The Delicate Trails Of Star Birth


An image released by the Gemini Observatory brings into focus a new and remarkably detailed view of supersonic “bullets” of gas and the wakes created as they pierce through clouds of molecular hydrogen in the Orion Nebula.


Click here for larger image

An image released by the Gemini Observatory brings into focus a new and remarkably detailed view of supersonic “bullets” of gas and the wakes created as they pierce through clouds of molecular hydrogen in the Orion Nebula. The image was made possible with new laser guide star adaptive optics technology that corrects in real time for image distortions caused by Earth’s atmosphere.

The bullets are speeding outward from the cloud at up to 400 kilometers (250 miles) per second. This is more than a thousand times faster than the speed of sound. The name “bullet” is somewhat misleading since these objects are truly gigantic. The typical size of one of the bullet tips is about ten times the size of Pluto’s orbit around the Sun. The wakes shown in the image are about a fifth of a light-year long.

Clouds of iron atoms at the tip of each bullet glow brightly (blue in the Gemini image) as they are shock-heated by friction to around 5000°C (9,000°F). Molecular hydrogen, which makes up the bulk of both the bullets and the surrounding gas cloud, is destroyed at the tips by the violent collisions between the high-speed bullets and the surrounding cloud. On the trailing edges of the bullets, however, the hydrogen molecules are not destroyed, but instead are heated to about 2000°C (4000°F). As the bullets plow through the clouds they leave behind distinctive tubular wakes (colored orange in the Gemini image). These wakes shine like bullet tracers due to the heated molecular hydrogen gas.

And you think first-person-shooters rock? Get your brain around these critters.

Posted: Sun - March 25, 2007 at 08:13 AM