

11-1

Preliminary Draft.



 Apple Computer, Inc. 10/21/97

C H A P T E R 1 1

Miscellaneous 11

This chapter lists miscellaneous additions to the Newton OS introduced with
Newton 2.1 OS that are not lengthy enough to warrant their own chapters.
The following topics are covered in this chapter:

■

The button bar interface

■

The clipboard interface

■

The dial-in networks interface

■

Two protos for providing a password slip:

protoPasswordSlip

 and

protoBlindEntryLine

■

Setting a transport preference for automatic put away of received items

■

The format of Newton Works word processor soup entries

■

A number of new user configuration variables:

LCDContrast

,

alarmVolumeDb

,

soundVolumeDb

,

 buttonBarPosition

,

buttonBarControlsPositions

,

bellyButtonPositions

,

buttonBarIconSpacingH

,

buttonBarIconSpacingV

,

extrasIconSpacingH

,

extrasIconSpacingV

, and

extraFont

.

■

A new serial communication tool option:

kCMOPCMCIAModemSound

.

Figure 11-0
Listing 11-0
Table 11-0

C H A P T E R 1 1

Miscellaneous

11-2

The Button Bar

Preliminary Draft.



 Apple Computer, Inc. 10/21/97

■

A number of new functions and methods:

■

view

:DragAndDropLtd

 allows you to specify a limit bounds for drag and
drop, and

view

:ViewAddDragInfoScript

 allows you to handle global
command keys if your view supports cut and copy

■

RegStationaryChange

 (and

UnRegStationeryChange

) notifies you when a
piece of stationery changes

■

MakeFontMenu

 creates a menu of available fonts suitable for a picker

■

RecognizeTextInStyles

 and

RecognizeInkWord

 recognize ink text

■

SetUserConfigEnMasse

 sets a number of user configuration variables at
once

■

RegUserConfigChange

 registers a function object to be called when a user
configuration variable changes

■

New transport methods,

DeleteItem

,

DeleteRemoteItems

, and

RefreshOwner

, are related to remote items

■

ROM_GetSerialNumber

 returns a Newton device’s unique serial number

■

SetScreenOrientation

 changes the screen orientation

■

TimeFrameStr

 returns a string version of a date and time frame

■

A number of existing functions and methods have been altered:

■

view

:DragAndDrop

■

BatteryStatus

■

extrasDrawer

:GetPartEntryData

■

calendar

:SetEntryAlarm

■

partFrame

:ImportDisabled

■

LegalOrientations

■

GetAppParams

■

Gestalt

The Button Bar 11

Newton 2.1 OS introduces a software on-screen button bar.

C H A P T E R 1 1

Miscellaneous

The Button Bar

11-3

Preliminary Draft.



 Apple Computer, Inc. 10/21/97

The App Area 11

When you set your application’s view bounds and justification, you are
setting these values relative to the app area. The

app area

 is defined as the
rectangle relative to which your application’s base view opens. That is, if you
set your application’s base view to full horizontal and vertical justification,
your application covers exactly the app area. On some Newton devices the
app area is the screen, on devices with a soft button bar, the app area is that
portion of the screen not taken up by the soft button bar.

Your application does not have to exist entirely within the app area’s bounds
however, and in fact, it can exist entirely outside these bounds.

You can obtain information about the app area’s position with

GetAppParams

.
It now returns the extra slots

appAreaGlobalTop

 and

appAreaGlobalLeft

,
which hold the app area’s top and left view bounds in global coordinates.

Changing the Screen Orientation 11

The

GetOrientation

 function has existed since Newton 2.0 OS, but was not
previously documented. It returns an integer, as described in Figure 11-1,
indicating the current screen orientation. Newton 2.1 OS provides the

SetScreenOrientation

 function, to programmatically change the screen
orientation. This function takes a single integer parameter, one of the screen
orientation constants, specifying the desired screen orientation.

C H A P T E R 1 1

Miscellaneous

11-4

The Button Bar

Preliminary Draft.



 Apple Computer, Inc. 10/21/97

Figure 11-1

Screen orientation constants

The return value of

SetScreenOrientation

 is a

nil

 or non-

nil

 value indicating
failure or success. For example, if the backdrop application is incompatible
with the new orientation, the rotation fails. If some applications won't work
in the new orientation,

SetScreenOrientation

 may present the user with a
dialog giving the option of canceling the rotation. If the user cancels the
operation, the screen is not rotated, and

SetScreenOrientation

 returns

nil

.
You should always check the return value of

SetScreenOrientation

, or call

GetAppParams

, instead of assuming that the screen has been rotated.

The

LegalOrientations

 function returns an array of all available screen
orientations.

Moving the Button Bar 11

The following attributes can be set programmatically:

■ the position of the button bar on the screen.

■ the placement of the controls (the up/down arrows and the overview
button) within the button bar.

C H A P T E R 1 1

Miscellaneous

The Button Bar 11-5
Preliminary Draft.  Apple Computer, Inc. 10/21/97

■ the position of the overview button in relation to the up/down arrows.

Each of these three attributes is controlled by a user configuration variable:
buttonBarPositions, buttonBarControlsPositions, and bellyButtonPositions,
respectively. Each of these variables contains a four-element array, one
element for each screen orientation. These arrays are indexed by the screen
orientation constants, see Figure 11-1 (page 11-4). That is, array[kPortrait]
contains the value to use in the portrait orientation.

You should check for the existence of a software button bar before setting
these values by testing if GetRoot().buttons.soft is non-nil.The following
sample code sets the button bar to the left in either landscape orientation,
and to the top in the two portrait orientations:

if GetRoot().buttons.soft then
SetUserConfig('buttonBarPositions,'[top,left,top,left]);

For information on accessing the user configuration data see “Functions for
Accessing User Configuration Data” (page 19-58) in Newton Programmer’s
Guide.

Covering the “Soft” Button Bar 11

If you want to maximize the visible area of your application, you must cover
the soft button bar if there is one. To do this, set your application base view’s
bounds to a rectangle as large as the screen. Make sure to offset this rectangle
to adjust for the fact that your application opens relative to the app area, not
relative to the origin of the global coordinate system. The code example in
Listing 11-1 demonstrates how to do this from within your application’s base
view’s ViewSetupFormScript.

Listing 11-1 Code to set an application’s view bounds to cover the entire screen

local params := GetAppParams();
self.viewbounds :=

if GetRoot().buttons.soft then
UnionRect(

params.appAreaBounds,
OffsetRect(

params.buttonBarBounds,
-params.appAreaGlobalLeft,

C H A P T E R 1 1

Miscellaneous

11-6 The Button Bar

Preliminary Draft.  Apple Computer, Inc. 10/21/97

-params.appAreaGlobalTop));
else

params.appAreaBounds;

Note

While it is possible to get rid of the button bar to use the
entire screen, it is not recommended; you should merely
cover the button bar. ◆

Disabling the “Silkscreened” Button Bar 11

Some Newton devices, such as the Message Pad 130, have the button bar off
screen. On these devices the tablet is larger than the screen, to allow the user
to tap on the button bar. If your goal is to disable these buttons, you should
create a separate view, with the BuildContext function, that covers just these
buttons. The following code shows how the bounds of such a view could be
determined:

Listing 11-2 Code to cover the silkscreened button bar

rb := GetRoot():LocalBox();
pb := GetAppParams().appAreaBounds;
self.viewbounds :=

if rb.bottom = pb.bottom then // assume bb is on right
 SetBounds(pb.right, rb.top, rb.right, rb.bottom);

else // assume bb is on bottom
 SetBounds(rb.left, pb.bottom, rb.right, rb.bottom);

Note

You could cover these buttons by creating a view that covers
the entire root view. If you do this, you must not set the
vApplication flag of that view, and this flag must be set all
the way up the _parent chain, for the system to consider
your view an application. For this reason it is recommended
that you create a separate view to cover the silkscreened
buttons. ◆

C H A P T E R 1 1

Miscellaneous

The Button Bar 11-7
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Replacing the Button Bar 11

The KillStdButtonBar function closes the button bar, and reserves space for a
replacement. The icons that were previously on the button bar are moved to
the Extras Drawer. You should create a replacement for the button bar. Your
replacement must allow the user to do the following:

■ scroll up and down

■ overview

■ open the Extras Drawer

◆ W A R N I N G

If you do not provide a replacement button bar with access
to the Extras Drawer, you will have disabled the Newton
device. ◆

Create your replacement button bar with the BuildContext function, making
it a child of the root view. Your replacement button bar is not sent special
system messages. It does not need to implement any of the functionality of
the standard button bar, other than scrolling and overview support, and
providing access to the Extras Drawer. And it does not need to register with
the system in any way; specifically, you should not put a reference to your
button bar in the GetRoot().buttons.soft slot.

You should register for changes in the “Packages” soup, with RegSoupChange,
to be notified of changes such as a storage card being removed or a package
being loaded. You should not, however, access the “Packages” soup. Simply
rebuild your button bar when you are notified of a change of any type in this
soup.

The KillStdButtonBar function accepts a single argument, a four-element
array of frames, one for each possible screen orientation. The array is
indexed by the screen orientation constants, that is, array[kPortrait] holds
the frame for the portrait orientation. These frames should have two slots,
buttonBarPosition and buttonBarThickness, specifying the location of the
button bar in this orientation, and the amount of screen space to reserve for
you button bar.

The following code sample reserves the bottom 20 pixels in all four screen
orientations:

C H A P T E R 1 1

Miscellaneous

11-8 The Button Bar

Preliminary Draft.  Apple Computer, Inc. 10/21/97

KillStdButtonBar(Array (4, '{buttonBarPostion:bottom,
buttonBarThickness:20}));

Pass nil to KillStdButton bar to restore the standard button bar.

Note

This function is intended to be used to replace the button
bar. If you want to close the button bar so as to use that part
of the screen for your application, you should merely cover
the button bar, as described in “Covering the “Soft” Button
Bar” (page 11-5). ◆

Configuring the Button Bar 11

This section describes how to control which icons appear in the button bar,
and in which order. This is something that should generally be left up to the
user. It is easy enough for a user to drag an icon to and from the button bar.

The mechanism by which icons are marked as being located in the button bar
is simply filing; specifically, being filed in the _ButtonBar folder. This can be
accomplished by changing an icon's labels slot using the Extras Drawer
method, SetExtrasInfo. For a list of possible values for an icon’s labels slot,
see “Extras Drawer Folder Symbols” (page 11-17).

Using SetExtrasInfo to move an icon to the button bar provides no control
over its placement in the button bar. There are two button bar methods that
give you more control, GetPartEntries and ReConfigure.

GetPartEntries takes no arguments and returns a frame with two slots, fixed
and mobile. These slots contain arrays of part entries; part entries are what
the cursor returned by the Extras Drawer method GetPartCursor iterate over.

Note

The entries returned by the button bar method
GetPartEntries are part entries, and as mentioned in the
documentation for the Extras Drawer method GetPartCursor,
you should not directly examine part entries. You can use
the Extras Drawer GetPartEntryData method to retrieve
information about a part entry. ◆

C H A P T E R 1 1

Miscellaneous

The Button Bar 11-9
Preliminary Draft.  Apple Computer, Inc. 10/21/97

The fixed entries are “fixed” because they cannot be moved by dragging. By
default, only the Extras Drawer's icon is fixed. It's important that the Extras
Drawer icon be fixed. Users should not be able to drag the Extras Drawer
icon into the Extras Drawer. The mobile entries are “mobile” because they
can be dragged in and out of the Extras Drawer by the user. In general, you
should not make your application’s icon fixed unless it is running on a
Newton device dedicated for your application.

The button bar's ReConfigure method takes one argument, a frame of fixed
and mobile entries, and reconfigures the button bar. The order of the entries
in the arrays controls the order of the icons in the Button Bar. For
convenience, ReConfigure also accepts application symbols instead of part
entries. This allows an icon to be added or removed from the Button Bar
without having to look up its actual part entry.

A related Button Bar method that you may want to use in conjunction with
ReConfigure is IconCapacity. IconCapacity takes no argument and returns the
number of icons (fixed plus mobile) the button bar can currently hold. This
number varies depending on the orientation and location of the button bar. It
returns zero if the button bar is closed.

You can also change the position of the controls (the overview button and the
up and down arrows), and the position of the arrows relative to the overview
button, with two user configuration variables, buttonBarControlsPositions
and bellyButtonPositions. These variables are defined in “New User
Configuration Variables” (page 11-18).

Changing the Spacing and Font of Icons 11

The distance, both horizontal and vertical, between icons in the button bar
and the Extras Drawer is controlled by four user configuration variables:
buttonBarIconSpacingH, buttonBarIconSpacingV, extrasIconSpacingH, and
extrasIconSpacingV. You can also change the font used in both the button bar
and the Extras Drawer with the user configuration variable extraFont.

These variables are defined in “New User Configuration Variables”
(page 11-18).

Note

Remember to allow space for multi-line icon titles when
modifying the icon spacing. ◆

C H A P T E R 1 1

Miscellaneous

11-10 The Clipboard

Preliminary Draft.  Apple Computer, Inc. 10/21/97

The Clipboard 11

The underlying mechanism that supports the clipboard is drag and drop.
The user selects some data object, and drags it off the screen onto the
clipboard. The user can then drag and drop the clipboard contents into
another view. As far as your application is concerned, it does not matter that
the data is being dragged onto the clipboard instead of a view. Or conversely,
that the data comes from the clipboard instead of another view. So, if your
application supports the drag and drop API, it already allows the user to
move items to and from the clipboard. For information on drag and drop, see
“Dragging and Dropping with Views” (page 3-40) in Newton Programmer’s
Guide.

There is also a direct interface to the clipboard with the GetClipboard and
SetClipboard global functions. In some cases, you may wish to support
cutting and pasting, but without the drag and drop interface. For example, it
might not make sense to “select” data in your application. You can provide
an alternate interface, such as a “Copy Data” button with the GetClipboard
and SetClipboard functions.

If you do support the drag and drop API, you can, with very little work, also
support the global editing command keys (Cmd-X for cut, Cmd-V for paste,
and so on). See “Adding Global Editing Command Keys Support”
(page 11-10).

Adding Global Editing Command Keys Support 11

If your application already supports drag and drop, you can allow the user
to cut and paste your data with the global command keys with minimal
work. There is a new view slot hilitedData that you should set to true if
there is data that can be cut or copied. You must also implement a new view
method, ViewAddDragInfoScript. This method must create a dragInfo frame to
be passed to your other view methods, such as the ViewGetDropDataScript.
The ViewAddDragInfoScript method is needed, since the dragInfo frame
would normally have been passed in the call to DragAndDrop.

C H A P T E R 1 1

Miscellaneous

The Clipboard 11-11
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Supporting paste is automatic. Your normal drop reception methods are
called: ViewGetDropTypesScript, ViewDropScript, ViewDropDoneScript, and so
on.

Using the Clipboard Functions 11

The GetClipboard and SetClipboard global functions provide a programmatic
interface to the clipboard. They access the clipboard frame. This frame is
returned by GetClipboard, and you should pass a frame such as this to
SetClipboard. You may also pass nil to SetClipboard to clear the clipboard.

The following clipboard frame was obtained by dragging a meeting to the
clipboard from the Dates application:

{
label: "lunch at M...",
types: [[meeting, text]],
data: [[aMeetingFrame, aTextFrame]] ,
bounds: {left: 15, top:86, right:75, bottom:118},
bits: bitmapObject,

}

The types and data slots contains arrays with information about the
clipboard items. Here these slots hold one-element arrays, since there is only
one item. Each of these arrays itself contains a two element array. This
indicates the different ways that the data can be interpreted. The ordering of
these arrays is important, they are ordered by the preferred way to interpret
the data. So in this example, it is best to interpret this data as a meeting, but
this data can be pasted onto any view that can handle text. The types and
data arrays must be synchronized, that is types[i][j] is the type of data in
data[i][j].

The following clipboard frame was obtained by cutting a section of a note
containing a sketch and some text from the Notes application:

{
label: "drawing",
types: [[polygon], [text]],
data: [[aPolygonFrame], [aTextFrame]] ,
bounds: {left: 149, top:105, right:357, bottom:266},
bits: bitmapObject,

}

C H A P T E R 1 1

Miscellaneous

11-12 Dial-In Networks

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Note that there are two items in this clipboard frame, and that these two
items can be interpreted in only one way: as a polygon and as text,
respectively.

Dial-In Networks 11

The dial-in network application programming interface (API) allows you to
add dial-in networks to augment the built-in SprintNet and ConcertNet
networks already in the system. A dial-in network provides phone numbers
for an application (or transport) to call to get access to the network.

For example, a CompuServe mail client would need to register a
CompuServe dial-in network to supply numbers for connecting to the
CompuServe network.

The primary function of a dial-in network is to supply phone numbers to call
given a particular location. It supplies these phone numbers by providing a
function to be called by elements such as the connection slip and the Internet
Enabler. This function returns the possible numbers.

Dial-in networks are stored in a registry in the system. To register a dial-in
network use the RegDialinNetwork function, passing in a network frame that
describes the dial-in network; see “Dial-In Networks Network Frame”
(page 11-21).

Password Slip 11

The password slip provides a user interface element that allows users to
enter and edit a password, it is available to you as protoPasswordSlip. The
password slip uses blind entry lines, and these are also available to you, as
protoBlindEntryLine, for use outside of password slips. A blind entry line is
an entry line that echoes dummy characters to the user.

The password slip contains an embedded keyboard if displayed on a
Newton device without a hardware keyboard, as show in Figure 11-2.

C H A P T E R 1 1

Miscellaneous

Password Slip 11-13
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Figure 11-2 A password slip

Using protoPasswordSlip 11
The protoPasswordSlip handles much of the work of putting up a password
slip. You are responsible only for implementing a scheme to store and
retrieve (and optionally encrypt) the current password, and writing a
function that handles the case of the correct password being entered. If the
wrong password is entered, protoPasswordSlip informs the user of this.

When the user first enters a password, the password slip SetPassword
method is called with a string argument. It is up to you to store this
password in some way from within your SetPassword method, encrypting
the string if security is an important factor. You must also write a
CurrentPassword method to retrieve the password and return a string.

C H A P T E R 1 1

Miscellaneous

11-14 Transport Auto Put-Away Preference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

The proto has a MatchPassword method that compares the string the user
entered with the one you returned from CurrentPassword; override this
method if you want something other than standard string comparison.

If the MatchPassword method returns non-nil (password matches), the
password slip MatchedPassword method is called. You should override this
method to perform any actions appropriate to the user having entered the
correct password. Your override must then call inherited:MatchedPassword
to close the slip.

The password slip can be used in three basic ways, as controlled by the
verifyPassword slot. If it is set to true, the default, the user must enter a
password, and may optionally change the password. If set to nil, the user is
not prompted for the original password, but can change it. And if set to the
symbol 'verifyOnly, the user is prompted for a password, but is not given
the opportunity to change it.

Using protoBlindEntryLine 11
The protoBlindEntryLine is used by protoPasswordSlip, but you can use it
elsewhere to provide a private way for the user to enter text. This proto is
based on protoInputLine. The only major difference is that this proto stores
the actual text the user entered in a realText slot. The text slot contains a
string of the same length as that in the realText slot, but using only the
character specified by the dummyChar slot. By default, dummyChar is the bullet
(•).

Aside from reading the realText slot instead of the text slot to see what the
user entered, use this proto as you would protoInputLine.

Transport Auto Put-Away Preference 11

There is a new transport configuration slot, dontAutoPutAway, that controls
whether or not items received via that transport can be put away
automatically. Set this slot to 'nil to allow items to be put away
automatically. Set this slot to 'never to prevent items from being put away

C H A P T E R 1 1

Miscellaneous

Reference 11-15
Preliminary Draft.  Apple Computer, Inc. 10/21/97

automatically. This slot is new in the Newton 2.1 OS. Here is an example of
how to set this slot:

transport:SetConfig('dontAutoPutAway, 'never);

Note that in order for items to be put away automatically, the application to
which the item is to be put away must also implement the AutoPutAway
method in its base view. For more details on automatically putting away
items, see “Automatically Putting Away Items” (page 21-31) in Newton
Programmer’s Guide.

Reference 11

Data Structures 11

View Slot 11

The following view slot is new to Newton 2.1 OS:

Slot description

hilitedData This slot states whether this view currently has data that
can be cut or copied with the global command keys. If a
view has this slot with a value of true, it is sent a
ViewAddDragInfoScript message when the global
command keys are used. If the command was a cut (as
opposed to a copy) the view is also sent a
ViewDropRemoveScript message.

Clipboard Frame 11

A clipboard frame is the frame returned by GetClipboard, and passed to
SetClipboard. It has the following slots:

C H A P T E R 1 1

Miscellaneous

11-16 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Slot descriptions

label A string; the text displayed by the clipboard item.
types Array of types arrays, one types array per item in the

clipboard item. The number and order of these types
arrays must match that of the data arrays in the data
slot. Each types array contains symbols representing the
types of data in the corresponding data array. Each
symbol specifies the type of data in the corresponding
element within the data array.
For example, the following 1-element types array
describes a clipboard with one item, that can be seen as
either text or as a picture:
'[[text,picture]]

Note that the nested array is ordered with the preferred
type first. If the destination view accepts both text and
pictures, the text is passed to the destination view.
This next 2-element types array on the other hand,
describes a clipboard with two items, a string and a
picture:
'[[text],[picture]]

The system can display types of 'text, 'polygon, 'ink,
and 'picture. The type of data the system requires for
these types is listed in Table 11-1.

data Array of data arrays, one data array per item on the
clipboard. The number and order of data arrays must
match the number and order of types arrays in the types
slot. Each data array should contain the data
corresponding to that type in the array in the types slot.
For example, the data in clipboardFrame.data[i][j]
should be of the type specified by
clipboardFrame.types[i][j] .
Each element within the nested arrays can be any
NewtonScript object. If you specified a 'text, 'polygon,

C H A P T E R 1 1

Miscellaneous

Reference 11-17
Preliminary Draft.  Apple Computer, Inc. 10/21/97

'ink, or 'picture data type, these array elements should
be frames with the slots listed in Table 11-1.

bounds A bounds frame; where the data came from in global
coordinates.

Table 11-1 Clipboard data types accepted by the system

Extras Drawer Folder Symbols 11

The following symbols are used for the labels slot of part entries by the
Extras Drawer:
nil Unfiled.
'_extensions Extensions.
'_help Help.
'_setup Set up.
'_soups Storage.
'_ButtonBar The button bar.

Names Worksite Soup Entry 11

Worksite entries in the Names soup contain a cityAlias slot. The previous
version of the Newton OS stored an entry alias to an undocumented soup in
this slot. In Newton 2.1 OS this slot contains an array with information about
the city, or nil if there is no city information. Note that ResolveEntryAlias
returns nil if passed in an array (or anything other than a valid entry alias).

types Required Slots Optional slots
'text text any other clParagraphView slots
'polygon points

viewBounds
any other clPolygonView slots

'ink ink
viewBounds

any other clPolygonView slots

'picture icon
viewBounds

any other clPictureView slots

C H A P T E R 1 1

Miscellaneous

11-18 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Newton Works Word Processor Soup Format 11

Newton Works word processor soup entries have the following slots.

Slot descriptions

class The symbol 'paper.
version Integer, the current version of the entry.
title String which is the document title.
timeStamp Creation date of the entry.
realModTime Date the entry was most recently modified.
saveData Frame returned from the protoTXView method

Externalize (page 3-36).
hiliteRange Frame with the document's highlight range (see “The

Range Frame” (page 3-22)).
margins Frame with slots top, left, bottom, right, which are the

document's margins in pixels.

New User Configuration Variables 11

The following user configuration variables are new to Newton 2.1 OS:

Slot descriptions

LCDContrast On units that support software control of the LCD
contrast setting, this slot contains the current contrast
setting. It can also be used to modify the current
contrast. Use the kGestaltArg_HasSoftContrast Gestalt
selector to check if a Newton device has software LCD
control, and the maximum and minimum values.

alarmVolumeDb Sets the system wide alarm volume in decibels. Use the
kGestaltArg_VolumeInfo Gestalt selector to find the
range of allowable values for the volume.

soundVolumeDb Sets the system wide volume in decibels. Use the
kGestaltArg_VolumeInfo Gestalt selector to find the
range of allowable values for the volume.

buttonBarPositions A 4-element array, specifying the position of the button
bar in each of the four possible screen orientations. Each

C H A P T E R 1 1

Miscellaneous

Reference 11-19
Preliminary Draft.  Apple Computer, Inc. 10/21/97

element in the array can be either nil, specifying that
the default setting should be used, or one of the
following symbols: 'top, 'left, 'right, or 'bottom.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-27). That is,
buttonBarPositions[kPortait] should hold information
for the portrait screen orientation.

buttonBarControlsPositions
A 4-element array, specifying the position of the
controls—overview button and scroll arrows—in each
of the four screen orientations. Each array element can
be nil, specifying that the default value be used, or the
symbols 'top and 'bottom for when the button bar is on
the left or right sides of the screen, or 'left and 'right
for when the button bar is on the top or bottom of the
screen.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-27). That is,
buttonBarControlsPositions[kPortait] should hold
information for the portrait screen orientation.

bellyButtonPositions
A 4-element array, specifying the position of the
overview button relative to the scroll arrows in each of
the four screen orientations. Each array element can be
nil, specifying that the default value be used, or the
symbols 'outside, 'inside, 'left, and 'right.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-27). That is,
bellyButtonPositions[kPortait] should hold
information for the portrait screen orientation.

buttonBarIconSpacingH
An integer specifying the number of pixels between
icons in the button bar when the button bar is laid out
horizontally — across the top or bottom of the screen.

C H A P T E R 1 1

Miscellaneous

11-20 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

The default is 40 on the MessagePad 2000. To restore
this settings to its default value, set it to nil.
Check for the existence of a soft button bar; check if
GetRoot().buttons.soft is non-nil, before setting this
variable.

buttonBarIconSpacingV
An integer specifying the number of pixels between
icons in the button bar when the button bar is laid out
vertically — across the left or right sides of the screen.
The default is 40 on the MessagePad 2000. To restore
this settings to its default value, set it to nil.
Check for the existence of a soft button bar; check if
GetRoot().buttons.soft is non-nil, before setting this
variable.

extrasIconSpacingH
An integer specifying the horizontal spacing of icons in
the Extras Drawer in pixels. The default is 64 in the
MessagePad 2000. This value has no effect when the
Extras Drawer is in overview mode.To restore this
settings to its default value, set it to nil. This value is
not used in systems prior to Newton 2.1 OS.
Check for the existence of a soft button bar; check if
GetRoot().buttons.soft is non-nil, before setting this
variable.

extrasIconSpacingV
An integer specifying the vertical spacing of icons in the
Extras Drawer in pixels. The default is 52 in the
MessagePad 2000. This value has no effect when the
Extras Drawer is in overview mode.To restore this
settings to its default value, set it to nil.This value is not
used in systems prior to Newton 2.1 OS.
Check for the existence of a soft button bar; check if
GetRoot().buttons.soft is non-nil, before setting this
variable.

extraFont The font used for the icon labels in both the Extras
Drawer and the button bar. While you can use both an
integer font spec or a font spec frame, it is strongly

C H A P T E R 1 1

Miscellaneous

Reference 11-21
Preliminary Draft.  Apple Computer, Inc. 10/21/97

recommended that you use only integer font specs, such
as userFont9 + tsPlain or simpleFont9 + tsBold. Using
the integer representation in this instance accomplishes
two things: it reduces NewtonScript Heap usage and it
restricts you to the set of built-in fonts. Using a font
that's not in ROM is extremely dangerous, because the
font could be removed. This information is stored in a
soup. A user may be forced to do a hard reset in order to
remove a bad font specification.
This value is not used in systems prior to Newton 2.1
OS.

Dial-In Networks Access Frame 11

An access frame contains the following slots:

Slot descriptions

mailNetwork A symbol for the network.
mailPhone A string for the phone number.
baud An integer indicating the baud rate.

Dial-In Networks Network Frame 11

A network frame contains the following slots:

Slot descriptions

title A string describing the network, such as "SprintNet" or
"ConcertNet".

id A symbol uniquely identifying the network,
GetAccessNumbers A function called to get access numbers for a worksite

or city.

C H A P T E R 1 1

Miscellaneous

11-22 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

GetAccessNumbers 11

networkFrame:GetAccessNumbers(worksiteFrame, cityFrame)

Called to retrieve an array of access numbers for a given worksite or city.

worksiteFrame A frame of the format of a Names worksite soup entry;
see “Worksite Entries” (page 16-22) in Chapter 16,
“Built-in Applications and System Data Reference,” in
Newton Programmer’s Reference .

cityFrame A frame with the same format as the frames returned by
the GetCityEntry function; see “GetCityEntry”
(page 16-79) in Newton Programmer’s Reference.

return value Return either an array of access frames, or nil if no
numbers are available; access frames are described in
“Dial-In Networks Access Frame” (page 11-21). You
should never, however, return the empty array ([]).

DISCUSSION

It is up to you to implement a mechanism to store and retrieve these access
numbers. One possible implementation is to store a frame containing this
data in your package. If this data needs to be dynamic, to add new access
numbers for example, you will probably want to create a soup for this data.

Protos 11
This section describes protoPasswordSlip and protoBlindEntryLine.

protoPasswordSlip 11

This proto allows the user to create a new password or enter an existing
password without echoing the password in plain text. The typed keys appear
as bullets in the input line. A view created from protoPasswordSlip is shown
in Figure 11-3. Note that the slip does not include an embedded keyboard
when created on a Newton device with a hardware keyboard attached.

C H A P T E R 1 1

Miscellaneous

Reference 11-23
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Figure 11-3 A view created from protoPasswordSlip

Note

This proto exists in Newton 2.0 OS, but was not
previously documented. ◆

This proto has one slot of interest:

Slot description

verifyPassword The symbol 'verifyOnly, true, or nil. This slot
determines if the password slip is used to just ask for a
password, or if it is also used to change a password.
A value of 'verifyOnly specifies a password slip that
queries a user for a password, but does not allow the

C H A P T E R 1 1

Miscellaneous

11-24 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

user to change the password. In this case, the slip
includes only a “Password” entry line.
A value of true means the user is queried for the old
password, and may also change the password. This is
the default. In this case the slip has all three entry lines:
“Password,” “New Password,” and “Confirm
Password.”
A value of nil means the user can change the password
without entering the old one. In this case the slip
includes only the “New Password” and “Confirm
Password” entry lines.

This proto has the following methods of interest:

CurrentPassword 11

passwordSlip:CurrentPassword()

Called to retrieve the current password.

return value A string for the current password, or nil if there is no
current password.

DISCUSSION

You must supply this method. It is called when the proto needs to retrieve
the current password in order to verify the entered password against it. If
you stored the password in encrypted form, you should decrypt it before
returning it.

SetPassword 11

passwordSlip:SetPassword(newPassword)

Called to set a new password.

newPassword A string, the new password to store.

return value You can return anything; it is ignored.

C H A P T E R 1 1

Miscellaneous

Reference 11-25
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DISCUSSION

You must supply this method. It is called when the user sets a new
password, so that you can store it.

Note that the password is a string in plain text, so for maximum security you
should encrypt it before storing it.

MatchPassword 11

passwordSlip:MatchPassword(newPassword, currentPassword)

Called to verify that the correct password has been entered

newPassword A string for the password entered by user

currentPassword A string for the current password as returned by
CurrentPassword.

return value Return true if the two match, nil if not.

DISCUSSION

This method is supplied by protoPasswordSlip. You need to override it only
if you want to compare the passwords using something other than a
standard string comparison (BinEqual is used).

MatchedPassword 11

passwordSlip:MatchedPassword()

Called if a valid password was entered.

return value You can return anything; it is ignored.

DISCUSSION

This method is supplied by protoPasswordSlip. However, you should
override it, supplying code that performs whatever actions you want as a
result of the user entering the correct password.

You must call the inherited MatchedPassword method to correctly close the
password slip.

C H A P T E R 1 1

Miscellaneous

11-26 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

protoBlindEntryLine 11

This proto allows text to be entered, without echoing the text back to the
user. This proto is used in the protoPasswordSlip. It is shown in Figure 11-4

Figure 11-4 A view based on protoBlindEntryLine

This proto has three slots of interest:

Slot descriptions

dummyChar Optional. A character containing the text to display
instead of the real text. By default, the bullet character is
used.

realText The string the user has typed; set by
protoBlindEntryLine. You should use this slot for
looking up the value of the text (instead of looking in
the text slot).
Do not modify this slot directly. Use the UpdateText
method.

label Optional. The string used as the label of the entry line.

UpdateText 11

blindEntryLine:UpdateText(newText)

Sets the value of the realText slot to the value in newText, and correctly
updates the dummy string displayed to the user.

newText A string, the new value for the blind entry line.

return value Undefined; do not rely on it.

C H A P T E R 1 1

Miscellaneous

Reference 11-27
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DISCUSSION

This method is provided to give you the ability to programmatically set the
value of the realText slot.

Constants 11

Screen Orientation Constants 11

The four screen orientation constants are shown in Figure 11-5.

Figure 11-5 Screen orientation constants

Serial Communication Tool Sound Option 11

There is a new serial communication tool option for enabling sound
pass-through using a PCMCIA card. Here is an example of what the option
looks like:

local option := {

C H A P T E R 1 1

Miscellaneous

11-28 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

type: 'option,
label: kCMOPCMCIAModemSound, //"msnd"
opCode: opSetRequired,
form: 'template,
result: nil,
data: {

arglist: [nil],
typelist: ['struct, 'boolean],
},

}

The arglist value is either true or nil. If true, sound pass-through is
enabled. If nil, sound pass-through is disabled.

You would normally use this option with a PCMCIA modem using the serial
tool. The modem tool automatically enables sound pass-through, so you
should not need to use this option with the modem tool.

This option should be used only after the serial endpoint has connected.

Note

Sound pass-through should be disabled before the endpoint
is disconnected. If it is not, power consumption increases
and the speaker emits an annoying sound.

Sound pass-through only works for PCMCIA cards which
support it through the PCMCIA specification.

This option is for use only in Newton OS 2.1 and higher. ◆

Functions and Methods 11
The following methods and functions are either new to Newton 2.1 OS, have
changed since previous OS releases, or have existed but were not previously
documented. Unless otherwise noted in the COMPATIBILTY section of a
function’s description, all functions described here are new to Newton 2.1 OS.

Views 11

The following functions are related to views.

C H A P T E R 1 1

Miscellaneous

Reference 11-29
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DragAndDrop 11

view:DragAndDrop(unit, dragBounds, pinBounds, copy, dragInfo)

Starts the drag and drop process, returning when the dragged item(s) is
dropped into a view or into the clipboard; it is usually called from a
ViewClickScript.

unit The stroke unit received by the ViewClickScript method.

dragBounds The bounds of the item to be dragged, in global
coordinates. The image enclosed by the bounds is used
by the clipboard.

pinBounds A bounds frame or nil. The bounds to use when
constraining the object within the app area. If you pass
nil, the drag object’s bounds, dragBounds, are used. If
the object being dragged is almost the size of the app
area, you may want to specify a smaller bounds frame
than dragBounds, otherwise the object may not appear to
move far enough. If you specify a bounds frame larger
that dragBounds, the object cannot be dragged near the
edge of the app area.

copy Nil or non-nil, indicating whether to drag a copy or the
original items. Specify non-nil to drag a copy, nil to
move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

dragRef Any valid NewtonScript object. This
value is passed to your other methods,
such as your ViewGetDropDataScript.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item

C H A P T E R 1 1

Miscellaneous

11-30 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in
pixels that the user must drag the object
before it moves. The default is 4.

return value This method returns one of the following integers:
kDragNot = 0 The item was not dragged at all.
kDragged = 1 The item was dragged, but was rejected

by the destination.
kDragNDropped = 2

The item was dropped into another view.

DISCUSSION

The DragAndDrop method sends several messages to both the source view (the
view from which DragAndDrop was sent) and the destination view (the view
that will receive the items). If you want other views to be able to accept data,
these views must implement all of the destination methods. If you have more
than one view that can receive a drop, it is easier if you make one
drop-aware proto and use it for your other views.

SEE ALSO

For further information see “Dragging and Dropping with Views”
(page 3-40) in Newton Programmer’s Guide.

See also “DragAndDrop” (page 1-4).

COMPATIBILTY

The dragInfo argument’s minDragDistance slot is ignored in Newton operating
systems prior to Newton 2.1.

C H A P T E R 1 1

Miscellaneous

Reference 11-31
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DragAndDropLtd 11

view:DragAndDropLtd(unit, dragBounds, limitBounds, copy, dragInfo)
//platform file function

Starts the drag and drop process, returning when the dragged item(s) is
dropped into a view or into the clipboard; it is usually called from a
ViewClickScript.

unit The stroke unit received by the ViewClickScript method.

dragBounds The bounds of the item to be dragged, in global
coordinates. The image enclosed by the bounds is used
by the clipboard.

limitBounds A bounds frame, or a frame with two optional slots:
limitBounds and pinBounds. If you specify a bounds
frame, it is the bounds in global coordinates in which
the object can be dragged.

Otherwise, you may pass in a frame with the following
slots:
limitBounds A bounds frame, the symbol 'none, or nil.

The bounds frame is a rectangle in global
coordinates in which the object can be
dragged. The symbol 'none specifies that
there is no limiting rectangle, and the
object can be dragged anywhere on the
screen. If you pass nil (or do not include a
limitBounds slot) the app area is used as
the limiting rectangle.

pinBounds A bounds frame, the symbol 'none, or nil.
The bounds to use when constraining the
object within the limiting rectangle
defined in the limitBounds slot. If you
pass nil, the drag object’s bounds,
dragBounds, are used. If you pass 'none, an
empty rectangle (with 0 width and height)
is specified at the point where the pen
went down to drag the object; that is, the

C H A P T E R 1 1

Miscellaneous

11-32 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

object moves until the tip of the pen
reaches the limit bounds.
If the object being dragged is small,
compared to the size of the limitBounds,
you may want to specify a pinBounds
smaller than dragBounds, otherwise the
object may not appear to move far
enough. If you specify a bounds frame
larger that dragBounds, the object cannot
be dragged near the edge of the
limitBounds.

copy Nil or non-nil, indicating whether to drag a copy or the
original items. Specify non-nil to drag a copy, or nil to
move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

dragRef Any valid NewtonScript object. This
value is passed to your other methods,
such as your ViewGetDropDataScript.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item
has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in

C H A P T E R 1 1

Miscellaneous

Reference 11-33
Preliminary Draft.  Apple Computer, Inc. 10/21/97

pixels that the user must drag the object
before it moves. The default is 4.

return value This method returns one of the following integers:
kDragNot = 0 The item was not dragged at all.
kDragged = 1 The item was dragged, but was rejected

by the destination.
kDragNDropped = 2

The item was dropped into another view.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. This implementation, as
a global function, and not as a view method, requires an
additional argument view, the view calling this function.

Call it using this syntax:

call kDragAndDropLtdFunc with (view, unit, dragBounds, limitBounds,
copy, dragInfo));
 ◆

DISCUSSION

The DragAndDropLtd method sends several messages to both the source
view (the view from which DragAndDropLtd was sent) and the destination
view (the view that will receive the items). If you want other views to be able
to accept data, these views must implement all of the destination methods. If
you have more than one view that can receive a drop, it is easier if you make
one drop-aware proto and use it for your other views.

SEE ALSO

This function is discussed in “DragAndDrop” (page 1-4) in Chapter 1,
“NPG/NPR 2.0 Errata.”

C H A P T E R 1 1

Miscellaneous

11-34 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

ViewAddDragInfoScript 11

view:ViewAddDragInfoScript(dragInfo)

Called to retrieve data if the user presses the global command keys when
your view is the key view, and your view has a hilitedData slot set to true.

dragInfo An array of frames. You should add a frame to this
array if you have something to cut or copy. Your frame
should have the following slots:

types An array of symbols of the types to which
an item can be converted.

view A view object type if the dragged item is a
view with a symbol type of 'paragraph,
'polygon, 'picture, and so on.

dragRef Any value that will be passed to
other methods, such as the
ViewGetDropDataScript.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item
has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in
pixels that the user must drag the object
before it moves. The default is 4.

return value Return true if you have added an element to dragInfo;
that is, something was cut or copied. Return nil
otherwise.

Stationery 11

The following functions are related to stationery.

C H A P T E R 1 1

Miscellaneous

Reference 11-35
Preliminary Draft.  Apple Computer, Inc. 10/21/97

RegStationeryChange 11

RegStationeryChange(regSymbol, functionBody)

Registers a function object to be executed when stationery is installed or
removed.

regSymbol A unique symbol that includes your developer
signature.

functionBody Function object called when stationery changes. This
function body takes four arguments:
message A symbol; currently the symbols 'install

and 'remove are used.
defType A symbol; currently the symbols 'dataDef

and 'viewDef are sent, for the type of
stationery that has been installed or
removed.

symbol1 The dataDef symbol of the installed or
removed stationery.

symbol2 If defType is 'dataDef, then this is
undefined. If defType is 'viewDef, then this
is the viewDef symbol of the installed or
removed stationery.

return value Undefined; do not rely on it.

SPECIAL CONSIDERATIONS

The function passed in the functionBody argument must not itself call
RegStationeryChange or UnregStationeryChange.

UnRegStationeryChange 11

UnRegStationeryChange(regSymbol)

Unregisters a function body previously registered using RegStationeryChange.

regSymbol The symbol used in the call to RegStationeryChange.

return value Undefined; do not rely on it.

C H A P T E R 1 1

Miscellaneous

11-36 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Text 11

The following function is related to text handling.

MakeFontMenu 11

MakeFontMenu(font, families, sizes, styles)

Creates an array of font menu items, including font families, sizes, and styles.

font Nil or a font specification as either a frame or a packed
integer that represents the current font. In the returned
font menu, the family, size, and style of this font is
check-marked to indicate that it is the current font.
Passing nil results in no items being check-marked. You
can also pass an array of font specs. In this case, any
family, size, or style common to all font specs will be
check-marked. Also, the size choices will be a union of
the possible sizes for each of the fonts in the array.

families Nil, the symbols 'all or 'none, or an array of font
families. This parameter controls which fonts are
returned. If this parameter is nil, all user fonts in the
system are included in the menu. If you pass the symbol
'all, every font is included, even the system font. If you
pass the symbol 'none, font families are not included in
the returned menu. An array specifies the list of font
families to include in the menu.

Note

Some Newton devices contain undocumented fonts. For
example the eMate 300 includes the Courier font. ◆

sizes Nil, the symbol 'none, or an array of numbers. This
parameter controls which font sizes are included. If you
pass nil, the font size specified in the font parameter is
used. If you pass the symbol 'none, font size choices are
not included in the menu. An array specifies the list of
sizes to include in the menu.

styles Nil, the symbol 'none, or an integer. This parameter
controls which font style choices are included. If you

C H A P T E R 1 1

Miscellaneous

Reference 11-37
Preliminary Draft.  Apple Computer, Inc. 10/21/97

pass nil, the default styles in the system are included. If
you pass the symbol 'none, style choices are not
included in the menu. An integer specifies a list of style
choices to return for the menu, encoded as a packed
integer; the style constants are listed in the discussion
section. To specify more than one font face constant,
simply add them together, and pass in the sum.

return value An array of font menu items, suitable for use wherever
a pop up menu array is needed, such as in
protoPopupButton, protoPopInPlace, and the PopupMenu
view method.

DISCUSSION

Use these constants to specify the font style in NewtonScript font frames.

Presently, the styles argument ignores the constants kFaceSuperscript and
kFaceSubscript, which are otherwise valid font style constants.

Recognition 11

The following functions are related to recognition.

Constant Value
kFaceNormal 0x000

kFaceBold 0x001

kFaceItalic 0x002

kFaceUnderline 0x004

kFaceOutline 0x008

C H A P T E R 1 1

Miscellaneous

11-38 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

RecognizeTextInStyles 11

RecognizeTextInStyles(textFrame, defaultFontSpec)

Translates the ink words in a frame containing a combination of raw ink and
text.

textFrame A frame with a text and a styles slot.

defaultFontSpec A font spec, either an integer or a frame. This font is
used for translated ink. For more information on font
specs, see Chapter 8, “Text and Ink Input and Display,”
in Newton Programmer’s Guide.

return value If textFrame contains no ink, textFrame is returned.
Otherwise a new frame is returned. This frame has a
text and a styles slot, containing translated versions of
all the ink words.

DISCUSSION

The highest confidence match for each ink word is returned.

RecognizeInkWord 11

RecognizeInkWord(inkWord)

Returns an array of translation options for an ink word.

inkWord Ink word data from a rich string or from a style array.

return value An array of frames for each possible match, or nil if no
matches were found. The frames in the array contain a
word slot which contains a string.

DISCUSSION

The array returned is sorted such that higher confidence matches are earlier
in the array; that is the first element is the highest confidence match.

System Services 11

The following functions are related to system services.

C H A P T E R 1 1

Miscellaneous

Reference 11-39
Preliminary Draft.  Apple Computer, Inc. 10/21/97

BatteryStatus 11

BatteryStatus(which)

Returns a status frame for the specified battery.

which An integer identifying the battery for which to return
status information. The value 0 specifies the primary
battery pack.

return value A status frame; see DISCUSSION.

DISCUSSION

The status frame returned contains the following slots:
batteryType Contains one of the following symbols, or an integer:

'alkaline Battery is standard alkaline.
'nicd Battery is nickel-cadmium.
'nimh Battery is nickel-metal hydride.
'lithium Battery is lithium.

batteryVoltage A real number giving the current battery voltage.
batteryCapacity An integer, indicating the percentage of a full charge

that the battery contains.
batteryLow An integer, indicating the percentage of a full charge at

which the “low battery” warning should be triggered by
the system.

batteryDead An integer, indicating the percentage of a full charge at
which the “dead battery” warning should be triggered
and the unit shut down by the system.

batteryCurrent A real number indicating the current drain, in
milliamps. This slot is nil if the battery is charging. This
slot is new in 2.1.

acPower Contains a symbol ('yes or 'no) indicating whether or
not the unit has AC power applied. Note that this does

C H A P T E R 1 1

Miscellaneous

11-40 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

not imply that the battery is charging. See chargeState
to determine that.

acVoltage A real number giving the AC voltage being supplied by
an AC adapter, or nil if AC power is not supplied.

chargeState Contains one of the following symbols, or an integer:
'notCharging

The battery is not charging.
'discharging

The battery is discharging.
'preliminaryCharging

The battery is charging under a pulsed
duty schedule that raises its voltage to a
level at which it can be efficiently
fast-charged. This charging mode is used
initially for charging a heavily discharged
battery.

'fastCharging
The battery is fast-charging.

'trickleChargeContinuous or 'trickleCharging
The battery is fully charged and is being
maintained in that state by
trickle-charging.

chargeRate Reserved for future use.
chargeCurrent A real number indicating the current, in milliamps,

being supplied to charge the battery, if it is charging. If
the battery is discharging, this is the current supplied
from the battery to the system.

ambientTemp A real number indicating the ambient temperature in
degrees Celsius.

batteryTemp A real number indicating the battery temperature in
degrees Celsius.

C H A P T E R 1 1

Miscellaneous

Reference 11-41
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Note

A nil value for a slot means the underlying hardware
cannot supply this information. The slots containing symbol
values (batteryType, chargeState, acPower) may contain
integers if the battery driver returned something other than
the values listed here. ◆

COMPATIBILITY

The return value of this function is changed from its Newton 2.0 OS
implementation. The batteryCurrent slot is new and the possible symbol
values for the chargeState slot are different.

Built-in Applications and System Data 11

The following functions are related to built-in applications and system data.

GetPartEntryData 11

extrasDrawer:GetPartEntryData(entry) //platform file function

Returns a frame containing information about an Extras Drawer part entry.

entry An entry obtained from a part cursor; by using
GetPartCursor.

return value The frame returned has the following slots:
icon A bitmap object, containing the bitmap

for the part icon displayed in the Extras
Drawer on Newton 1.x and 2.0 operating
systems.

iconPro A frame containing two pix families, for
the highlighted icon and the normal icon
to display in the Extras Drawer on
Newton 2.1 OS. For more information on

C H A P T E R 1 1

Miscellaneous

11-42 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

gray icons and pix families, see Chapter 6,
“Drawing and Graphics 2.1.”

text A string that is the text shown under the
part icon.

labels A symbol identifying the Extras Drawer
folder in which the part is filed. For a list
of these see “Extras Drawer Folder
Symbols” (page 11-17).

appSymbol A symbol identifying the application, if
the part frame has an app slot.

packageName A string that is the name of the package
that contains the part.

COMPATIBILITY

The return value of this function is changed from its Newton 2.0 OS
implementation. The iconPro slot is new for the Newton 2.1 OS.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetPartEntryDataFunc with (entry);

Note that this function is implemented in ROM on Newton
2.1 units, so you can call it directly if your application runs
only on the Newton 2.1 OS. ◆

C H A P T E R 1 1

Miscellaneous

Reference 11-43
Preliminary Draft.  Apple Computer, Inc. 10/21/97

SetEntryAlarm 11

calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesOrDaysBefore)

Sets an alarm for the meeting or event with the given text at the given date
and time. If the meeting or event is an instance of a repeating meeting or
event, the alarm is set for all instances of the repeating meeting or event.

mtgText A string or rich string that is the meeting text of the
meeting or event for which you want to set the alarm
time.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904.

minutesBefore A non-negative integer, which specifies how far in
advance of the meeting or event the alarm should go
off. A value of 0 means the alarm goes off at the time of
the meeting. This integer should specify the number of
minutes before mtgStartDate that you want the alarm to
go off for a meeting, and the number of days before
mtgStartDate for an event.

You can specify nil to clear an alarm that is currently
set.

return value Undefined; do not rely on it.

COMPATIBILITY

The version of this function available on Newton 2.0 OS can only be used for
meetings. The kSetEventAlarmFunc function exists in the 2.0 platform file to
set alarms for events.

SetUserConfigEnMasse 11

SetUserConfigEnMasse(changeSym, changeFrame)

Sets one or more user configuration variables and broadcasts changes.

changeSym A symbol passed to functions registered for notification
of user configuration changes. This symbol should be
one of the slot names in changeFrame. Some functions

C H A P T E R 1 1

Miscellaneous

11-44 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

registered for user configuration variable changes are
passed only this symbol, see RegUserConfigChange.

changeFrame A frame where the names of the slots are the names of
the user configuration variables that you wish to set,
and the slot values are the values to which the
respective user configuration variables should be set.

return value Undefined; do not rely on it.

DISCUSSION

Changes are broadcasted to functions registered via the RegUserConfigChange
function.

RegUserConfigChange 11

RegUserConfigChange(callBackID, callBackFn)

Registers a function object to be called each time a user configuration
variable changes.

callBackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol, which includes your registered
signature, or some variation on it.

callBackFn A function object called when a user configuration
variable changes. It is passed either one or two
parameters. This function can be of either of the
following two forms:
func(changeSym, changeFrame) begin end

func(changeSym) begin end

On Newton devices where the SetUserConfigEnMasse
function is not defined, this callback function is always
passed one argument. On Newton devices with
SetUserConfigEnMasse defined, this function will be
called with the proper number of arguments; that is, if
you define a one argument function, it will be called
with only the changeSym argument, but if you define it

C H A P T E R 1 1

Miscellaneous

Reference 11-45
Preliminary Draft.  Apple Computer, Inc. 10/21/97

with two arguments, it is called with both the
changeSym and the changeFrame arguments.

For information on the changeSym and the changeFrame
parameters, see SetUserConfigEnMasse.

The return value of callBackFn function is ignored.

return value Undefined; do not rely on it.

DISCUSSION

Note that it is up to the application that changed one of these variables to
broadcast the change. This is not something that you need to worry about,
since the SetUserConfig and SetUserConfigEnMasse functions always
broadcast the changes. Also note that the system may change, and broadcast
the change of, certain undocumented user configuration variables; you
should ignore these symbols.

SPECIAL CONSIDERATIONS

The function callBackFn must not call the RegUserConfigChange or
UnRegUserConfigChange functions.

COMPATIBITLY

This function exists in Newton 2.0 OS.

KillStdButtonBar 11

KillStdButtonBar(buttonBarParams)

Closes (or restores) the standard button bar, and reserves screen area for a
new one.

buttonBarParams A 4-element array or nil. Pass the value nil to restore
the standard button bar. If you pass an array, each
element should be a frame specifying where to save
screen space for the replacement button bar in the four
different screen orientations. The array elements should
be ordered as specified by “Screen Orientation
Constants” (page 11-27); for example,

C H A P T E R 1 1

Miscellaneous

11-46 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

buttonBarParams[kPortait] should hold information for
the portrait screen orientation.

These frames should have the following slots:
buttonBarPosition

Required. One of the following symbols:
'top, 'bottom, 'right, 'left, or 'none.
These symbols specify where to reserve
space for the replacement button bar.
Specify 'none if you do not wish to
reserve this space.

buttonBarThickness
An integer specifying how much space to
save for the button bar in pixels. You may
not omit this slot, unless
buttonBarPosition is set to 'none.

return value Undefined; do not rely on it.

DISCUSSION

If the application area becomes less than 320 pixels high as a result of a call to
KillStdButtonBar, views without a ReorientToScreen method cannot open.

GetPartEntries 11

buttonBar:GetPartEntries()

Returns the part entries of all icons in the button bar.

return value A frame with the following two slots, fixed and mobile.
Both of these slots contain an array of part entries. The
icons of the part entries in fixed cannot be moved by
dragging. Similarly, the icons of the part entries in
mobile can be moved. The ordering of these arrays is
important; it determines the order of the icons in the
button bar.

C H A P T E R 1 1

Miscellaneous

Reference 11-47
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DISCUSSION

You must not modify the part entries in any way. To obtain information from
a part entry, use the Extras Drawer GetPartEntryData method.

To send the GetPartEntries method, use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:GetPartEntries();

Reconfigure 11

buttonBar:Reconfigure(newSetup)

Reconfigures the button bar.

newSetup A frame with fixed and mobile slots. Each slot should
contain an array of part entries or application symbols.
The icons represented by part entries in fixed are not
draggable, while the ones in mobile are. The ordering of
these arrays is important; it determines the order of the
icons in the button bar.

return value Undefined; do not rely on it.

DISCUSSION

To send this method, use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:Reconfigure(newSetup);

IconCapacity 11

buttonBar:IconCapacity()

Returns the number of icons the button bar can currently hold.

return value An integer, the maximum number of icons.

DISCUSSION

To send this method use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:IconCapacity();

C H A P T E R 1 1

Miscellaneous

11-48 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Transports 11

The following functions are related to transports.

DeleteItem 11

transport:DeleteItem(item)

Deletes an item from the In/Out Box.

item The item to delete. This is an item frame from the In Box.

return value Undefined; do not rely on it.

DeleteRemoteItems 11

transport:DeleteRemoteItems()

Causes the transport to delete from the In/Out Box all remote items that
have not been fully downloaded.

return value Undefined; do not rely on it.

DISCUSSION

Typically, you use the DeleteRemoteItems method after the transport
disconnects, to remove from the In/Out Box all remote items that the user
chose not to retrieve fully. This method removes all items whose remote slot
is set to true.

COMPATIBILITY

This 2.1 method replaces the 2.0 method ownerApp:RemoveTempItems. If you
are writing an application for 2.1 only, then you should use this method
instead of ownerApp:RemoveTempItems.

RefreshOwner 11

transport:RefreshOwner()

Causes the transport owner (typically the In/Out Box) to refresh the view of
the in box.

return value Undefined; do not rely on it.

C H A P T E R 1 1

Miscellaneous

Reference 11-49
Preliminary Draft.  Apple Computer, Inc. 10/21/97

DISCUSSION

You use RefreshOwner to refresh the in box view after remote items are fully
retrieved and after remote items that are not fully retrieved are deleted.

COMPATIBILITY

This 2.1 transport method replaces the 2.0 method ownerApp:Refresh. If you
are writing an application for 2.1 only, then you should use this method
instead of ownerApp:Refresh.

Dial-In Networks 11

The following functions are related to dial-in network support.

RegDialinNetwork 11

RegDialinNetwork(networkSym, networkFrame)

Registers a new dial-in network with the system.

networkSym A symbol uniquely identifying the network

networkFrame A network frame, as described in “Dial-In Networks
Network Frame” (page 11-21).

return value Undefined; do not rely on it.

DISCUSSION

This function should usually be called from your part’s InstallScript, as in
the following code sample:

DefineGlobalConstant ('dudeNetFrame,
{

title: "DudeNet",
id: 'dudeNet,
GetAccessNumbers: func(worksite,city)

begin
local result := [];
if worksite then

AddArraySlot (
result,
{
mailPhone:"111-1111",

C H A P T E R 1 1

Miscellaneous

11-50 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

mailNetwork: 'dudeNet,
baud: 9600
}

)
if city then

AddArraySlot (
result,
{

mailPhone:"222-2222",
mailNetwork: 'dudeNet,
baud: 2400

}
)

result;
end

}
);

partData := {};
InstallScript := func(partFrame,removeFrame) //auto part

begin
call kRegDialinNetworkFunc with ('dudeNet,dudeNetFrame);

end;

UnRegDialinNetwork 11

UnRegDialinNetwork(networkSym)

Unregisters a dial-in network that had been registered with a call to
RegDialinNetwork.

networkSym The symbol used in the call to RegDialinNetwork.

return value Undefined; do not rely on it.

DISCUSSION

This function should usually be called from your part’s RemoveScript.

C H A P T E R 1 1

Miscellaneous

Reference 11-51
Preliminary Draft.  Apple Computer, Inc. 10/21/97

GetLocAccessNums 11

GetLocAccessNums(entry, which)

Retrieves an array of access frames given a location frame and an array of
dial-in network symbols to look for.

entry A location frame. Can be a worksite or a city location. If
nil, GetLocAccessNums uses the current emporium and
city location.

For information on these various entities see the
following sections of Chapter 16, “Built-in Applications
and System Data Reference,” in Newton Programmer’s
Reference :
worksites “Worksite Entries” (page 16-22), worksite

entries are a type of Names soup entry.
cities “GetCityEntry” (page 16-79), the

GetCityEntry function returns a city
location frame.

the current emporium
“User Configuration Variables”
(page 16-101), the currentEmporium
variable contains an alias to a Names
worksite soup entry.

which An array of network symbols. Usually the transport's
networkSymbols array if the Mail Enabler is used.
Matches to all these symbols are returned.

return value Returns an array of access frames; see “Dial-In
Networks Access Frame” (page 11-21).

Note

If the mail transport does not contain the networkSym for the
dial-in network within its networkSymbols slot, the network
phone numbers will not appear in the connection slip. ◆

C H A P T E R 1 1

Miscellaneous

11-52 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

GetAllDialinNetworks 11

GetAllDialinNetworks()

Returns an array of all the dial-in network frames registered in the system.

return value An array of network frames, see “Dial-In Networks
Network Frame” (page 11-21).

GetDialinNetwork 11

GetDialinNetwork(networkSym)

Returns the dial-in network frame that corresponds to networkSym.

networkSym The symbol of the network whose frame to return.

return value A network frame; see “Dial-In Networks Network
Frame” (page 11-21).

Utility Functions 11

The following functions are miscellaneous utility functions.

GetClipboard 11

GetClipboard()

Returns the contents of the clipboard.

return value A clipboard data frame, or nil if the clipboard is empty.
Clipboard data frames are described in “Clipboard
Frame” (page 11-15).

SetClipboard 11

SetClipboard(clipboardData)

Sets the contents of the clipboard.

clipboardData A clipboard data frame, as described in “Clipboard
Frame” (page 11-15), or nil to clear the clipboard. In

C H A P T E R 1 1

Miscellaneous

Reference 11-53
Preliminary Draft.  Apple Computer, Inc. 10/21/97

addition to the slots in a normal clipboard data frame,
you may include an xy slot in clipboardData:
xy A frame with two slots x and y. Each slot

contains an integer specifying the offset
from the origin, in global coordinates, of
the label’s position on the screen. By
default, the clipboard label is placed on
the left side of the screen, a little below
the top.

return value Undefined; do not rely on it.

DISCUSSION

You can use this function to perform a paste. Use GetClipboard to get the
contents, then call SetClipboard with nil to clear the clipboard.

ROM_GetSerialNumber 11

ROM_GetSerialNumber()

Returns the unique hardware serial number of a Newton device.

return value An 8 byte binary object containing the Newton device’s
serial number.

DISCUSSION

This function is not defined in neither Newton 1.x nor 2.0 OS. You should
wrap the call to this function in a try...onException block, as in the following
example:

local sn;

try
sn := call ROM_GetSerialNumber with ()

onException |evt.ex| do
 nil;

if sn then
// ...

C H A P T E R 1 1

Miscellaneous

11-54 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

The serial number returned in ROM is not the same as the serial number
stamped on the Newton device. The ROM serial number is intended for use
by programmers.

The StrHexDump and ExtractByte functions are designed to read binary
objects.

ImportDisabled 11

partFrame:ImportDisabled(unitName, majorVersion, minorVersion)

Called after an imported unit has been deactivated to perform housekeeping.

unitName A symbol, the name of the unit.

majorVersion An integer, the major version number of the unit.

minorVersion An integer, the minor version number of the unit.

return value Either the symbol 'ThrillMeChillMeFulfillMe or
anything else.

DISCUSSION

The part should deal with the situation as gracefully as possible. For
example, you could use alternative data, or put up a message slip with the
Notify method and/or close your application.

If you return the symbol 'ThrillMeChillMeFulfillMe, the system attempts to
re-resolve the imports. For example, if version 2 of unit foo is disabled and
your package’s ImportDisabled script returns 'ThrillMeChillMeFulfillMe, the
system looks for other versions of the objects in the unit foo.

COMPATIBILITY

Newton 2.0 OS sends this message, but ignores the return value.

LegalOrientations 11

LegalOrientations()

Returns the legal values for screen orientations on the Newton device.

return value An array of integers; possible values are listed in
“Screen Orientation Constants” (page 11-27).

C H A P T E R 1 1

Miscellaneous

Reference 11-55
Preliminary Draft.  Apple Computer, Inc. 10/21/97

COMPATIBILITY

This function is supported in Newton OS 2.0. On the MessagePad 120 and
130 units, the only possible return values are kPortrait (0) and
kLandscapeFlip (3).

SetScreenOrientation 11

SetScreenOrientation(orientation)

Sets the screen orientation.

orientation An integer specifying the new orientation; possible
values are listed in “Screen Orientation Constants”
(page 11-27).

return value Nil if the screen orientation was not changed, otherwise
a non-nil value is returned.

DISCUSSION

This function requests the system to rotate the screen to the desired
orientation. The user may be prompted if particular applications do not
support the new orientation.

GetAppParams 11

GetAppParams()

Returns a frame containing information about the screen size and other
system configuration items.

return value A frame with the following slots:
appAreaTop The y coordinate of the top-left corner of

the application area. Children of the root

C H A P T E R 1 1

Miscellaneous

11-56 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

view are always opened relative to the
application area. This value is always 0.

appAreaLeft The x coordinate of the top-left corner of
the application area. This value is
always 0.

appAreaWidth
The width of the screen in pixels.

appAreaHeight
The height of the screen in pixels.

buttonBarPosition
A symbol, either 'top, 'left, 'bottom,
'right, or 'none indicating where the
button bar is, if there is one. This is useful
if you want to locate your application
flush against the button bar.

appAreaGlobalTop
The y coordinate of the top of the
application area in global coordinates.

appAreaGlobalLeft
The x coordinate of the left of the
application area in global coordinates.

buttonBarBounds
If there is a soft button bar this slot
contains its view bounds.

COMPATIBILITY

Versions of this function previous to Newton 2.1 OS return a frame without
the appAreaGlobalTop, appAreaGlobalLeft, and buttonBarBounds slots.

Gestalt 11

Gestalt(selector)

Returns information about the Newton system; the type of information
returned depends on the value of the selector parameter.

selector A constant that specifies the type of information that is
returned on the system. The following values are

C H A P T E R 1 1

Miscellaneous

Reference 11-57
Preliminary Draft.  Apple Computer, Inc. 10/21/97

currently allowed: kGestalt_SystemInfo,
kGestalt_Backlight, kGestaltArg_HasSoftContrast, and
kGestaltArg_VolumeInfo.

return value Depends on selector, see DISCUSSION.

DISCUSSION

The return value of this function depends on the value of selector, as follows:

■ If selector is kGestalt_SystemInfo, Gestalt returns a frame with the
following slots:

Slot Descriptions

manufacturer An integer indicating the manufacturer of the Newton
Device.

machineType An integer indicating the hardware type this ROM was
built for.

ROMStage A decimal integer indicating the language (English,
German, French) and the stage of the ROM (alpha, beta,
final).

ROMVersion A packed integer indicating the major and minor ROM
version numbers. You can use the following function to
convert this number into an array containing integers
for the ROM major and minor version numbers:

func (ROMVersionInteger)
begin

local minor := BAND(ROMVersionInteger, 0xFFFF);
local major := BAND(ROMVersionInteger>>16, 0xFFFF);
[Floor(StringToNumber(BAND(major>>12, 0xF)

 & BAND(major>>8, 0xF)
 & BAND(major>>4, 0xF)
& BAND(major, 0xF))),

Floor(StringToNumber(BAND(minor>>12, 0xF)
& BAND(minor>>8, 0xF)
& BAND(minor>>4, 0xF)

C H A P T E R 1 1

Miscellaneous

11-58 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

& BAND(minor, 0xF)))]
end

Here is another example of code to test if your Newton
is running OS 2.x. The following expression evaluates to
a non-nil value if the major version is 2:

BAND((Gestalt(kGestalt_SystemInfo).ROMVersion)>>16, 0xFFFF) = 0x0002

IMPORTANT

Do not assume that if the Newton is running version 2.0 or
later that a particular feature exists. You still need to test the
Newton to make sure the feature exists. ◆

Note

The machineType, ROMStage and ROMVersion slots provide
internal configuration information and should not be relied
on. ◆

screenWidth An integer representing the width of the screen in
pixels. The width takes into account the current screen
orientation.
For example, on the MessagePad 120, because the screen
width is 240 and the screen height is 320, in portrait
orientation Gestalt returns a width of 240. If the
screen is rotated, Gestalt returns a width of 320.

screenHeight An integer representing the height of the screen in
pixels.

screenResolutionX An integer representing the number of horizontal pixels
per inch. For screens with square pixels,
screenResolutionX equals screenResolutionY. On the
MessagePad 120, for example, both screenResolutionX
and screenResolutionY equal 85.

screenResolutionY An integer representing the number of vertical pixels
per inch.

screenDepth The bit depth of the LCD screen. For the MessagePad
120, the LCD supports a monochrome screen depth of 1.

C H A P T E R 1 1

Miscellaneous

Reference 11-59
Preliminary Draft.  Apple Computer, Inc. 10/21/97

The eMate 300 and MessagePad 200 have 4 bit depth
LCD screens.

patchVersion Returns 0 on an unpatched Newton and nonzero on a
patched Newton.

ROMVersionString The user-visible string that identifies the version of the
installed ROM and the installed patch, if any.
The first part of the string is a “functionality level”
indicating the OS version, such as 1.3, 2.0 or 2.1.
The second part of the string is a six-digit number in
parentheses that is an encoded representation of ROM
and system update information.

cpuType A symbol specifying the type of CPU, possible values
are 'strongArm, 'arm710a, and 'arm610a.

cpuSpeed A real indicating the speed of the CPU in megahertz.

■ If selector is kGestalt_Backlight, Gestalt returns either nil , indicating the
unit does not have backlight hardware, or a one element array. If an array
is returned, the unique element contains either nil or a non-nil value,
indicating whether backlight hardware is present.
The following code correctly tests if a unit has a backlight:

local result := Gestalt(kGestalt_Backlight);
if result and result[0] then

 // unit has backlighting
else

 // unit does not have backlighting

■ If selector is kGestaltArg_HasSoftContrast, Gestalt returns either nil, or a
3-element array of the following form:
[hasSoftContrast, minContrast, maxContrast]

Array Element Descriptions

hasSoftContrast True or nil depending on whether there is a soft
contrast control.

minContrast Integer for the minimum contrast.

maxContrast Integer for the maximum contrast.

C H A P T E R 1 1

Miscellaneous

11-60 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

You can use the values returned by this selector to set the LCDContrast user
configuration variable.

■ If selector is kGestaltArg_VolumeInfo, Gestalt returns either nil, or a
7-element array of the following form:
[hasInput, hasOutput, hardwareVolControl, headphoneJack, minAudibleDB,
numDVLevels, devicesBitfield]

Array Element Descriptions

hasInput True or nil depending on whether the device can
support sound input.

hasOutput True or nil depending on whether the device can
support sound output.

hardwareVolControl True or nil depending on whether the device has a
hardware volume control.

headphoneJack True or nil depending on whether the device has a
built-in headphone jack.

minAudibleDB An integer, the minimal decibel level for output. The
MessagePad 2000 is set to -31.9760.

numDVLevels An integer, the number of levels between minAudibleDB
and 0. The dB increment per level is minAudibleDB/
numDVLevels. The MessagePad 2000 is set to 14.

devicesBitfield A packed integer with information about the built-in
sound devices. This integer contains the summation of
the applicable device constants. Device constants are
described in “Device Constants” (page 7-26) in
Chapter 7, “Sound.” The two important ones are
kInternalSpeaker and kInternalMic.
The following function returns nil or non-nil,
indicating if the current device has an internal
microphone (use kInternalSpeaker to check for an
internal speaker):

HasMic := func()
begin

local volInfo := Gestalt(kGestaltArg_VolumeInfo) ;

return volInfo AND

C H A P T E R 1 1

Miscellaneous

Reference 11-61
Preliminary Draft.  Apple Computer, Inc. 10/21/97

(BAND(volInfo[6], kInternalMic) <> 0);
end

COMPATIBILITY

The kGestalt_Backlight and kGestaltArg_VolumeInfo selectors are not
supported on 2.0 devices.

TimeFrameStr 11

TimeFrameStr(timeFrame, timeStrSpec)

Returns a string representation of the time timeFrame, in the specified format.

timeFrame A date frame as returned by the Date function.

timeStrSpec A format specification returned by the
GetDateStringSpec function, or one of the format
specifications found in ROM_dateTimeStrSpecs.

return value A string representation timeFrame.

DISCUSSION

This function is similar to the TimeStr function. TimeStr is passed in the time
as an integer, in minutes. Thus, when a format spec is provided that requires
seconds, TimeStr returns a string with 00 as the seconds value. TimeFrameStr,
on the other hand, since it is passed the time as a date frame, can include
seconds information.

C H A P T E R 1 1

Miscellaneous

11-62 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Summary 11

Error Codes 11
There are two new NewtonScript Environment error codes:
-48034 Soup name too big
-48426 Unexpected rich string

Data Structures 11

View Slot 11

hilitedData // true = view has data that can be cut or copied

Clipboard Data Frame 11

aClipboardDataFrame := {
label: string, //string displayed by clipboard
types: array, //array of types arrays
data: array, //array of data arrays
bounds: frame, //where data came from
...}

Extras Drawer Folder Symbols 11

nil
'_extensions
'_help
'_setup
'_soups
'_ButtonBar

Names Worksite Soup Entry 11

cityAlias // city information array

C H A P T E R 1 1

Miscellaneous

Reference 11-63
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Newton Works Word Processor Soup Format 11

aWorksWordProcessorSoupEntry := {
class: 'paper,
version: integer,
title: string ,
timeStamp: integer,
realModTime: integer,
saveData: frame,
hiliteRange: frame,
margins: frame,
}

User Configuration Variables 11

LCDContrast
alarmVolumeDb
soundVolumeDb
buttonBarPositions
buttonBarControlsPositions
bellyButtonPositions
buttonBarIconSpacingH
buttonBarIconSpacingV
extrasIconSpacingH
extrasIconSpacingV
extraFont

Dial-In Networks Access Frame 11

aNetworkAccessFrame := {
mailNetwork: symbol, //network symbol
mailPhone: string, //phone number
baud: integer, //data rate supported
}

Dial-In Networks Network Frame 11

aNetworkFrame := {
title: string, //network name
id: symbol, //unique network id
GetAccessNumbers: func(worksiteFrame, cityFrame)..., //retrieves numbers
}

C H A P T E R 1 1

Miscellaneous

11-64 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

Protos 11

protoPasswordSlip 11

aPassWordSlip := {
_proto: protoPasswordSlip,
verifyPassword: symbolORtrueORnil, //should password be verified?
CurrentPassword: func() ..., //gets curr password
SetPassword: func(newPassword), //sets curr password
MatchPassword: func(newPassword, currentPassword)...,//do these match?
MatchedPassword: func() ... , //called if there was a match
...}

protoBlindEntryLine 11

aBlindEntryLine := {
_proto: protoBlindEntryLine,
dummyChar: character, //char to echo
realText: string, //the real text
label: string, //entry line label
UpdateText: func (newText), //updates text
...}

Constants 11

Screen Orientation Constants 11

Serial Communication Tool Sound Option 11

kCMOPCMCIAModemSound "msnd"

Constant Value

kPortrait 0

kLandscape 1

kPortraitFlip 2

kLandscapeFlip 3

C H A P T E R 1 1

Miscellaneous

Reference 11-65
Preliminary Draft.  Apple Computer, Inc. 10/21/97

Functions and Methods 11

Views 11
view:DragAndDrop(unit, dragBounds, pinBounds, copy, dragInfo)

//starts the drag and drop process (2.0 also)
view:DragAndDropLtd(unit, dragBounds, limitBounds, copy, dragInfo)

//starts the drag and drop process in limited area (platform file)
view:ViewAddDragInfoScript(dragInfo) //called if hilitedData is true

Stationery 11
RegStationeryChange(regSymbol, functionBody)

//regs callback for stationery change
UnRegStationeryChange(regSymbol) //unregs a stationery change callback

Text 11
MakeFontMenu(font, families, sizes, styles) //makes a font menu

Recognition 11
RecognizeTextInStyles(textFrame, defaultFontSpec)

//recognizes ink in a frame
RecognizeInkWord(inkWord) //recognizes an ink word

System Services 11
BatteryStatus(which) //returns info about a battery (2.0 also)

Built-in Applications and System Data 11
extrasDrawer:GetPartEntryData(entry)

// gets info about a part entry (platform file - 2.0 also)
calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesOrDaysBefore)

// sets an alarm for a meeting or event (2.0 also)
SetUserConfigEnMasse(changeSym, changeFrame)

// sets multiple user configuaration variables
RegUserConfigChange(callBackID, callBackFn)

//registers a callback for changes in a user configuration var.
KillStdButtonBar(buttonBarParams)

// closes (or restores) the button bar

C H A P T E R 1 1

Miscellaneous

11-66 Reference

Preliminary Draft.  Apple Computer, Inc. 10/21/97

buttonBar:GetPartEntries() //returns part entries for parts in b. bar
buttonBar:ReConfigure(newSetup) //reconfigures the button bar
buttonBar:IconCapacity() // gets number of icons that fit in button bar

Transports 11
transport:DeleteItem(item) //deletes item from In/Out box
transport:DeleteRemoteItems() //deletes remote items
transport:RefreshOwner() //refreshes the transport owner

Dial-In Networks 11
RegDialinNetwork(networkSym, networkFrame) //regs new dialin network
UnRegDialinNetwork(networkSym) //unregs dialin network
GetLocAccessNums(entry, which) //returns array of access frames
GetAllDialinNetworks() //returns array of all dialin network frames
GetDialinNetwork(networkSym) //returns a dialin network frame

Utility Functions 11
GetClipboard() //returns the contents of the clipboard
SetClipboard(clipboardData) //sets the contents of the clipboard
ROM_GetSerialNumber() //gets a unit’s unique serial number
partFrame:ImportDisabled(unitName, majorVersion, minorVersion)

//called to clean up when unit is disabled (2.0 also)
LegalOrientations() //gets legal values for screen orientation
SetScreenOrientation(orientation) //sets sceen orientation
GetAppParams() //gets info about app area and button bar (2.0 also)
Gestalt(selector) //gets info about the system (2.0 also)
TimeFrameStr(timeFrame, timeStrSpec) //returns string with time

	Miscellaneous
	The Button Bar
	The App Area
	Changing the Screen Orientation
	Moving the Button Bar
	Covering the “Soft” Button Bar
	Disabling the “Silkscreened” Button Bar
	Replacing the Button Bar
	Configuring the Button Bar
	Changing the Spacing and Font of Icons

	The Clipboard
	Adding Global Editing Command Keys Support
	Using the Clipboard Functions

	Dial-In Networks
	Password Slip
	Using protoPasswordSlip
	Using protoBlindEntryLine

	Transport Auto Put-Away Preference
	Reference
	Data Structures
	View Slot
	Clipboard Frame
	Extras Drawer Folder Symbols
	Names Worksite Soup Entry
	Newton Works Word Processor Soup Format
	New User Configuration Variables
	Dial-In Networks Access Frame
	Dial-In Networks Network Frame

	Protos
	protoPasswordSlip
	protoBlindEntryLine

	Constants
	Screen Orientation Constants
	Serial Communication Tool Sound Option

	Functions and Methods
	Views
	Stationery
	Text
	Recognition
	System Services
	Built-in Applications and System Data
	Transports
	Dial-In Networks
	Utility Functions

	Summary

