
PIE Developers 2.3 • May 1994

Reprinted from the May 1994 issue of PIE Developers. ©1994-1997 by Creative Digital Publishing Inc. All rights reserved.

A MAC IR DETECTOR REVEALS ALL
John Calhoun
Scheherazade Software
softdoroth@aol.com

his article describes a simple, inexpensive hardware
device that allows you to record infra-red waveforms from

devices like hand-held remote controls. Using a sound-
capture program and a Mac with sound-input capabilities, you
can use this device as if it were a microphone plugged into the
Mac. The infra-red is recorded in the same manner sound is
recorded. It ain’t a pretty hack, but it’s cheap, simple and can
give good results

OTHERWORLDLY
Infra-red is rather cool – there is this whole other world around
us that we can’t see, hear or feel. With all these remote controls,
toys and things (and now the Newton) sending infra-red back
and forth and to other devices, it’s getting noisy in that neighbor-
hood of the spectrum – and under our noses. If you build a
detector you’ve suddenly added a new “color” to your spectrum
and have sort of opened up a new door. For example, I built an
IR detector and had it running into my Mac – the Mac was
running a sound program that would audibly “play” any IR
coming into the detector. I kept getting a short blip every second
or so for some unknown reason. My Newton appeared to just be
sitting there contentedly, but I figured out that it was indeed the
source of the stray IR pulse. I checked the Prefs on the Newt and
found that I had “Receive beams automatically” checked. I
unchecked it and the stray blips went away. I had no idea that
all this time my Newt (named Little Nemo, by the way) had been
sending out silent pleas for a beam.

To digress even further, I don’t like dropping the dash from
the word infra-red. I’ll use the abbreviated “IR”, but not “infra-
red”. When I was a kid, I used to see “infrared” in Edmund’s
Scientific Catalog and thought it was two syllables (pronounced
like the word “impaired”).

I have a cheap Magnavox TV and a cheap Emerson VCR.
They each have a remote control and I wanted to use the Newt to
replace these little devices. The IR Seed Kit I was sent had
resources for controlling a Sony CD and other things I didn’t
have. So I needed to create my own resources for my two
remotes. To do this I needed to know the pattern of IR pulses
that my remotes sent out so I could define resources for them
and thus allow the Newt to emulate them – I had to build the
device below.

BUILDING THE IR INPUT DEVICE
Step one was to build a device that could detect, record and
display the pulses coming out of my remotes. I recalled a 1992
MacHack hack called “IR Man.” In case you’ve never heard of it,
it was an INIT that you dropped into your Mac’s System Folder
that would allow you to control various Mac functions with a
hand-held remote control (you could Play, Stop, and Rewind
QuickTime movies for example). The hardware responsible for
detecting the IR from the remote was an easy-to-build device
that plugs into the sound-input jack of your Mac. The device was
pretending to be a microphone as far as the Mac knew. Instead of
sending a signal in response to sound however, the device sent
current in response to infra-red – how’s the Sound Manager to
know the difference? So, this little box detects infra-red. To
record and display it, you could use any sound editing software.

The device did in fact prove easy to build. Here is the list of
parts you need:

• IR Detector Module (part 276-137 from Radio Shack, $3.59)
• 100K resistor
• Phono jack (one that fits into your Mac’s sound-input jack)
• 9V battery clip
• Small toggle switch
• Small project case (so that it looks professional)

I suspect that the modest hardware hacker has all the above
parts lying around with the possible exception of the IR Detector
module. And incidentally, you need a Mac that has sound input
capability (let’s see, the LC, IIsi, Quadra’s, AV Macs, PowerBook
Duo’s – any others?) and some kind of sound capture software
(SoundEdit is the most obvious example).

Figure 1 shows a schematic for the device. The circuit is so
simple that a circuit board isn’t really necessary. What I did was
arrange the 9V battery and IR module around in the project case
in order to determine where everything would fit. Then I drilled
holes for everything (don’t forget a hole for the IR Module so it
can “see”). I used a small amount of super glue to mount the IR
module in place and to keep the cord to the phone jack from
pulling out. I then mounted the switch. With the main compo-
nents mounted, I started soldering the parts to one another in
place. I soldered the 9V battery clip to the switch and IR module
(black lead to the switch, red lead to the module – the package
the module comes in, by the way, diagrams which lead of the
module is which). I soldered a small wire between the other lead
of the switch to the IR module. Then I soldered the 100K resistor

Figure 2 - Basic remote control command. Figure 4

Figure 3

T

PIE Developers 2.3 • May 1994

Reprinted from the May 1994 issue of PIE Developers. ©1994-1997 by Creative Digital Publishing Inc. All rights reserved.

between the IR module and the core of the phono jack. Finally I
soldered the shield of the phono jack to the negative (black) lead
of the 9V battery clip (attached now to the switch). That’s it.

Did it work the first time I tried it out? In fact it did.

TROUBLESHOOTING
When you’re done, you should have the IR box sitting near your
Mac with it’s phono jack cable running around back and plugged
into the sound-input port. As a simple test, go to the Sound
control panel under System 7 and opt to record a new sound for
your System beep. With the IR box switched on, point a remote
control at it and hit a few buttons on the remote. You should hear
something coming through the Mac’s speaker and see the “VU
meter” on the Sound control panel jump. Success – hopefully. If
you don’t see anything, the usual troubleshooting applies (check
connections, see that the switch on your IR box is turned on, try
another 9V battery, double check all your wiring – there is a list
of other possible problems below).

By the way, I have found that the signal coming from the IR
box is quite strong – it equates to someone shouting extremely
loudly into a microphone. It hasn’t harmed my Mac in any way,
but as a safety precaution, I’ve avoided using powerful batteries
in the IR box (like alkaline batteries). Instead, I use the cheap-
est, old-technology batteries I can find (does the color green and
the words “Radio Shack” call any images to mind?). The circuit
uses a 100K resistor between Vout and the jack that runs into
the Mac – my pseudo-understanding of electronics suggests that
a larger resistor might lessen the strength of the signal. To be
honest though, I know very little about electronics and so I can’t
guarantee that this will help.

If you’re detector isn’t working very well for you (as in, the
waveforms look a far cry from ideal), here are some things I have
found that may help you:

• Batteries make a difference – try cheap batteries, fresh
batteries, or different brands.

• Keep the box away from your monitor – ELF and other
radiations introduce a lot of noise.

• Try turning out extraneous lights, especially fluorescent ones.
• Try firing the remote from different distances.
• Try placing colored gels over the IR detector module to screen

out extraneous light frequencies.
• Make sure you record with the highest possible quality

(22KHz on my machine).
• View your sampled waveforms as lines, not dots (many

sound-recording packages give this option).
• You might be able to clarify your waveforms by using some of

the effects in the sound-recording package on them (noise
gate, emphasize, and amplify can do wonders).

RECORDING INFRA-RED
With a functioning detector, a Mac with sound-input capability,
and sound-capture software you can begin the more tedious and
mundane part. Without pretending to know a lot about how
remote controls work, let me just begin with a typical waveform I
recorded using SoundEdit (see Figure 2). I took the liberty of
editing out all the “silence” to the left of the waveforms and
“amplifying” the sound at 80% (so you can see the tops and
bottoms of the waves more clearly).

Macro Analysis
Something to notice at this point is that (although I swear I hit
the button on the remote control as briefly as I could) two
distinct waveforms are recorded. In fact, timing-wise, the two
waveforms are identical. The distances between the individual
waves on the left waveform match those on the right. When you
write your Newton application and go to call SendRemote-
ControlCode(cookie, command, count) for this remote
control, you want to send the number two for count for the
waveform above.

Here’s the structure for an IR Toolkit infra-red command:

struct IRCodeWord
{

unsigned long name;
unsigned long timeBase;
unsigned long leadIn;
unsigned long repeat;
unsigned long leadOut;
unsigned long transitions[];

};

I first make note of the time between the two chunks of data (for
the repeat). I get something close to 32.8 ms for the above
waveform (I’ve found that once you’ve determined these two
values for a single command on your remote control, all other
commands on that remote control are the same). I also need to
determine the timeBase and convert this 32.8 ms into units of
timeBase before I can use it. Notice too that after the command
on the left, the signal gradually comes to a horizontal line before
the repeat starts. You can use the length of this line to determine
the leadOut value in the above struct.

All right, we’ve obtained some of that macro-information, so
I’ll chop the data down to a single chunk.This time, I take the
liberty of filling the area below the wave with black in order to
make the pulses more distinct (see Figure 3). Remember, this is
not the “idealized” waveform, but the real thing recorded
straight from the remote, so you’re going to get little jags and
such in the waveform.

Figure 6 - The original and the pretender.

Figure 5 - The transitions.

PIE Developers 2.3 • May 1994

Reprinted from the May 1994 issue of PIE Developers. ©1994-1997 by Creative Digital Publishing Inc. All rights reserved.

There are a number of things you’re trying to determine at
this point: what the carrier frequency is (timeBase), what the
leadIn value is, and what the actual pattern to the pulses is
(the transitions).

Determining the timeBase
The very first pulse beginning on the left is the lead-in pulse. It’s
a high pulse and often the longest pulse as well. Right at the
conclusion of sending this pulse, the IR signal switches from
high to low and is ready to begin the first transition from low to
high which happens next. The final transition should end on a
low so there is always an even number of transitions.

Since the Newton wants the leadIn pulse (and all
subsequent transitions) to be measured in timeBase , reading
the time for the leadIn pulse off the sound editing software
ruler (in microseconds) is pointless. Instead, we ignore the
leadIn for now until we can determine timeBase . We
determine this from looking at transitions.

Note that for this remote control waveform all the high
pulses seem to be the same length (measuring left to right –
along the time axis). This is the approximate length of our
timeBase . However, you may have noticed that some of the low
pulses appear to be slightly narrower than the high pulses. Since
only whole numbers of timeBase are allowed here, how should
we represent the length of time for those skinny low transitions?
They appear to be about 0.75 timeBase.

It appears to be an analog artifact from the little infra-red
LEDs glowing for a brief period of time after the power to them
has been cut off. I suspect it’s of no consequence because the
receiving hardware is just looking for the leading edge of the
high pulses and doesn’t really care how brief the low pulses are.
To keep things simple I define the distance between the leading
edges of two of those high peaks close together as 2 * time-
Base (a one-unit high transition followed by a one-unit low
transition).

If you having trouble determining the timeBase for your
remote control, here’s a tip. Go through your waveform and look
for the smallest distance between two leading edges (see Figure
4). This is probably two, three or four timeBase s — different
remote controls use different multipliers.

Looking at the example waveform in Figure 3, do you see
the first two peaks on the left (they look something like the
World Trade Center towers)? The distance from the left edge of
the left tower to the left edge of the right tower (one tower plus
the space between) equals 2 * timeBase . Using this as a ruler,
we can determine how wide (in time units) the whole waveform
is. I get about 76 time units for the length of the transitions (the
towers = 1, the skinny spaces between the towers = 1, the wide
spaces between the towers = 3, and the first really wide space = 4
– I told you this was tedious).

Now using a ruler to measure the total length of the
transitions, I get about 65.0 milliseconds. The Newton wants the
time unit expressed in microseconds (1 milli = 1000 micro), so
this is 65,000 microseconds. Dividing that by our 76 timeBase ’s
gives us roughly 855 microseconds – that’s the length of time-
Base (the carrier wave period). Now we need to calculate the
other command parameters.

leadIn, leadOut and repeat
Looking at the leadIn pulse, I measure about 3.7 milliseconds
(3700 microseconds). When I divide that by our time unit, I get
4.3 time units. To keep the numbers whole (and since high pulses
typically seem to be long) I round down to four.

Going way back to where we measured the time between the
two separate commands (32.8 msecs), we can now calculate
repeat in timeBase . I get approximately 38 (32,800 microsec-
onds / 855 microseconds). We do the same thing for leadOut ,
yielding 50.

Perhaps you’ve noticed that measuring these waves doesn’t
appear to require remarkable precision. I find any errors I may
have from rounding off are of no consequence in the final scheme
of things. This is confirmed when I show the Newton’s IR
waveform I’m creating (the “synthesized” waveform) alongside
the original remote’s waveform later.

If we fill in IR Toolkit’s IRCodeWord struct with the
information we have so far, it looks like this:

struct IRCodeWord
{

name := ‘play’
timeBase := 855
leadIn := 4
repeat := 38
leadOut := 50
transitions[] := ???? // still to come

};

Determining the Transitions
Tedium becomes an art form now — the transitions must be
measured. I won’t walk through every pulse in the sample
waveform but instead just give you some general tips.

• Print the waveform out as large as you can, and print out all
your remote control waveforms to the same scale.

• Make a “ruler” using a piece of paper with your timeBase
marked in little tick marks along it.

• Measure from leading edge to leading edge. In my sample
waveform, all the high pulses are clearly one timeBase
long, so the only challenge is determining the low transition
lengths.

Figure 5 shows my sample waveform marked up with the
transitions. Based on that transition data, the final field in the
IRCodeWord struct looks like this:

transitions[] :=

[4,1,1,1,3,1,1,1,1,1,3,1,3,1,1,1,3,1,3,1,1,1,3,

1,1,1,3,1,1,1,3,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1];

That’s it. Use ResEdit to enter the above data into an ‘IRCD’
resource (get the ResEdit template for ‘IRCD’ resources from the
IR Toolkit sample code).

HOW DOES IT COMPARE?
Well, below are the two waveforms. The top pulse came directly
from the remote control and the bottom one came from the
Newton using the data arrived at in this article. Close enough?
You be the judge (hint, it has my VCR fooled).

ONWARD
It occurs to me that someone could write a slick hack that
automates the entire process of capturing/decoding remote
control commands. I’ve begun such a hack, and at the time of
this article, have it recording and accurately determining all the
required data with the exception of the transitions (it gets them
wrong frequently). This public domain code, designed to run on a
Macintosh, is available on the PIE Developers 2.3 source code
disk. Feel free to use it as the basis for a polished, automated
solution to the process I’ve described in this article. ▲

John Calhoun lives in Kansas and writes games for the Mac
and Newton full time in an effort to avoid entering the “real”
workplace. He enjoys collecting technological gadgets that allow
him to feel superior to his two cats.

