
PIE Developers 2.3 • May 1994

Reprinted from the May 1994 issue of PIE Developers. ©1994-1997 by Creative Digital Publishing Inc. All rights reserved.

I

CHANNEL SURFING WITH NEWTON
Paul R. Potts
potts@pharos-tech.com

n February Apple began distributing a preliminary draft of a
new toolkit and API which allows Newton applications to
control the Newton’s infrared LED. Developers have heard

that the Newton is capable of broadcasting infrared radiation at
the same frequency used by many consumer-electronics devices,
but until now, without a method to control the infrared hard-
ware, there was no way to take advantage of it. By the time this
article appears in print, these files should be available to all
Newton developers. [With the introduction of NTK 1.0.1 the IR
Toolkit functions are built into the Platforms file. The sample files
referred to by Paul can be found on Apple’s ftp site and on
AppleLink. Ed.]

Even with preliminary code, PIE Engineering has come up
with a very easy-to-use demonstration application. The sample
controls Sony and Philips CD players, but includes additional
resources for Sony TVs, so I was able to use the resources given
and figure out how to modify the basic code to add support for
my Sony television in an hour or two. The Newton can let me
channel surf at quite some distance: over twenty feet (the limit of
my apartment). The preliminary code did have a tendency to
hang the Newton after a few dozen commands, but I expect the
occasional crash in preliminary code.

GETTING STARTED
You must replace your current MessagePad platform file (for
NTK beta 7) with the new one included in the Remote Toolkit —
it contains the IR transmission methods. There are just three
commands, making this an extremely simple API:

• :OpenRemoteControl() returns a “magic cookie” that you
send to the other functions;

• :CloseRemoteControl(cookie) returns nil and
invalidates the cookie ; and

• :SendRemoteControlCode(cookie, command, count)
repeats the given command for count times.

All three of these are actually method calls and not global
functions, so they must be preceded with a colon.

The basic sample project comes with four files installed: the
layout file containing the code, and three resource files. The code
sample shows a clever method for referring to resources. A
frame, irCodes , contains three arrays of symbols which
reference resources read by NTK and assigned to constants
defined in the program’s Project Data file.

IR COMMAND FORMATS
The source code for the resource files, in Rez format, is included,
and is nicely commented. The file “RemoteTypes.r” contains a
template for ‘IRCD’ resources, which define the encoding for a
particular command. Let’s take a quick look at the “Play”
command for a Sony CD player. (This information is taken from
the comments in the “Sony.r” file by Mike Cremer, but I think it
might be more easily understood if drawn with non-ASCII
graphics).

The underlying timebase of all Sony IR commands, one
count, is 600 microseconds. A mark code is one count idle plus
four counts on. A zero bit consists of one count low plus one count
high; a one bit consists of one count low plus two counts high.

The Sony “play” command has a seven-bit command field
plus a five-bit device field (so that your system can tell the
difference between “play” for your casette deck and “play” for
your CD player). The command for “play” is 0110010; the device
code for a CD player is 10001. A complete IR command stream
consists of a mark signal, followed by the concatenated device
and command fields (100010110010) sent backwards, low bit to
high bit. See Figure 1 one for a visual representation of the play
command.

This command is represented by the following resource
definition in the “Sony.r” file from the sample code:

resource ‘IRCD’ (200, “SonyCDPlay”) { ’cdpl’,
600, // timeBase in microseconds
4, // leadIn, in timeBase units
74, // repeat, in timeBase units (~ 44 ms)
833, // leadOut, in timeBase units (~ 500 ms)
 {
 1, 1, 1, 2,
 1, 1, 1, 1,
 1, 2, 1, 2,
 1, 1, 1, 2,
 1, 1, 1, 1,
 1, 1, 1, 2
 }
}

The repeat value is only sent between repeating commands;
leadOut is only sent after a non-repeated command (“play” is
not a repeating command).

The data itself is represented rather oddly in the resource. I
think of it like this: each number represents a state change, and
the LED then remains in that state for the specified number of
timeBase units. Thus, the first zero bit is represented here by
“1, 1”. (The first one represents a transition from the previous
state, “mark,” which is on, to off, and a wait of one time unit; the
second one represents a transition back to “on” and one time unit
on). The first one bit is represented by “1, 2” (transition from the
previous state, one time unit wait, transition, two time unit
wait).

0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

3 4 5 6 7 8 9 0 1 2 3 4

MARK 0 1 0 0 0

0 0 0

1 1

1 1

lead-in

lead-out

Figure 1 - A visual representation of the play command.

PIE Developers 2.3 • May 1994

Reprinted from the May 1994 issue of PIE Developers. ©1994-1997 by Creative Digital Publishing Inc. All rights reserved.

This representation scheme may look complicated, but
together with the timeBase allows codes from any vendor to be
represented. For a more challenging example, take a look at the
Philips (RC-5) codes in the sample files. These codes are repre-
sented with the same resource scheme, but use a much different
encoding. As an added twist, when a Philips command is
repeated, its bits are inverted each time. This requires two
resources for each command – one for each state, and a means of
toggling between the two. The sample application demonstrates
a way to do this.

IR FUTURES
How programmers using the Newton Toolkit for Windows will
work with such resource-based data remains to be seen; maybe
Apple will port the standalone Rez tool to Windows. This
wouldn’t allow editing of resources like PICTs, though.

PIE has said that they aren’t planning to provide codes for
every vendor’s devices. Instead, they have tried to give develop-
ers a chance to share information by setting up an Internet
mailing list for IR hackers, NewtonIR@blammo.apple.com. To get
on the list, send a message to NewtonIRrequest@blammo.-
apple.com. Discussion on this list was quite heavy for a while but
has tapered off recently. Support on AppleLink is also available
in the PIE Developer Talk board; DTS suggests you include “IR”
in the message subject.

You may notice that it should be possible to come up with a
simple function to generate these codes at run-time, perhaps a
function for each vendor’s encoding type, instead of storing the
resource data in the project. This seems feasible as long as the
function can spit out the data fast enough to send the codes at
the correct rate (including repeating codes; for example, holding
down the volume button should send a continuous stream of
volume-down commands). This topic is currently under discus-
sion on the NewtonIR mailing list.

One thing to keep in mind: before you get too excited about
turning the Newton into a universal programmable remote
control, please note that while the MessagePad can beam
infrared radiation at the proper frequencies, it can’t receive it.
According to PIE DTS, a filter designed to improve beaming
using the Sharp protocol only allows a narrow band of IR to be
received. ▲

Paul R. Potts lives in the frozen wastes north of Cincinnati.
When not waving his Newton in the faces of complete strangers
and babbling excitedly about the digital convergence, he can be
found in his slightly dented Plymouth Reliant, stalled at the
end of the on-ramp leading to the Information Superhighway.

Note: The IR protocol used for performing remote control func-
tions with a Newton is not the same protocol that is used for
beaming serial data through a standard Newton communications
endpoint. This protocol is defined by Sharp. Contact Robert
Stuart, Sharp Electronics Corporation (stuart@secms.-
sharpwa.com) for details.

It should be possible to come up with a
simple function to generate these codes
at run-time, perhaps a function for each
vendor’s encoding type, instead of stor-
ing the resource data in the project.

