Newton Q&A: Ask the llama

This column first appeared in volume 24 of DEVEL OP (the Apple technical journa
for developers). Copyright ©1995 Apple Computer, Inc. All rights reserved.

Q Theonline discussion groups for Newton developers have a lot of references
to compatibility these days. My application works fine on the 120, 110, and
100 models. Does that mean I’ m compatible?

A Good question. Compatibility doesn’t mean your application works now,
but that it’swritten in such away that it will work on future Newton devices
and operating systems. There are several APIs and methods for doing things
on the 120, 110, and 100 that will work with them but are not necessarily
compatible with future releases of the OS.

There are two main points to observe for the sake of compatibility:
» If it'snot documented, don’'t useit.

» Catch exceptions; they can occur (especialy if you ignore the first point).

Since compatibility is such an important question, it will be the focus of this
column. Therest of the column will cover the most common breaches of
compatibility. Where applicable, there will be an example of the incompatible
and compatible ways of doing things. After reading this and making copious
notes (especialy where you find yourself saying “Oh dear” and “Oh no!”),
you'll be in aposition to make your code compatible. We aso recommend
that you try out your application with the Compatibility App Package (which
iIson thisissue's CD and is available from various online services).

Note that we refer often to the Newton Toolkit platform file functions. The
Toolkit comes with documentation and platform files can come with release
notes. Both the documentation and rel ease notes describe functions that are
provided in lieu of future APIs. Y ou should use these platform file functions
where applicable. Call the code directly and don’t modify it. That is, use the
call/with syntax; don't place the codein aslot in your application and use
message sending.

UNDOCUMENTED GLOBAL FUNCTIONS
There are four common offenders here: CreateAppSoup, SetupCardSoups,
MakeSymbol, and GetAllFolders.

The function kRegisterCardSoupFunc in the platform file replaces both
CreateAppSoup and SetupCardSoups. It's much ssimpler to use than the
undocumented functions:

/1 RGT way

constant kSouphNane : = "MSoup: WS G';
constant kSouplndices :="[];

constant kApp(hject :="'["Iteni, "ltens"];

call kRegi sterCardSoupFunc with
(kSoupNare, kSoupl ndi ces, kAppSynbol , kApp(hj ect);

[] x*xxxxx \\RONG way ****** Bad, naughty, nasty, skanky, way *****

Q eat eAppSoup(kSoupNane, kSoupl ndi ces, Ensurel nt er nal ([appSyniol]),
Ensur el nt er nal (kApp(hj ect)) ;

AddAr rayd ot (car dSoups, kSoupNang) ;

AddAr rayd ot (car dSoups, kSoupl ndi ces);

Set upCar dSoups() ;

The fix for MakeSymbol isto call the Intern function; it does the same thing and
it is documented. There' s no replacement function for GetAllFolders; just don't
cal it.

UNDOCUMENTED GLOBAL VARIABLES
The three most common misused global variables are car dSoups, extras, and
user Configuration.

There are two uses of car dSoups: oneisto register a card soup; the other to
unregister it. Registering is taken care of with kRegisterCardSoupFunc (see
above). Unregistering is done with another platform file function,
kUnRegisterCardSoupFunc:

/1 RGT way
cal | kUhRegi st er Gar dSoupFunc with (kSoupNane) ;

[] xxxxxxx \\RONG way ****** Bad, naughty, nasty, skanky, way *****
Set Renove(car dSoups, kSouphNane) ;
Set Renove(car dSoups, kSoupl ndi ces) ;

Y ou should never access the extr as global variable. Not only isit
undocumented, but so is the format of the. Both are subject to major revisions.
The platform file function kSetExtrasinfoFunc is provided for setting information
about items in the extras drawer. The most common use of thisfunctionisto give
your application a different icon (see the ExtraChange DTS sample code on the
CD).

There are also platform file functions to manipulate user Configur ation:
kGetUserConfigFunc gets a slot from the user Configur ation soup entry;
kSetUserConfigFunc lets you set user configuration information; and
kFlushUserConfigFunc should be called when you’ ve changed user
configuration information.

/1 RG way
local userNane := call kGetUserGonfigFunc with (' nang);
i f userNane then
begi n
if SrEgual (userNane, "Doctor™) then
call kSet Wser GonfigFunc with (' nane, "The Doctor");
cal | kH ushUser GnfigFunc with ();
end;

[Fxxxsex \WRONG way ****** Bad, naughty, nasty, skanky, way *****
i f user@nfiguration. nane AND
S rEyual (user Gonfiguration. nane, "Doctor") then
user Gonfi guration. nane : = "The Doctor™;

UNDOCUMENTED SLOTS AND METHODS

Thisisabroad category of violations. The most common problem is
keyboardChicken intheroot view. But there are others, like
cursor.current, paper Roll.dataSoup, docker Chooser in the root view,
UnionSoup:Add, and anything in a built-in application. Unfortunately, thereis
no right way to access most of these. The exceptions are cur sor .cur rent and
Add:

/! RGT way
local currentEntry := cursor: Entry();
nyUhi onSoup: AddToDef aul t S or e(anEntry) ;

[] **xxx%x \\RONG way ****** Bad, naughty, nasty, skanky, way *****

local currentEntry := cursor.current;
nyUhi onSoup: Add(anEntry);

Also, don't rely on the routing slips, such as mailSlip and printSlip, beingin
the root view. Y ou can, however, still use those symbolsin your routing frame.

UNDOCUMENTED MAGIC POINTERS

If you use one of these, you know it. Just think what would happen if the magic
pointer changed from aview to a string: you would get some pretty bad behavior.
Note that most of this could be dealt with by catching exceptions.

STORE AND SOUP ASSUMPTIONS

All you can assume isthat store O isthe internal store. You can't rely on there
being only one other store, nor can you rely on the position of a store in the array
returned by GetStores. Also, don’t assume that another storeisacard or even
that there is just one store per card.

If you support moving or copying items between stores, you shouldn’t find the
title of the store. Use the constant ROM _cardAcction as provided in the platform
file

/1 RG way
routi ngFrane : = {
print: ...

card: ROM cardAction
}
In addition, don’t assume that your soup will exist on every store. Currently, if

you register your union soup, it’s automatically created on every store that enters
the Newton; however, this may changein the future:

/1 RG way
Get Lhi onSoup(kSoupNane) : AddToDef aul t S or e(anEntry) ;

[] ***xx%x \\RONG way ****** Bad, naughty, nasty, skanky, way *****
as or e: Get Soup(kSouphane) : Add(anEnt ry) ;

Remember that AddToDefaultStore or Add could throw exceptions. Wrap your
callsto these functionsin exception handlers.

Finally, if you support the soup change mechanism, don’t assume that the change
isadding or deleting an entry. It could be something else, such as a soup being
created or removed from a store.

SCREEN SIZE

Don’'t assume the screen isany particular size. It could be larger or smaller than
current devices. It could aso be wider than it istall. Y our application size setup
routine (usualy in the viewSetupFormScript) should take this into account. Have
maximum and minimum sizes. Close your application if it can’'t handle the
current screen size:

/1 Code to close your application
constant kUhsupport edScreenS ze : =
"WggyWer| d does not support this screen size";

Def Gonst (' ¢l oseMeFunc, func(x) x:dose()) ;

:Notify(kNotifyQN ert, Ensurel nternal (kAppNane),
Ensur el nt er nal (kUnsuppor t edScreenS ze)) ;
AddDef er redAct i on(cl oseMeFunc, [sel f]);

UNDOCUMENTED FEATURES OF DATA TYPES

Only rely on the features and details of built-in data types that are documented.
There are three common problem areas: order of dotsin aframe, precision of
integers, and implementation of strings.

The order of dotsin aframeisundefined. It just so happensthat in the current
implementation the first 20 dots are returned in the order added. Thisisnot a
documented feature, so don’'t rely oniit.

Integers are documented as having at least 30 bits of precision. This doesn’t
mean they’ || always be 30 bits; they could be wider (as anyone who has used
compiled NewtonScript can tell you). Note that compiled NewtonScript integers
may not be 32 bits; they also follow the “at least 30 bits’ rule.

The biggest offender is assumptions about how strings are implemented. Don’t
rely on strings being null terminated or being composed of two-byte Unicode
characters. The practical upshot isthat you should use StrLen to find the length,
and StrMunger (or &) for length changes. Don’t use Length, SetLength, or

BinaryMunger with strings. Do not set a string using the array accessor. Y ou can
check a character, but do not set a character.

MISCELLANEOUS BITS
Don't send messages directly to the IOBox; use the kSendFunc platform file
function. Nor should you read the items in the IOBox soups.

Also note that there are platform file functions to register and unregister for Find
that you should use.

Always use SetValue when you' re changing the view or other system values.

Use only thebody dot in itemsthat you route. Don't rely on slots other than
body surviving the routing process. On arelated note, do not rely on category
slot of fieldsin your SetupRoutingSlip method either.

Don't rely on the closing order of views in the viewQuitScript. If you need to do
some ordered cleanup, you can initiate your own message (for example,
myViewQuitScript) from the view that first receives the viewQuitScript.

Replace system functions and messages at your peril. It's conceivable for them to
support other data typesin the future (for example, to take NIL now where
before they only took a string).

Don't assume anything about the built-in applications. Don’'t assume that they
exist, or that their soups are there, or that the view structure will stay the same. If
you do need to use a system feature (for example, a particular prototype, global
function, or root method), test your assumptions:

local cardF leExists := GetRoot().cardfile;

if cardF | eExi sts then

begi n
l ocal cardF | eSoup : = Get Lhi onSoup(ROM car df i | esoupnane) ;
if cardF | eSoup then

end;
/1 :-0
i f Get Root (). keyboar dChi cken t hen

end;

Current Newtons have two levels of Undo; this may change. There could be
more or fewer levelsand it could change to Undo/Redo. It’s safest to call
AddUndoAction from inside your undo action; thiswill support Undo/Redo if
we implement it, but will do nothing if we do not.

The llama is

the unofficial mascot of the Developer Technical Support group in Apple’s Newton Systems
Group. Send your Newton-related questions to NewtonMail or eWorld DRLLAMA, or AppleLink
DR.LLAMA. The first time we use a question from you, we’ll send you a T-shirt.

Thanks

to our Newton Partners for the questions used in this column, and to jXopher Bell, Henry Cate,
Bob Ebert, David Fedor, Stephen Harris, Jim Schram, Maurice Sharp, James Speir, and Bruce
Thompson for the answers.

Have more questions?
Need more answers? Take a look at Newton Developer Info on AppleLink.

