
NEWTON

Q&A:

ASK THE

LLAMA

This Column first appeared in volume 21 of DEVELOP (the Apple technical journal for developers). Copyright
©1994 Apple Computer, Inc. All rights reserved.

Q I’m trying to remove indexes that I’ve added to the names soup. But the code to do it is kind of
First I have to go through all the indexes to see if my index is in the soup. Then if I find the ind
can remove it. Is there an easier way?

A Yes, there’s an easier way. Remember that a call to RemoveIndex will throw an exception if it’s
passed an invalid index. You can wrap your code in an exception handler and prevent the invalid
index exception from leaving your code:

ExceptionBasedRemoveIndex := func(theSlotsym, theSoupName)

begin

local theSoup;

foreach store in GetStores() do

begin

theSoup := store:GetSoup(theSoupName);

if theSoup then

try

theSoup:removeIndex(theSlotsym);

onexception |evt.ex.fr.store| do

if CurrentException().error <> -48013 then

ReThrow();

end;

end

This function will remove a particular index (specified by theSlotsym) from a particular soup
(specified by theSoupName) on all currently mounted stores. If the index exists, it will be removed;
otherwise, the exception thrown for trying to remove an invalid index will be caught and ignored.
If a different exception occurs, it will be rethrown so that other exception handlers or the system
can deal with the exception.

Q I’m writing a utility that is an auto part. My utility needs preferences, but there’s no application
add preferences to. Where should I put my preferences?

A The guidelines for preferences are simple:

• For an any addition that has an icon in the extras drawer, the preferences should be part of that
application. Use the info button to access them.

• For something that has no icon in the extras drawer, add your preferences to the system
preferences roll.

See the sample “Preefer Madness” on this issue’s CD for more information.

Q When text gets pasted into my paragraph view, that text is highlighted. I want to be able to detec
when this happens and then be able to unselect the text. How do I do that?

A When the text gets added, the viewChangedScript will get called with the slot parameter set to
'text. You can use the SetHilite message to unhighlight the text. However, the viewChangedScript
will get called before the underlying implementation of the paragraph view has been changed. This
means you need to call SetHilite in a deferred action.

Q I’m writing a specialized application for a corporate customer. One of the requirements is that th
application launch when the Newton is turned on (a “turnkey” application). Is there a way to do
with the Newton?

A You can use the installScript of your application to add a deferred action that opens your
application:

constant kAppSymbol := '|autoLaunch:PIEDTS|;

installScript := func(partFrame)

begin

AddDeferredAction(func() GetRoot().(kAppSymbol):Open(), []);

end;

This will launch your application whenever the Newton is restarted or a card containing your
application is inserted. Note that if the application is closed before the Newton is restarted again,
the application will not relaunch. Nor will the user be prevented from accessing other features of
the Newton such as Names, Dates, or Extras Drawer; that’s a much harder problem.

Q I’ve been trying to use the protoRoll and protoRollItem to create a roll browser of my own.
Everything works fine until I scroll. For a couple of these items I need to tap the down arrow tw
for it to go to the next roll item. I see the scrolling view effect, but it just scrolls to itself. The he
slot in each of the roll items has the same value as the height in their viewBounds slot. If I move
roll items around when they’re added to the protoRoll (dynamically from my own protos), they
fine. How can I fix this?

A The problem is that one of the protoRollItems in the items array is larger than the protoRoll. If you
make the roll browser larger than the largest roll item, all will work fine; otherwise, you have to
scroll the roll item twice to move to the next roll item.

Also, since you imply that the entire large roll item is visible, I assume that the protoRoll has
vClipping turned off. If you’d had clipping on, you would probably have noticed that the
individual roll item was too large.

Q I’m having some problems with margins when I’m faxing. A fax without a cover page has diffe
margins than a printed page. The actual viewBounds is the same, but the margins of the fax are
different from the viewBounds.

Also, a fax with a cover page has even different margins. The viewBounds is different, too (20
pixels shorter in height), but that’s OK. The problem is that the actual margins when faxed are
different from those specified by the viewBounds slot. Is this a known problem?

A Faxes with a cover page have a header line at the top of the fax which takes up those mysterious 20
pixels. In fact, it might be a bug that faxes without a cover page omit this header, but perhaps the
only bug is not documenting that protoPrintFormat (which provides the cover page) also adds that
header.

The way to find the correct page bounds is to set the viewBounds of your base print view to that of
the parent. The base print view is usually a clView that is a child of a print layout. You can use the
following code in the viewSetupFormScript of your base print view to set your bounds to those of
your parent:

viewBounds := :Parent():LocalBox();

Q I’ve got an auto part that installs a template for the formulas roll. On the roll item I’ve got a
protoLabelInputLine for data entry, and a button that I want to use to clear the input line. My
buttonClickScript is very simple:

buttonClickScript := func()

begin

SetValue(myInputLine.entryLine, 'text, "");

end;

The first time the button is tapped, the input line gets cleared OK; after that it never seems to wo
no matter how I code it. Can you help?

A This is a very subtle problem. The answer will be revealed in stages, so that you to can experience
the “Aha!”

Observation 1: When you edit the text in any clParagraphView, no new strings are generated. The
existing string is destructively modified (excluding the usual _proto copying, of course).

Observation 2: During the compile cycle, the Newton Toolkit will turn all your strings into
constants. Contrast this to using braces to construct a frame. As an illustration, assume you have
these three methods:

Method1 := func()

begin

return {slot1: "also string"};

end;

Method2 := func()

begin

return '{slot2: "also also string"};

end;

Method3 := func()

begin

return "a string";

end;

The braces specify a frame constructor. Each time you call Method1 it will return a reference to a
newly allocated frame, though not different contents. For example, when the following is executed

myVar := call Method1() with ();

here’s what you get in memory:

On the other hand, Method2 quotes the frame, which makes it a quoted constant. In other words,
each time you call Method2 it will return a reference to the same frame. And Method3 does
something else altogether: In the Newton Toolkit, a string is treated like a quoted frame (or array).
It’s a constant object, so each time you call Method3 it will return a reference to the same string.
Note that this means that in both Method1 and Method2 the slot in each frame will reference the
same string. Diagrams that show what happens in memory when each of these three methods is
executed are provided on this issue’s CD along with this column.

Observation 3: When you call SetValue, you’re actually copying the reference to the empty string
from your buttonClickScript into the text slot of the entry line. You might think this would cause an
error, because the string constant can’t be modified. But clParagraphViews are smart: if the string
can’t be modified (that is, if it’s read-only), a copy is made.

Observation 4: I checked in the inspector, and your buttonClickScript is not read-only. This means
that the string constant "" in that script is also not read-only.

Observation 5: To prevent the grip of death on a card, you would need to call EnsureInternal on
your formula roll entry. This effectively makes a copy of the entire template, including constants, in

the NewtonScript heap. The following illustration contrasts a Clone with a DeepClone (which is
what EnsureInternal uses). Note that the DeepClone creates a new read/write copy of the string.

Conclusion: You press the Clear Data button once. This sets the reference of the input line string to
point to the string constant in your buttonClickScript. Since the string constant is no longer read
only, changing the input line string destructively modifies the string constant. You may think that
this would lead to a bus error or worse, but thanks to NewtonScript, it works as it should. The
next time you press the Clear Data button, the input line string reference gets replaced with a
reference to the now modified string constant.

The solution is to change the SetValue call to

SetValue(dataItem.entryLine, 'text, Clone(""));

This will make a copy of the string constant and return a reference to the copy.

Q Just recently I came into possession of a sword. It was handed to me by a lady in a lake whose
was clad in the finest shimmering samite. I figure with this sign of divine providence I should b
to wield supreme executive power. What do you think?

A Fortunately, strange women in ponds has not been used as a basis of a system of government since
the Dark Ages. These days supreme executive power derives from a mandate from the masses, not
from a farcical aquatic ceremony. If I claimed to be President just because some aquatic gymnast
threw a sword at me, I’d be locked up for sure.

The llama is
the unofficial mascot of the Developer Technical Support group in
Apple’s Personal Interactive Electronics (PIE) division. Send your
Newton-related questions to NewtonMail DRLLAMA or AppleLink
DR.LLAMA. The first time we use a question from you, we’ll send
you a T-shirt.

Thanks
to Don Gummow and our PIE Partners for the questions used in
this column, and to jXopher Bell, Bob Ebert, Mike Engber, Kent
Sandvik, Jim Schram, and Maurice Sharp for the answers.

Have more questions?
Need more answers? Take a look at PIE Developer Info on
AppleLink.

