platform
file, with these additional changes:

New functions:

GetMaskedPixel
StringToKeyCodes

Newton 2.0 Platform File 0

The “Newton 2.0” platform file (version 1.2b1) has been changed as follows:

New functions:

DragAndDropLtd
GetAllDialinNetworks
GetAllFonts
GetCommPortInfo
GetCorrectInfo
GetDialinNetwork
GetLocAccessNums
GetPartEntryData
GetTransport

Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R

2

Using Platform File Functions

RegDialinNetwork
UnregDialinNetwork

Obsolete function:

SimpleTextHeight

Using Platform File Functions 0

The constant that represents a function is the function name with the prefix

k

 and the
suffix

Func

 (that is,

k

functionname

Func

).

The platform file functions are available at compile time; you can make them available at
run time by incorporating them into your application in the following way. Call the
function with the NewtonScript

call

 syntax or the

Apply

 function. This strategy saves
space and time, because it does not require a slot in the base view and avoids inheritance
lookup; it also works in code that doesn’t have access to your base view, such as the
application part

RemoveScript

 function.

Here is an example of using the

call

 syntax to call a platform file function:

call kNewInfoFunc with (arg1, arg2);

Here is an example of using the

Apply

 function to call a platform file function:

Apply(kNewInfoFunc, [arg1, arg2]);

Views 0

These functions relate to views.

ClearSelectionHilites 0

ClearSelectionHilites(

theView

) // call kClearSelectionHilitesFunc

This function removes selection highlights from a view.

theView

The view of class

clEditView

 or

clParagraphView

 from which you
want to remove selection highlights.

return value Undefined; do not rely on it.

DISCUSSION

For views of the

clParagraphView

 class, this function unhighlights any selected text. For
views of the

clEditView

 class, this function removes the thick gray rectangles used to
indicate selections. For other view classes the behavior is undefined.

If you specify a view of the

clParagraphView

 class that is a child of a view of the

clEditView

 class, the behavior is also undefined.

C H A P T E R

Extras Drawer

3

Note

Do not confuse this function with the

Hilite

 or

HiliteUnique

 view
methods. The

ClearSelectionHilites

 function does not affect the
highlight state of a view.

◆

ViewIsOpen 0

ViewIsOpen(

view

) // call kViewIsOpenFunc

Returns

true

 if the view is open.

view

The view you wish to check.

return value

True

 if the view is open;

nil

 if it is not.

DISCUSSION

Note that a view can be open but not visible (if it is hidden).

This function is a better way to check if a view is open, rather than checking if the

viewCObject

 slot is non-

nil

.

Extras Drawer 0

These functions operate on the Extras Drawer.

GetPartCursor 0

extrasDrawer

:GetPartCursor(

packageName

,

store

,

folderSym

) // call
kGetPartCursorFunc

Returns a cursor for entries corresponding to parts (icons) displayed in the Extras
Drawer.

packageName

Specify a string naming a package, or

nil

. If you specify a package
name, the cursor returns parts only from that package. To return
parts from all packages, specify

nil

.

store

Specify a store object or

nil

. If you specify a store object, the cursor
returns parts only from that store. To return parts from all stores,
specify

nil

.

folderSym

Specify a symbol identifying a folder, or

nil

. If you specify a folder
symbol, the cursor returns parts only filed within that Extras
Drawer folder. To return parts from all folders, specify the symbol

'_all

. To return parts from the unfiled folder, specify

nil

.

return value A cursor for entries corresponding to parts (icons) displayed in the
Extras Drawer.

DISCUSSION

The structure of the entries returned by the cursor is subject to change. Entries should be
accessed only by using the functions

GetPartEntryData

,

LaunchPartEntry

, and

SetExtrasInfo

. Do not directly change the entries returned by

GetPartCursor

.

C H A P T E R

4

Extras Drawer

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS.

◆

GetPartEntryData 0

extrasDrawer

:GetPartEntryData(

entry

) // call kGetPartEntryDataFunc

Returns a frame containing information about an Extras Drawer part entry.

entry

An entry obtained from a part cursor (by using

GetPartCursor

).

return value A frame containing information about an Extras Drawer part entry.

DISCUSSION

The frame returned has the following slots.

Slot descriptions

icon A bitmap frame (of the kind returned by GetPictAsBits) containing
the bitmap for the part icon displayed in the Extras Drawer.

iconPro A frame with two slots, unhilited and hilited, that contain pix
families for normal and highlighted versions of the icon. The
highlighted version of the icon is shown when the icon is selected.

text A string that is the text shown under the part icon.
labels A symbol identifying the Extras Drawer folder in which the part is

filed. If this slot is nil, the part is unfiled.
appSymbol A symbol identifying the application, if the part frame has an app

slot.
packageName A string that is the name of the package that contains the part.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

LaunchPartEntry 0

extrasDrawer:LaunchPartEntry(entry) // call kLaunchPartEntryFunc

Launches the specified part. The operation is the equivalent of the user tapping the part
icon in the Extras Drawer.

entry An entry obtained from a part cursor (by using GetPartCursor).

return value Returns a non-nil value if the Extras Drawer would have closed
itself after the icon was tapped. Returns nil if the Extras Drawer
would have stayed open after the icon was tapped.

C H A P T E R

Extras Drawer 5

DISCUSSION

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

SetExtrasInfo 0

extrasDrawer:SetExtrasInfo(paramFrame, newInfo) // call kSetExtrasInfoFunc

Changes the extras drawer information for the specified Extras Drawer icon.

paramFrame A frame identifying the icon whose Extras Drawer information you
want to change. This frame can have the following slots:
appSymbol Required. A symbol identifying the application that

the icon represents.
store Optional. A store object identifying the store on which

the icon resides.
packageName Optional. A string naming the package to which the

icon belongs.
Alternately, you can specify just an appSymbol for the paramFrame
parameter, or you can specify an entry obtained from a part cursor
(by using GetPartCursor). Note that specifying just an appSymbol is
allowed for compatibility reasons; it may not be supported in future
versions of the system software.

newInfo A new information frame for the icon represented by paramFrame.
The slots in this frame are described below. If you don’t specify a
particular slot (or specify nil), the value of that slot is not changed.

return value The information frame that was in effect before this call. If the icon
isn’t found, this function returns nil.

DISCUSSION

You can read and modify the following slots in the newInfo frame.

C H A P T E R

6 Extras Drawer

Slot descriptions

icon A bitmap frame (of the kind returned by GetPictAsBits) containing
the bitmap for the part icon displayed in the Extras Drawer.

iconPro A frame with two slots, unhilited and hilited, that contain pix
families for normal and highlighted versions of the icon. The
highlighted version of the icon is shown when the icon is selected.

text A string that is the text shown under the part icon.
labels A symbol identifying the Extras Drawer folder in which to file the

icon. Do not specify nil.
soupNames An array of strings that are the names of soups to be associated with

this icon. This slot applies to soup icons only.
ownerApp The appSymbol of the application that owns the soups. This slot

applies to soup icons only.

Note

This function exists in both the Newton 2.x platform files and the
MessagePad platform file, however it is implemented differently on
each platform. This description applies only to the Newton 2.x platform.
Note that this function is implemented in ROM on Newton 2.1 units, so
you can call it directly if your application runs only on the Newton 2.1
OS. ◆

AddExtraIcon 0

extrasDrawer:AddExtraIcon(extraType, paramFrame, packageName, store) // call
kAddExtraIconFunc

Adds an icon to the Extras Drawer.

extraType Specify a symbol identifying the type of icon to add. You can
specify 'soupEntry to add a soup icon, or 'scriptEntry to add a
script icon.

paramFrame Specify a frame containing information to be used in creating the
icon. See the descriptions of slots below.

packageName Specify a string naming a package with which this icon should be
associated. If this package is removed from the Newton device, the
icon you added will also be removed. For an icon of type
'soupEntry, you should specify a package name different from your
application. This prevents your soup icon from being removed if the
application is on a card and the card is removed. Never pass nil for
this argument.

store Specify a store object on which the part entry should reside. A value
of nil specifies the default store.

return value Returns a frame that is the entry added to the Extras Drawer.

C H A P T E R

Miscellaneous 7

DISCUSSION

You can use this function to add an icon that represents several soups created by your
application, for example. You can also add an icon that simply executes a function object
when tapped.

This function does not check if your icon already exists before adding it. You must check
to be sure it doesn’t already exist.

The slots in the paramFrame frame vary depending on the value of extraType. The
paramFrame frames for both types of icons share these slots:

Slot descriptions

text Required. A string that is the text shown under the icon.
app Recommended. A unique symbol used by SetExtrasInfo to find the

icon.
labels Optional. A symbol identifying the Extras Drawer folder in which

to file the icon. Do not specify nil.

In addition, the paramFrame of soup icons should have these slots:
ownerApp Optional. The appSymbol of the application that owns the soups.

This slot is used for the soupervisor mechanism.
soupNames Optional. An array of strings that are the names of soups to be

associated with this icon.

The paramFrame of script icons should have these additional slots:
icon Recommended. A bitmap frame (of the kind returned by

GetPictAsBits) containing the bitmap for the icon displayed in the
Extras Drawer. The bitmap should be 32 by 32 pixels.

iconPro A frame with two slots, unhilited and hilited, that contain pix
families for normal and highlighted versions of the icon. The
highlighted version of the icon is shown when the icon is selected.

tapAction Optional. A function object that is called if the user taps the icon.
This function is passed no parameters. This function is stored in a
soup, so you should keep it as small as possible.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

Miscellaneous 0

This section describes other functions.

C H A P T E R

8 Miscellaneous

CardFileSafeRemoveLayout 0

CardFileSafeRemoveLayout(layout) // call kCardFileSafeRemoveLayoutFunc

Safely removes a cardfile layout from the Names application. (Cardfile layouts appear on
the Show menu in the Names application.)

layout A symbol identifying the cardfile layout you want to remove. This
is the same symbol you passed to the cardfile method AddLayout to
add the layout.

return value Undefined; do not rely on it.

DISCUSSION

You should use this function instead of the cardfile method RemoveLayout to remove a
cardfile layout. Using this function avoids “Reinsert the card” warnings.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

GetAllFonts 0

GetAllFonts() // call kGetAllFontsFunc

Returns an array of fonts installed in the system.

return value An array of font description frames.

DISCUSSION

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

GetCalendarMeetingTypes 0

GetCalendarMeetingTypes() // call kGetCalendarMeetingTypesFunc

Returns an array of symbols that identify all of the meeting types registered with the
Dates application (calendar).

return value The array includes both built-in meeting types and any new types
registered through the use of RegMeetingType.

DISCUSSION

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

C H A P T E R

Miscellaneous 9

GetCalendarMeetingTypeInfo 0

GetCalendarMeetingTypeInfo(typeSymbol) // call
kGetCalendarMeetingTypeInfoFunc

Returns a frame of information about a particular meeting type.

typeSymbol A symbol identifying a meeting type registered with the Dates
application. Specify one of the symbols returned by
GetCalendarMeetingTypes.

return value A frame of information about a particular meeting type; see below.
If the specified type is not found, then nil is returned.

DISCUSSION

The returned frame contains the following slots.

Slot descriptions

label A string that is the text displayed in the New menu for this meeting
type.

icon A bitmap frame (of the kind returned by GetPictAsBits) containing
the bitmap that is displayed in the New menu for this meeting type.

smallIcon A bitmap frame containing the bitmap that is displayed in the
meeting slip for this meeting type.

shape A shape object containing the icon bitmap.
memory A symbol under which the most recently used meeting title strings

are stored. (These are stored and accessed using the functions
AddMemoryItem and GetMemoryItems.)

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

GetCommPortInfo 0

GetCommPortInfo() // call kGetCommPortInfoFunc

Returns an array of communication port description frames.

return value An array of communication port description frames.

DISCUSSION

Use this method to get a list of the available communication ports on a Newton device.
GetCommPortInfo returns an array of frames with the following slots.

C H A P T E R

10 Miscellaneous

Slot descriptions

item A string that is the name of the communications port; examples
include: “Top PC Card,” “Infrared,” and “Serial.”

hardwareLoc A four-character string identifying the serial port location. This
string is suitable for use in the serial communication tool’s
kCMOSerialHWChipLoc option.

hardwareInfo A frame containing information about the device connected to this
particular communications port. Currently, this slot is used only for
PCMCIA communication cards. The slots in this frame are listed in
Table 1-1. This frame may contain other slots, but you should not
rely on their existence. The hardwareInfo slot is nil if a
communications device is not connected to this particular port.

Note that this function returns an array that is suitable for use in a picker list, however,
you might not want to include all the items in the picker. To remove items from the list,
search on the hardwareLoc slot for the items you want to remove. The hardwareLoc slot is
the one slot that is guaranteed to remain constant over time.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

GetCorrectInfo 0

GetCorrectInfo() // call kGetCorrectInfoFunc

Returns the system correction information frame, which contains correction information
for recently-recognized words.

return value The system correction information frame.

Table 1-1 hardwareInfo frame slots

Slot name Description

cisManufacturerName A string. Manufacturer name from the TPLLV1_INFO field of
the card’s CISTPL_VERS_1 tuple.

cisProductName A string. Product name from the TPLLV1_INFO field of the
card’s CISTPL_VERS_1 tuple.

cisProductInfo0 A string. Additional product info from the TPLLV1_INFO field
of the card’s CISTPL_VERS_1 tuple.

cisProductInfo1 A string. Additional product info from the TPLLV1_INFO field
of the card’s CISTPL_VERS_1 tuple.

cisManufacturerId An integer. Manufacturer information from the TPLMID_MANF
field of the card’s CISTPL_MANFID tuple.

cisManufacturerIdInfo An integer. Manufacturer information from the TPLMID_CARD
field of the card’s CISTPL_MANFID tuple.

C H A P T E R

Miscellaneous 11

DISCUSSION

For more information on the correction information frame, see the description of the
correctInfo frame and protoCorrectInfo in the Newton Programmer’s Reference, and see
Chapter 10, “Recognition: Advanced Topics” in Newton Programmers Guide.

Note that the function GetCorrectInfo was incorrectly documented in Newton
Programmer’s Reference; it does not exist in the Newton 2.0 ROM. On Newton 2.0 systems,
it is accessible only by using the kGetCorrectInfoFunc platform file function.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

GetMaskedPixel 0

GetMaskedPixel(x, y, pixFamily) // call kGetMaskedPixelFunc

Retrieves the value of a specific pixel within a pix family, taking into account its mask.

x The x coordinate of the point to be tested, in local (view)
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates.

pixFamily The pix family to test.

return value An integer; -1 if the (x,y) pixel location lies outside the bounds of
the pix family or if the mask is off at this position, otherwise the
integer value of the specified pixel is returned (see below).

DISCUSSION

This function is similar to the existing PtInPicture function.

The value returned for a pixel that is actually within the pix family’s bounds (and at an
on position in the mask) depends on the bit depth of the pix family image. For images
with a bit depth of 1, 2, 4, and 8, the pixel will be an index in the range (0, 2bit depth - 1).
For example, if the image has a bit depth of 4, the value returned by the function would
range from 0 to 15. If the image has a bit depth of 16 or 32, the pixels will have a direct
format, and the function will return the direct RGB pixel value.

Note

This function exists only in the Newton 2.1 platform file and works only
on Newton 2.1 units. ◆

GetPrinterName 0

GetPrinterName(printerFrame) // call kGetPrinterNameFunc

Retrieves the name of the printer, given a printer frame object.

printerFrame A printer frame object. The only valid method for obtaining a
printer frame object is to retrieve it from the system

C H A P T E R

12 Miscellaneous

userConfiguration data with the GetUserConfig function. Do not try
to construct the slots of this frame yourself because different types
of printer drivers require different slots.

return value Returns a string representing the name of the printer associated
with printerFrame.

DISCUSSION

Here is an example of some code that retrieves the name of the current printer:

printerFrame := GetUserConfig('currentPrinter);
thePrinterName := call kGetPrinterNameFunc with (printerFrame);

GetTransport 0

GetTransport(transportSymbol) // call kGetTransportFunc

Returns a transport object, given a transport symbol.

transportSymbol A symbol identifying a transport. This is the value of the transport’s
appSymbol slot.

return value Returns the transport object (a frame).

DISCUSSION

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

MissingImports 0

MissingImports(pkgRef) // call kMissingImportsFunc

Returns an array of frames describing units used by a package that are not currently
available.

pkgRef A package reference identifying the package for which this function
returns information. You can obtain a package reference by using
the functions ObjectPkgRef or GetPkgRef.

return value An array of frames describing units used by a package that are not
currently available; see below. If no units are missing, nil is
returned.

DISCUSSION

In the array that is returned, each frame has the following slots.

Slot descriptions

name A symbol identifying the unit.
major The unit major version number.
minor The unit minor version number.

C H A P T E R

Miscellaneous 13

Refer to the Newton DTS sample code for details on how to use this function and the
unit import and export mechanism.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

RegGlobalKeyboard 0

RegGlobalKeyboard(kbdSymbol, kbdTemplate) // call kRegGlobalKeyboardFunc

Replaces the alphanumeric keyboard in the system with a custom keyboard.

kbdSymbol A unique symbol identifying the keyboard view. You should
append your developer signature to ensure that this symbol is
unique.

kbdTemplate A view template that is the new keyboard you are registering. This
template must include a slot named preAllocatedContext whose
value is set to the symbol 'alphaKeyboard. This template must also
include a slot named userName whose value is a string naming the
keyboard. This is the keyboard name that the user sees in keyboard
pickers.

return value The keyboard view, if it was successfully instantiated and installed
in the system; otherwise, this function returns nil.

DISCUSSION

The keyboard view will be created as a child of the root view. Anytime the alphanumeric
keyboard would have been opened, the custom keyboard will be opened instead.

In your custom keyboard, you might want to include a button that opens the Personal
Word List. That’s the user’s dictionary of personal words. The standard alphanumeric
keyboard includes a button that opens the Personal Word List. To do this, include your
own button in your keyboard template (don’t use the bitmap from the ROM), and if the
user taps it, execute code like this:

If GetRoot().reviewdict then
begin
GetRoot().reviewdict:Open();
base:Close();
end;

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

C H A P T E R

14 Miscellaneous

UnRegGlobalKeyboard 0

UnRegGlobalKeyboard(kbdSymbol) // call kUnRegGlobalKeyboardFunc

Unregisters a custom keyboard that you registered with RegGlobalKeyboard.

kbdSymbol A symbol identifying the keyboard to unregister.

return value Undefined; do not rely on it.

DISCUSSION

This function restores the original keyboard that you replaced in the system. It closes the
custom keyboard, if it is open when this function is called, but this function does not
open the original keyboard that was replaced.

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

RegNamesRouteScript 0

RegNamesRouteScript(symbol, routeScriptFrame) // call
kRegNamesRouteScriptFunc

Adds an application-defined action to the Action picker in the Names application.

symbol A unique symbol identifying the action you are adding. You should
append your developer signature to ensure that this symbol is
unique.

routeScriptFrame A frame describing the routing action, as described in the chapter
“Routing Interface” in Newton Programmer’s Guide. A summary of
this frame is described below.

return value Undefined; do not rely on it.

DISCUSSION

Here’s a summary of the routeScriptFrame parameter:

{
title: string, // string name of picker item
icon: bitmap object, // icon for picker item
RouteScript: symbol, // func called if this action chosen
appSymbol: symbol, // symbol for context of RouteScript
GetTitle: function // supplied instead of title slot
... // other slots used by your app
}

Here’s an example of using the RegNamesRouteScript function:

call kRegNamesRouteScriptFunc with ('|EntryDumper:PIEDTS|,
{ GetTitle: func(target) begin

if GetTargetCursor(target, nil):entry() then
"Dump entry";

else
nil;// no selections, so don't show in list

end,
icon: nil,

C H A P T E R

Miscellaneous 15

RouteScript: func(target, targetView) begin
local curs:=GetTargetCursor(target, nil);
local e := curs:Entry();
while e do begin

print(e);
e:=curs:Next();

end;
end

});

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

UnRegNamesRouteScript 0

UnRegNamesRouteScript(symbol) // call kUnRegNamesRouteScriptFunc

Removes an application-defined action from the Action picker in the Names application.

symbol A symbol identifying the action you are removing.

return value Undefined; do not rely on it.

DISCUSSION

This function only removes actions added by RegNameRouteScript.

Here’s an example of using the UnRegNamesRouteScript function:

call kUnRegNamesRouteScriptFunc with ('|EntryDumper:PIEDTS|);

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

ShowBusyBox 0

ShowBusyBox(showIt) // call kShowBusyBoxFunc

Shows or hides the system busy icon.

showIt A Boolean that specifies whether to show or hide the system busy
icon. Specify true to show the busy icon until control returns to the
system. Specify nil to hide the busy icon for the rest of the current
iteration of the system event loop.

return value Undefined; do not rely on it.

DISCUSSION

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. Note that this function is implemented in
ROM on Newton 2.1 units, so you can call it directly if your application
runs only on the Newton 2.1 OS. ◆

C H A P T E R

16 Miscellaneous

StringToKeyCodes 0

StringToKeyCodes(string) // call kStringToKeyCodesFunc

Translates a string to its corresponding key codes.

string The string to translate into key codes.

return value An array of numeric key codes corresponding to the characters in
string.

DISCUSSION

StringToKeyCodes returns an array of key codes suitable for passing to the function
HandleKeyEvents.

Note

This function exists only in the Newton 2.1 platform file and works only
on Newton 2.1 units. ◆

SupplantSoupDef 0

SupplantSoupDef(soup, soupDef) // call kSupplantSoupDefFunc

Installs the specified soup definition in the specified single soup.

soup The soup on which this method operates. This value must be a
soup, not a union soup.

soupDef The soup definition frame this method installs.

return value Undefined; do not rely on it.

DISCUSSION

IMPORTANT

Changing a soup definition frame is not recommended. Use this
function only if you know that what you are attempting to do will not
cause errors or undesirable side effects. ◆

The SupplantSoupDef function works on single soups only, not on union soups. You can
use the union soup method GetSoupList to retrieve a list of the member soups that are
currently available to a specified union.

You can use the SupplantSoupDef function to

■ Change the user-visible information for a specified soup. For example, you could use
this function to change the string that the Extras drawer displays as the soup’s name.

■ Add a soup definition frame to a soup that lacks one. For example, soups created by
system software prior to version 2.0 do not have soup definition frames.

■ Replace the soup definition frame in a soup that already has one. Note that this may
cause inconsistencies with other soups in the union that can lead to unstable behavior.

C H A P T E R

Summary of Functions 17

Note

This function does not change the soup definition currently registered
with the system—it changes only the local copy of the definition that is
held by a soup created from it. To change a soup definition registered
with the system, you must replace it completely. To do so, first call the
UnRegUnionSoup function to unregister the current soup definition, and
then call the RegUnionSoup function to register the new soup definition. ◆

Because most of the information in a soup definition frame is used only when the system
creates a new soup, the appropriate usage of the SupplantSoupDef function is very
limited. For example, although you can use this method to change the indexes that a
soup definition specifies for new soups, the actual indexes in existing soups are not
updated by this method. Soups created subsequently from this definition may not have
the same complement of indexes as other soups in their union, which may cause
operations on the union soup to fail. Exercise extreme caution when using this method
for any purpose.

The following code fragment provides an example of the proper use of this function.

// unregister old definition
UnRegUnionSoup("mySoup:mySig",'|MyApp:MySig|);
// register new version of soup definition
// assume myNewSoupDef is valid
local uSoup := RegUnionSoup('|MyApp:MySig|, myNewSoupDef);
// update existing soups
foreach member in uSoup:GetSoupList() do

begin
call kSupplantSoupDefFunc with (member, newDef);

// perform other housekeeping like adding or removing indexes
end;

Note

This function exists only in the Newton 2.x platform files and works
only on Newton 2.x units. ◆

Summary of Functions 0

This section contains a summary of all the functions provided by the platform files,
including those functions documented previously in Newton Programmer’s Reference and
in the latest Newton Programmer’s Guide: 2.1 OS Addendum.

Views
ClearSelectionHilites(theView)
ViewIsOpen(view)

Extras Drawer
GetPartCursor(packageName, store, folderSym) // in 2.1 ROM
LaunchPartEntry(entry) // in 2.1 ROM
SetExtrasInfo(paramFrame, newInfo) // in 2.1 ROM
AddExtraIcon(extraType, paramFrame, packageName, store) // in 2.1 ROM

Miscellaneous
CardFileSafeRemoveLayout(layout)
GetAllFonts() // in 2.1 ROM

C H A P T E R

18 Summary of Functions

GetCalendarMeetingTypes()
GetCalendarMeetingTypeInfo(typeSymbol)
GetCommPortInfo()
GetCorrectInfo() // in 2.1 ROM
GetMaskedPixel(x, y, pixFamily)
GetPrinterName(printerFrame)
GetTransport(transportSymbol)
MissingImports(pkgRef)
RegGlobalKeyboard(kbdSymbol, kbdTemplate)
UnRegGlobalKeyboard(kbdSymbol)
RegNamesRouteScript(symbol, routeScriptFrame)
UnRegNamesRouteScript(symbol)
ShowBusyBox(showIt) // in 2.1 ROM
StringToKeyCodes(string)
SupplantSoupDef(soup, soupDef)

Functions Documented in Newton Programmer’s Reference
AddLocale(theLocaleBundle) // in 2.1 ROM
FindLocale(titleString) // in 2.1 ROM
GetLanguageEnvironment()
QuietSendAll(transportSym)
RegEmailSystem(classSymbol, name, internet)
RegPagerType(classSymbol, name)
RegPhoneType(classSymbol, name, char)
RemoveLocale(locSymbol) // in 2.1 ROM
UnregEmailSystem(classSymbol)
UnregPagerType(classSymbol)
UnregPhoneType(classSymbol)

Functions Documented in Newton Programmer’s Guide: 2.1 OS Addendum
DragAndDropLtd(unit, dragBounds, limitBounds, copy, dragInfo)
GetAllDialinNetworks()
GetDialinNetwork(networkSym)
GetLocAccessNums(entry, which)
GetPartEntryData(entry) // in 2.1 ROM
RegDialinNetwork(networkSym, networkFrame)
UnregDialinNetwork(networkSym)

Obsolete Functions

The following functions are supplied in the MessagePad platform file, but are obsolete in
the Newton 2.x platform files. They are still supported in Newton 2.x under different
names (“Deprecated” is appended), but it is recommended that you do not use them. In
most cases, these platform file functions have been replaced by ROM functions in
Newton 2.x, or in some cases, they no longer apply to Newton 2.x.

MessagePad name Newton 2.x name (obsolete)
AddAlarm AddAlarmDeprecated

CloseRemoteControl CloseRemoteControlDeprecated

FlushUserConfig FlushUserConfigDeprecated

GetAlarm GetAlarmDeprecated

GetAppAlarmKeys GetAppAlarmKeysDeprecated

GetDefaultStore GetDefaultStoreDeprecated

GetUserConfig GetUserConfigDeprecated

C H A P T E R

Summary of Functions 19

OpenRemoteControl OpenRemoteControlDeprecated

PtInBitMap PtInBitMapDeprecated

RegFindApps RegFindAppsDeprecated

RegFormulas RegFormulasDeprecated

RegisterCardSoup RegisterCardSoupDeprecated

RegPrefs RegPrefsDeprecated

RemoveAlarm RemoveAlarmDeprecated

RemoveAppAlarms RemoveAppAlarmsDeprecated

Send SendDeprecated

SendRemoteControlCode SendRemoteControlCodeDeprecated

SetDefaultStore SetDefaultStoreDeprecated

SetExtrasInfo SetExtrasInfoDeprecated

SetUserConfig SetUserConfigDeprecated

SimpleTextHeight SimpleTextHeightDeprecated

UnionSoupIsNull UnionSoupIsNullDeprecated

UnRegFindApps UnRegFindAppsDeprecated

UnRegFormulas UnRegFormulasDeprecated

UnRegisterCardSoup UnRegisterCardSoupDeprecated

UnRegPrefs UnRegPrefsDeprecated

MessagePad name Newton 2.x name (obsolete)

C H A P T E R

20 Summary of Functions

	Introduction
	Change History
	Newton 2.1 Platform File
	Newton 2.0 Platform File

	Using Platform File Functions
	Views
	Extras Drawer
	Miscellaneous
	Table�1-1 hardwareInfo frame slots

	Summary of Functions

