

pURL™

URL manager for the digerati

API Guide

version 1.0

Tools for the digerati™®

®DIGITAL OBJECTIVES

i

Copyright

©1996 by Digital Objectives, Inc. All rights reserved. Reproduction, adaptation,
or translation of this document are prohibited without prior written permission of
Digital Objectives.

Digital Objectives® and the Digital Objectives logo are registered trademarks
and "Tools for the digerati" and pURL are trademarks of Digital Objectives, Inc.

All other trademarks referenced are property of their respective owners.

ii

Table of Contents

Introduction... 1
Using the pURL API .. 2

Adding URLs ... 2
Checking the Existence of an URL.. 3
Retrieving URLs.. 4
Triggering the Launch of Third-party Applications 5

1

Introduction

This manual documents the Application Program Interface (API) supported by
pURL™. The API enables third-party developers to treat pURL as a repositiory
of URL information.

The API supports:

• Adding URLs to pURL
• Checking for the existence of an URL in pURL
• Retrieving URLs from pURL
• Triggering the launch of third-party applications from pURL

2

Using the pURL API

The pURL API is a set of methods in the base view. Access to any of the
methods is achieved by sending the appropriate message to the base view via:

GetRoot().|pURL:DigObj|:pURLmethod(parameters) ;

Each of the methods is discussed below.

Adding URLs

URLs are added to pURL via the AddpURL method.

:AddpURL(urlList)

Adds an URL or an array of URLs to the root folder.

urlList is either a frame or an array of frames. Each frame corresponds to an
URL and has the following structure:

{
url: urlString, // include scheme if known
name: string, // can be the webpage title e.g.
comments: rstring

}

urlString is the full URL with scheme (if known).
rstring may be a rich string.

The return value from the method will be non-nil if the URL was successfully
added. Should pURL encounter a soup related error, the method will issue a
:Notify and return a value of nil.

The method is undo / redoable.

Example:

:AddpURL([{url:"http://members.aol.com/DigObj/pURL.html",
 name:"pURL’s Home Page",
 comments:"Where you get pURL"}]);

3

Checking the Existence of an URL

An URL can be checked to determine if it is already in the pURL repository by
using the CheckpURL method.

:CheckpURL(urlString)

Checks for the existence of an URL that matches urlString . The match test is
case insensitive.This method may be used before invoking AddpURL to prevent
adding duplicate URLs.

urlString is the full URL with scheme.

If the URL is not found then the method will return the value nil. If fhe URL is
found then the method will return a frame with the following structure:

{
url: urlStringSansScheme, // does not include

// scheme
name: string,
comments: rstring

}

Note that urlStringSansScheme will not contain the scheme.
rstring may be a rich string.

Example:

:CheckpURL("http://members.aol.com/DigObj/pURL.html");

4

Retrieving URLs

URLs can be retrieved from the pURL repository via the GetpURL method.

:GetpURL(typeList)

Returns an array of frames. Each frame contains information about a single
URL and has the following structure:

{
url: urlString, // includes scheme
name: string,
comments: rstring

}

rstring may be a rich string.

typeList is used to filter the URLs in the repository so that the only URLs
returned are those that match the requested schemes. TypeList can be either
the value nil, a symbol or an array of symbols.

If typeList is either nil or an empty array then all URLs in the repository are
returned.

if typeList is a symbol or an array of symbols then the only URLs returned are
those whose schemes correspond to the specified symbols.

Supported symbols are:

’http, ’wais, ’ftp, ’mailto, ’news, ’gopher, ’unknown

This set will expand in future versions.

This method always returns an array. If any URLs are found then the array will
contain frames of the structure discussed above. If no URLs are found then the
array will be empty.

Example:

:GetpURL([’http,’news]);

5

Triggering the Launch of Third-party Applications

An URL can be used to trigger the opening of a third-party NIE based
application via the LaunchFrompURL method.

:LaunchFrompURL(urlString)

The URL's scheme is associated with the target NIE based application via the
pURL preferences. This method will open the target NIE based application and
pass it the target URL.

urlString is the full URL with scheme.

Currently, pURL supports Newt's Cape™, Newt'sPaper™, and NetHopper® as
target NIE based applications. This set will expand in future versions.

If pURL's preferences have not been installed then this method will issue a
:Notify and return nil. If the target NIE based application is not found then pURL
will issue a :Notify and return nil.

In all other cases, the method will propagate the return value from the launched
application.

If the value returned from a Newt's Cape launch is nil then pURL will issue a
:Notify.

Example:

:LaunchFrompURL("http://members.aol.com/DigObj/pURL.html");

	Cover
	Copyright
	Table of Contents
	Introduction
	Using the pURL API
	Adding URLs
	Checking the Existence of an URL
	Retrieving URLs
	Triggering the Launch of Third-party Applications

