

N e w t o n A p p l i c a t i o n
D e v e l o p m e n t

Newton Desktop Integration
Libraries

Version 1.0

© Apple Computer, Inc. 1995

Draft. Preliminary, Confidential. ©2/13/96 Apple Computer, Inc. 2/13/96

Apple Computer, Inc.
© 1996, Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple

Macintosh computers, computers
running the Mac OS, and
computers running the Microsoft
Windows operating system.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, Mac, MPW,
MessagePad, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Varityper is a registered trademark
of Varityper, Inc.
Windows is a trademark of
Microsoft, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Preface

About This Book

vii

Conventions Used in This Book vii
Special Fonts vii

Chapter 1

Overview

1-1

Data Types and Values 1-2

Chapter 2

The Communication Desktop Integration

Library

2-1

General Concepts 2-1
Using the CDIL 2-3
CDIL Reference 2-5

CDIL Pipe States 2-5
Setting Up the Pipe 2-7

CDCreateCDILObject 2-8
CDInitCDIL 2-8
CDSetApplication 2-8

Destroying the Pipe and Cleaning up the CDIL 2-9
CDDisposeCDILObject 2-9
CDDisposeCDIL 2-9

Making the Connection 2-9
CDPipeAccept 2-10
CDPipeInit 2-10
CDPipeListen 2-13

iv

Breaking the Connection 2-15
CDPipeDisconnect 2-15

Getting and Sending Data 2-16
CDDecryptFunction 2-16
CDEncryptFunction 2-18
CDPipeRead 2-20
CDPipeWrite 2-24

Pipe Maintenance 2-27
CDFlush 2-28
CDIdle 2-28
CDPipeAbort 2-29

Information Functions 2-30
CDBytesInPipe 2-30
CDConnectionName 2-31
CDGetConfigStr 2-32
CDGetPipeState 2-32
CDGetPortStr 2-32
CDGetTimeout 2-33
CDSetPipeState 2-33

Advanced Functions 2-33
CDPad 2-34
CDSetPadState 2-34

Error Codes 2-34

Chapter 3

The High-Level Frames Desktop Integration

Library

3-1

General Concepts 3-2
Objects Handled by the HLFDIL 3-2

The Newton Object Model 3-2
Using the HLFDIL 3-9
HLFDIL Reference 3-11

Setting Up and Shutting Down 3-11
FDInitFDIL 3-12

v

FDDisposeFDIL 3-12
Creating, Destroying, and Defining Objects 3-12

FDCreateObject 3-12
FDDisposeObject 3-13
FDbindSlot 3-13

Getting Data To and From the Newton 3-15
FDput 3-15
FDget 3-16

Cyclical Frames 3-19
Unbound Data 3-19

FDGetUnboundList 3-21
FDFreeUnboundList 3-21

DIL Variable Types 3-22
Error Codes 3-24

Chapter 4

The Newton Side of the DIL Connection

4-1

NewtonScript Facilities 4-1
Internal Code 4-2
User Interface Code 4-2

Index

IN-1

vi

P R E F A C E

vii

About This Book

This book,

Newton Desktop Integration Libraries

, describes
programmer software used to give Windows and Mac OS
applications the ability to exchange data with a Newton device. It
has the following chapters:

■

Chapter 1: “Introduction” discusses the Desktop Integration
Libraries (DILs) and describes some non-standard types and
values that are used in the DIL code.

■

Chapter 2: “The Communications Desktop Integration Library”
describes the basic communications facility that the DILs
provide.

■

Chapter 3: “The High-Level Frames Desktop Integration
Library” describes the facility the DILs provide for
communicating with a Newton using high-level frame
structures.

■

Chapter 4: “The Newton Side of the DIL Connection” gives
general directions on writing Newton applications that can
communicate with the DILs.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

■

Boldface

. Key terms and concepts appear in boldface on first
use.

P R E F A C E

viii

■

Courier typeface

. Code listings, code snippets, and special
identifiers in the text such as slot names, function names,
method names, symbols, and constants are shown in the
Courier typeface to distinguish them from regular body text. If
you are programming, items that appear in Courier should be
typed exactly as shown.

■

Italic typeface

. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which
you must replace with your own names. The names of other
books are also shown in italic type, and

rarely

, this style is used
for emphasis.

1-1

C H A P T E R 1

Overview 1

You can use the Newton Desktop Integration Libraries (DILs) to create
desktop computer applications that can exchange data with a Newton. The
DILs:

■

provide layered, fully functional C libraries to enable desktop applications
to communicate with Newton devices

■

provide flexible, high-performance common communications APIs
(applications programming interfaces) for use in Mac OS and
Windows-based applications

DILs are delivered for computers running the Mac OS computers as static
linkable libraries and for computers running the Windows operating system
as Dynamic Linked Libraries.

The function prototypes for the DILs are designed to be used by multiple
compilation environments. You should consult the README file for
instructions on building in your environment.

This book documents two DILs, the Communication DIL (CDIL) and the
High-Level Frames DIL (HLFDIL).

The CDIL has two purposes:

Figure 1-0
Table 1-0

C H A P T E R 1

Overview

1-2

Data Types and Values

■

It creates the basic connection with the Newton. It gives you
communications with a Newton through a modem, serial port, or
AppleTalk ADSP. (Windows applications currently can only use MNP
modem connections.)

■

It allows low-level communication, where you can send data that is
treated by the Newton as a stream of bits. This allows you to use
non-Newton types and also to encrypt your data.

The HLFDIL lets you send and receive data in the form of Newton data
structures such as arrays and frames. When you use the HLFDIL, you still
use the CDIL to create the basic connection with the Newton.

Data Types and Values 1

The DILs use a few non-standard data types and values, which are described
in Table 1-1. Many of these are defined in the header files. Some types and
values described in this section are standard to the Mac OS, and may not be
in Mac OS header files.

Table 1-1

Data Types and Values

Identifier Meaning

Boolean

Defined as an enumerated type
that can have the value

true

 or

false

.

CDILCompletionProcPtr

A pointer to the type of callback
function used by

CDPipeListen

and

CDPipeWrite

.

CDILDecryptionProcPtr

A pointer to the type of callback
function used by

CDDecryptFunction

.

C H A P T E R 1

Overview

Data Types and Values

1-3

CDILEncryptionProcPtr

A pointer to the type of callback
function used by

CDEncryptFunction.

CDILPipe

A pipe object. Defined as

void

.
Used in the form of a pointer,

CDILPipe*

, which is actually a

void*

.

CDILPipeCompletionProcPtr

A pointer to the type of callback
function used by

CDPipeRead

.

CommErr

Defined as

long

.

DILObj

An HLFDIL object. Defined as

void

. Used in the form of a
pointer,

DILObj*

, which is
actually a

void*

.

objErr

Defined as

long

.

false

Defined as zero.

nil

A value that indicates nothing,
none, no, or anything negative or
empty. In particular, it indicates a
null or undefined pointer. It is
similar to

(void*)0

 in C. Defined
as

NULL

.

Size

Defined as

long

.

true

Defined as 1.

Table 1-1

Data Types and Values (continued)

Identifier Meaning

C H A P T E R 1

Overview

1-4

Data Types and Values

General Concepts

2-1

C H A P T E R 2

The Communication

Desktop Integration Library 2

This document describes the Communications Desktop Integration Library
(CDIL).

Although the CDIL is written in C++ and is based on C++ objects, you use it
by making calls to C functions. The

CDCreateCDILObject

 function creates
a C++ object, and returns a pointer to that object. You use that pointer in
calling other functions. (Those functions are actually “wrappers” for C++
methods.)

General Concepts 2

The CDIL is modeled on a

virtual pipe

. That is, the CDIL is based on a pipe
metaphor, where data is put into a pipe that is flushed at appropriate times.
You can also view the CDIL model as being a stream in the C++ sense.

The CDIL supports the following features.

Figure 2-0
Table 2-0

C H A P T E R 2

The Communication Desktop Integration Library

2-2 General Concepts

■ The CDIL is transport-independent. The function you use to configure the
pipe takes as parameters:

n the type of transport that is to be used

n the configuration options for the selected transport (such as baud rate)

n the appropriate port to use
The function calls (other than as required for configuration) are the same
no matter what the transport type is.

■ The CDIL supports the pull model. The desktop application sets up a
pipe, and then listens to see if there is a connection. Thus, the desktop
application is a passive listener. Once the connection is open, both the
desktop application and the Newton can read from and write to the pipe.

■ You can tell the pipe to perform automatic data conversions such as
byte-swapping and ASCII-to-Unicode conversions.

Figure 2-1 shows the general architecture of the CDIL.

Figure 2-1 CDIL High Level Components

CDIL

Desktop Application

Pipe

Serial IR ADSP Other

Platform Communications Tools

C H A P T E R 2

The Communication Desktop Integration Library

Using the CDIL 2-3

Using the CDIL 2

You go through the following steps to use the CDIL.

Note

The code in this chapter does not show any error handling.
You should be sure to check for errors whenever you call
DIL functions; most of the functions return an error code or
kCommErrNoErr, which is 0. The possible errors are shown
in “Error Codes” beginning on page 2-34. ◆

1. Initialize the CDIL. For example:

fErr = CDInitCDIL();

2. Create a pipe object. For example:

thePipe = CDCreateCDILObject();

3. Initialize the pipe. For example:

fErr = CDPipeInit(thePipe,

"Modem",

"",

"ModemType \"Newton Serial Connection\"\

dataBits 8 Parity None Baud 38400 Port ",

"Modem",

kDefaultBufferSize, kDefaultBufferSize);

4. Tell the pipe to listen for a connection. The connection is always initiated
by a Newton, so, from the desktop side, you need to put the CDIL in a
state where it is listening for the connection:

fErr = CDPipeListen(thePipe, 30000, NULL, 0);

The second parameter is a timeout. The third parameter can give a
callback function; in this case, there is no callback function, so you give

C H A P T E R 2

The Communication Desktop Integration Library

2-4 Using the CDIL

NULL. The fourth parameter is a long value that you can use to pass
information to your callback function, if you have one.
If you supply a callback function, the CDPipeListen function returns
immediately and, when the listening operation is finished, the CDIL calls
the callback function. One reason you might want to use a callback
function is so that you can put up a status dialog that allows your user to
cancel the connection attempt. If the user chooses to cancel the attempt,
you can call CDPipeAbort to cancel it.

5. Watch for the state to become something other than kCDIL_Listening.
(In general, CDPipeListen does not return until that happens, but it is
possible for it to return early.) For example:

while (kCDIL_Listening == CDGetPipeState(thePipe)){}

6. Check what the state now is, and take appropriate action. In particular,
when the pipe state is kCDIL_ConnectPending, accept the connection.
For example:

if (kCDIL_ConnectPending == CDGetPipeState(thePipe))

{fErr = CDPipeAccept(thePipe);}

else HandleError();

In this example, HandleError is a function you’d write that would
figure out what to do, since the pipe is not in its expected state.

7. You can now send data by calling CDPipeWrite and receive data by
calling CDPipeRead. If you keep the pipe open for any length of time, call
CDIdle often.

8. When you are done, disconnect the pipe.

fErr = CDPipeDisconnect(thePipe);

9. Depending on your application, you might open the connection again. In
that case, you need to call go back to step 3.

10. Before your application ends, destroy the pipe object, and clean up the
CDIL.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-5

fErr = CDDisposeCDILObject(thePipe);

fErr = CDDisposeCDIL();

CDIL Reference 2

This section documents the pipe states, which are important for any program
that uses the CDIL, and then describes the CDIL functions, divided into
related areas. Finally, it describes the error codes you might receive.

CDIL Pipe States 2

During your CDIL session, the CDIL pipe goes through a series of states that
tell your application what is going on with the connection. Table 2-1 lists the
states. Table 2-2 on page 2-6 diagrams the state transitions.

Table 2-1 Pipe States

State Constants Meaning

kCDIL_Uninitialized The pipe is uninitialized. This is the
initial state of the pipe after
CDCreateCDILObject and before
CDPipeInit.

kCDIL_InvalidConnection The pipe tried to bring up a connection,
but it failed. This can occur after calling
CDPipeInit.

kCDIL_Startup The pipe has been initialized. This is
the state after CDPipeInit and before
CDPipeListen.

kCDIL_Listening The CDIL is listening for a connection
on the pipe. This is the state after
CDPipeListen and before a
connection is made.

C H A P T E R 2

The Communication Desktop Integration Library

2-6 CDIL Reference

kCDIL_ConnectPending A connection is pending. This state
occurs when an application on the
Newton is attempting to connect to this
pipe.

kCDIL_Connected The pipe is connected. This is the state
after CDPipeAccept.

kCDIL_Busy The pipe is either reading or writing.

kCDIL_Aborting The pipe is currently aborting. You can
get this after calling CDPipeAbort, but
before the aborting process is complete.

kCDIL_Disconnected The pipe has been disconnected. This is
the state of the pipe after
CDPipeDisconnect.

kCDIL_Userstate You can have pipe states that have
meaning to your program by adding
integers to this constant (see
“CDSetPipeState” on page 2-33).

Table 2-2 Pipe State Transitions

Time State Constant Notes

Initial state, before
calling anything, except
possibly CDInitCDIL

Undefined You need to have created a
CDIL object before you can
get a state.

After calling
CDCreateCDILObject

kCDIL_Uninitialized The pipe needs to be
initialized before it can be
used.

After calling
CDPipeInit

kCDIL_InvalidConnection The pipe tried to initialize,
but it failed.

After calling
CDPipeInit

kCDIL_Startup The pipe has been
initialized.

Table 2-1 Pipe States (continued)

State Constants Meaning

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-7

Setting Up the Pipe 2
You use the functions in this section to set up the pipe.

After calling
CDPipeListen

kCDIL_Listening The CDIL is listening for a
connection on the pipe. If
your connection type is
Serial, the state will go to
kCDIL_ConnectPending
almost immediately.

kCDIL_ConnectPending A connection is pending.
This state occurs when an
application on the Newton
has requested a connection
to the running DIL
application.

After calling
CDPipeAccept

kCDIL_Connected The pipe is connected.

After calling
CDPipeWrite or
CDPipeRead

kCDIL_Busy The pipe is either reading
or writing.

After calling
CDPipeAbort

kCDIL_Aborting The pipe is currently
aborting. You can get this
after calling
CDPipeAbort, but before
the aborting process is
complete. If the connection
type is Serial, the pipe
will go to
kCDIL_Disconnected
immediately.

 After calling
CDPipeDisconnect
or CDPipeAbort

kCDIL_Disconnected The pipe has been
disconnected.

Table 2-2 Pipe State Transitions (continued)

Time State Constant Notes

C H A P T E R 2

The Communication Desktop Integration Library

2-8 CDIL Reference

You need to initialize the CDIL using CDInitCDIL first. Then you need to
create a pipe object using CDCreateCDILObject. If you are writing a
Windows application, you need to call CDSetApplication to set the
application instance.

CDCreateCDILObject 2

CDILPipe *CDCreateCDILObject (void) ;

This function creates a CDIL pipe object and returns a pointer to it. If there is
an error, it returns NULL. You use the returned pointer in calling other
functions. After this call is successful, the new pipe has the state
kCDIL_Uninitialized.

CDInitCDIL 2

CommErr CDInitCDIL (void) ;

This function initializes the underlying communications mechanism and
prepares the environment for the CDIL. It is intended to be called as part of
application initialization.

This function can return errors on Mac OS-based computers if initialization
of the Communications Toolbox (CTB) fails. On Windows-based computers
you can get device driver or memory errors. It returns zero when successful.

CDSetApplication 2

void CDSetApplication (CDILPipe *pipe, HINSTANCE appInst) ;

This function only applies to Windows applications, and is required in those
applications. It sets the application instance so that driver timers can work.

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

appInst Gives an application instance.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-9

Destroying the Pipe and Cleaning up the CDIL 2
When your application is finished, you need to use CDDisposeCDILObject
to free the space used by a pipe and then use CDDisposeCDIL to clean up
the CDIL.

CDDisposeCDILObject 2

CommErr CDDisposeCDILObject (CDILPipe *pipe);

This function destroys a CDIL pipe. You should call this function when you
are done with the pipe so that the memory used by the pipe is available to
other programs.

This function returns zero or an error code. It returns
kPipeNotInitialized if pipe is NULL.

The parameter to this function is:

pipe A pointer to the pipe you want to destroy.

CDDisposeCDIL 2

CommErr CDDisposeCDIL (void) ;

This function closes the underlying communications mechanism and cleans
up the CDIL environment. This function is intended to be called as part of
application shutdown. You should call this function after you call
CDDisposeCDILObject.

This function returns an error on Windows-based computers if there is a
problem with driver cleanup. No Mac OS errors are defined.

Making the Connection 2
You use these functions to get the connection with the Newton. Your
application may connect and disconnect many times during the course of a
session.

You need to call these functions in this order:

C H A P T E R 2

The Communication Desktop Integration Library

2-10 CDIL Reference

1. CDPipeInit. This function defines the connection.

2. CDPipeListen. This function tells the CDIL to wait for the Newton to
initiate a connection. You need to wait until the pipe state becomes
kCDIL_ConnectPending, which means that the connection has been
initiated by the Newton.

3. CDPipeAccept. This function tells the CDIL to accept the pending
connection.

CDPipeAccept 2

CommErr CDPipeAccept (CDILPipe *pipe) ;

If a connection is pending, the connection will be accepted. A connection is
pending when an application on the Newton is attempting to connect to
your application, which is indicated by a pipe state of
kCDIL_ConnectPending. After this call is successful, the pipe has the state
kCDIL_Connected.

This function returns an error code or zero on no error. On Mac OS-based
computers, it can return low-level Communications Toolbox (CTB) errors.
On Windows-based computers, this can return driver errors.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

CDPipeInit 2

CommErr CDPipeInit(CDILPipe *pipe,
const char* connectionType,
const char* connectionName,
const char* configInfo,

 const char* pipePort,
 Size readSize,
 Size writeSize) ;

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-11

This function opens an endpoint connection with the appropriate definitions,
initializing the specific communications environment. After this call is
successful, the pipe has the state kCDIL_Startup.

You need to call CDPipeInit again if you want to re-open the connection
after calling CDPipeDisconnect or CDPipeAbort. You can check the pipe
state (see “CDGetPipeState” on page 2-32) to see if you need to call
CDPipeInit. You must call it when the pipe state is
kCDIL_Uninitialized or kCDIL_Disconnected.

Note

Each time you call CDPipeInit, some memory is allocated
that is not freed by CDPipeDisconnect or CDPipeAbort.
Therefore, you should be careful not to close and re-open the
connection too many times. ◆

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

connectionType A C string that describes the connection. Currently
available types are shown in Table 2-3.

connectionName A C string that you can use to provide a logical name
for this connection. AppleTalk requires a logical name,
and the other connection types currently available do
not. You can get this string later so that if you have
several pipes you can tell them apart. See
“CDConnectionName” on page 2-31.

configInfo A C string that describes the connection for this pipe.
On Mac OS-based computers, this parameter is a
Communications Toolbox configuration string (see the
Communications Toolbox documentation for
information). On a Windows-based computer, this
parameter is a DOS MODE string (See the DOS
documentation for information). You can get this string
later (see “CDGetConfigStr” on page 2-32). If you give a
NULL, this value defaults to "COM1:38400,n,8,1" for

C H A P T E R 2

The Communication Desktop Integration Library

2-12 CDIL Reference

Windows-based computers, and "Baud 38400
dataBits 8 Parity None Port" on Mac OS-based
computers, which is a string for the Apple Serial tool

pipePort A platform-specific C string describing the port to be
used by this pipe.The only current possibilities on
Windows-based computers are "COM1", "COM2",
"COM3", and so on. Examples of Mac OS strings are
"Modem", "Printer", and "Printer-Modem". The
Mac OS strings are localized for different versions of the
Mac OS, and can vary. See the Communications Toolbox
documentation for information. You can get this string
later so that you can identify which port you’re using.
See “CDGetPortStr” on page 2-32.

readSize Maximum size of the read buffer in bytes. The Size
type is equivalent to long. You can use the constant
kDefaultBufferSize, which is defined as 1024 bytes.

writeSize Maximum size of the write buffer in bytes. The Size
type is equivalent to long. You can use the constant
kDefaultBufferSize, which is defined as 1024 bytes.

This function returns an error code or zero on no error. Since it declares
memory in the heap, it can return memory errors. On Mac OS-based
computers, it can return Communications Toolbox (CTB) errors associated

Table 2-3 Connection Types

Connection Type Description
Mac OS
C String

Windows
C String

Modem using MNP (Microcom Networking
Protocol)

Modem MNP

 Serial Serial

AppleTalk ADSP ADSP

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-13

with validating configuration information and with the specific
communications tool specified. On Windows-based computers, this can
return errors on driver setup and on validation of configuration information.

Here is a sample call to this function for Mac OS-based computers, which
includes a configuration string for the Apple Modem Tool.

fErr = CDPipeInit(pipe,

"Modem",

"Modem connection",

"ModemType \"Newton Serial\ Connection\" dataBits

8 Parity None Baud 38400 Port ",

"Serial-Modem",

kDefaultBufferSize, kDefaultBufferSize);

Here is a sample call to this function for Windows-based computers:

fErr = CDPipeInit(pipe,

"MNP",

"Modem connection",

"COM1:38400,n,8,1",

"COM1",

kDefaultBufferSize, kDefaultBufferSize);

CDPipeListen 2

CommErr CDPipeListen (CDILPipe *pipe,
long timeout,
CDILCompletionProcPtr completionHook,
long refCon) ;

This function starts a listening connection on the pipe, so the CDIL listens for
a Newton to initiate a connection. While the CDIL is listening, the pipe has
the state kCDIL_Listening. If the Newton does not connect before the
timeout, the state becomes kCDIL_Disconnected.

C H A P T E R 2

The Communication Desktop Integration Library

2-14 CDIL Reference

What the state is when this call completes successfully depends on a few
factors:

■ If you call this function asynchronously, the state will usually be
kCDIL_Listening. The completionHook function is called when the state
becomes kCDIL_ConnectPending.

■ If you call this function synchronously, the state on return depends on the
connection type. With some types, CDPipeListen does not return until
CDPipeListen times out or the state is kCDIL_ConnectPending. With
other types, CDPipeListen returns while the state is still
kCDIL_Listening. Because of this, you should always wait in a loop
until the state changes from kCDIL_Listening to some other state.

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

timeout The timeout to be used in this listening operation.
Timeouts are measured in milliseconds on
Windows-based computers and ticks (sixtieths of a
second) on Mac OS-based computers. The constant
kDefaultTimeout is defined as 30 seconds. 0
indicates that you want the default timeout. -1 indicates
no timeout.

completionHook Supply this parameter if you want to call this function
asynchronously. (See “Getting and Sending Data” on
page 2-16 for a description of asynchronous vs.
synchronous calls.) This is a pointer to a callback
function that is called upon receipt of a connection
request or on timeout or other failure. See the
description of the callback function that follows this
parameter list.

refCon This is a reference constant to be passed to the callback
function. It has no meaning to the CDIL, and is
provided so that you can give information to your
callback function, if you have one.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-15

This function returns an error code or zero on no error. On Mac OS-based
computers, it can return low-level Communications Toolbox (CTB) errors.
On Windows-based computers, it can return driver errors. If you call this
function asynchronously, it always returns 0 and any error code is returned
to the completionhook function.

If you provide a completionhook parameter, it must be a procedure pointer to a
function that follows this definition format:

void CompletionHook(CommErr errorValue, long refCon) ;

The parameters to this function are:

errorValue An error code, if there was an error, or 0, if there was no
error.

refCon A reference constant you supplied to the original
function, for your own tracking purposes.

Breaking the Connection 2
You use CDPipeDisconnect to break the connection with the Newton. If
you want to break a pending connection, rather than one that has been
accepted, call CDPipeAbort (page 2-29).

CDPipeDisconnect 2

CommErr CDPipeDisconnect(CDILPipe *pipe) ;

This function closes an open pipe. After this call is successful, the pipe has
the state kCDIL_Disconnected.

Note

Some older 16-bit Windows-based computers may lock up if
the Newton device is disconnected after the desktop
computer has been disconnected. For best performance in
machines such as this, always disconnect the Newton first. ◆

C H A P T E R 2

The Communication Desktop Integration Library

2-16 CDIL Reference

This function returns an error code or zero on no error. On Mac OS-based
computers, it can return low-level Communications Toolbox (CTB) errors.
On Windows-based computers, this can return driver errors.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

Getting and Sending Data 2

Some functions may be called in either synchronous or asynchronous mode.
In synchronous mode, the function waits and returns when it has completed
its task. In asynchronous mode, the function returns immediately, and when
the action of the function is completed, CDIL calls a function you’ve
supplied. The function you supply is called a callback function. The
functions that can be called asynchronously have a function pointer
parameter that you use to specify the callback function. If the parameter is
NULL, the function is called synchronously.

If the operation is performed asynchronously, errors are not returned directly
from the call—any error condition is reported to the specified callback
routine.

Each pipe can have 25 outstanding asynchronous calls.

Two optional functions, CDDecryptFunction and CDEncryptFunction,
can be used to set up encryption and decryption callback functions to
encrypt your data before writing it to the pipe and decrypt your data after
reading it from the pipe.

CDDecryptFunction 2

void CDDecryptFunction(CDILPipe *pipe,
CDILDecryptionProcPtr decryptFunction,
long refCon) ;

After you call this function, the CDIL calls decryptFunction whenever data is
read with CDPipeRead or the HLFDIL function FDget.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-17

This is an optional function; you do not need to call it unless you want to
decrypt your data in this way. This way of decrypting data may not work for
all programs; it is possible that you will not get a complete decryption unit
from a given pipe read operation. If that is the case with your application,
you should accumulate the decryption unit in your program and decrypt it
yourself.

Note

Using current software, you cannot encrypt frames on the
Newton, so you should not set up a decryption function if
you are using the HLFDIL. (You could, though, use the DILs
to write an application that communicates with another
desktop computer. In that case, you can use decryption even
with the HLFDIL.) If you have turned on decryption for a
particular pipe, you can turn it off by calling
CDDecryptFunction giving NULL for decryptFunction. ◆

The parameters to the function are:

pipe This is a pointer to the internal pipe object returned by
CDCreateCDILObject.

decryptFunction This is a pointer to a decryption function that the CDIL
calls to decrypt the data stream prior to returning data
from the read.

refCon This is a reference constant to be passed to the
decryption function. It has no meaning to the CDIL, and
is provided so that you can give information to your
decryption function.

The decryption function definition must follow this format:

CommErr DecryptFunc(void *pData, Size Count, long refCon);

The parameters to the function are:

pData This is a pointer to the data buffer which you passed in
when you called CDPipeRead. The data there should
be decrypted and written back out to the buffer, taking
care not to exceed the size of the buffer.

C H A P T E R 2

The Communication Desktop Integration Library

2-18 CDIL Reference

Count This is the number of bytes of data in the buffer.

refCon This is a reference constant you supplied to
CDDecryptFunction for your own tracking purposes.

You should return a non-zero error code if something goes wrong, such as a
buffer overflow. Note that you must return zero (0) if there is no error; if you
do not supply a return value, a random non-zero value is returned and the
CDIL assumes that means there has been an error and aborts processing of
the current read operation.

CDEncryptFunction 2

void CDEncryptFunction(CDILPipe *pipe,
CDILEncryptionProcPtr encryptFunction,
long refCon) ;

After you call this function, the CDIL calls encryptFunction whenever data is
written to the pipe with CDPipeWrite or the HLFDIL function FDput.

This is an optional function; you do not need to call it unless you want to
encrypt your data.

Note

Using current software, you cannot decrypt frames on the
Newton, so you should not set up an encryption function if
you are using the HLFDIL. (You could, though, use the DILs
to write an application that communicates with another
desktop computer. In that case, you can use encryption even
with the HLFDIL.) If you have turned on encryption for a
particular pipe, you can turn it off by calling
CDEncryptFunction giving NULL for encryptFunction. ◆

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

encryptFunction This is a pointer to the encryption function that the
CDIL calls to encrypt the data stream prior to writing it
to the pipe.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-19

refCon This is a reference constant to be passed to the
encryption function. It has no meaning to the CDIL, and
is provided so that you can give information to your
encryption function.

The encryption function definition follows this format:

CommErr EncryptFunction(void *pData, Size Count, long
refCon);

The parameters to the function are:

pData This is a pointer to the data buffer which you passed in
when you called CDPipeWrite. The data there should
be encrypted and written back out to the buffer, taking
care not to exceed the size of the buffer.

Count This is the number of bytes in the buffer.

refCon This is a reference constant you supplied to
CDEncryptFunction for your own tracking purposes.

You should return a non-zero error code if something goes wrong, such as a
buffer overflow. Note that you must return zero (0) if there is no error; if you
do not supply a return value, a random non-zero value is returned and the
CDIL assumes that means there has been an error and aborts processing of
the current write operation.

C H A P T E R 2

The Communication Desktop Integration Library

2-20 CDIL Reference

CDPipeRead 2

CommErr CDPipeRead(CDILPipe *pipe,
void* p,
long* count,
Boolean* eom,
long swapSize,
long destEncoding,
long timeOut,
CDILPipeCompletionProcPtr completionHook,
long refCon) ;

This function reads data from the Newton into the specified buffer p. All
byte swapping and data conversions are performed automatically. As
implied by the completionHook parameter, this function can complete
asynchronously.

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

p Data is read into the buffer pointed to by this address. If
you’ve installed a decryption function (see
“CDDecryptFunction” on page 2-16) you should make
sure this buffer is large enough to hold the decrypted
data.

count The number of bytes to read. The number of bytes
actually read is returned in this parameter.

eom This value is set by the underlying transport code and
currently is always returned as false. Some future
transport types may set this value to true if the code
determines there is no more data. You can pass in NULL
instead of a pointer to a Boolean if you don’t care
about this value.

swapSize This is usually useful only on Windows-based
computers. The swapSize value deals with switching

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-21

Newton values from big-endian to little-endian. This is
the size of byte chunks to swap, if byte-swapping is to
be used. This value should be zero to avoid
byte-swapping. A computer can be described as being
either big-endian or little-endian depending on how it
arranges bytes within a word. In a big-endian system,
byte 0 is always the most significant (leftmost) byte. In a
little-endian system, byte 0 is always the least
significant (rightmost) byte. A Mac OS-based computer
is a big-endian system; an Intel x86 machine is a
little-endian system. The ARM processor used in
Newton can operate in either mode; Newton uses it in
big-endian mode. Thus, Mac OS-based computers and
the Newton are both big-endian, while Windows-based
computers generally run on little-endian computers.
Only buffers 128 bytes or smaller can be byte-swapped.
What the swapSize value should be depends on the type
of data. For example, if you want to swap Unicode
strings, the swapSize should be 2 (or sizeof(short));
if you want to swap long values, the swapSize should
be 4 (or sizeof(long)).

destEncoding Selects the encoding tables for Unicode conversion.
Encoding is used to convert Unicode characters to
ASCII and to convert ASCII characters to Unicode. Mac
OS-based computers and Windows-based computers
use different encoding tables for ASCII character codes
above 127. If you do not want Unicode conversion, set

C H A P T E R 2

The Communication Desktop Integration Library

2-22 CDIL Reference

this value to kUnicode. You currently can use the
enumerated values shown in Table 2-4.

timeout The timeout to be used in this read operation. Timeouts
are measured in milliseconds on Windows-based
computers and ticks (sixtieths of a second) on Mac
OS-based computers. 0 indicates that you want the
default timeout, which is 30 seconds. -1 indicates no
timeout.

completionHook Supply this parameter if you want to call this function
asynchronously. This is a pointer to a callback function
that is called when the data is received or the operation
times out or otherwise fails (see description of the
callback function following this parameter list). Set to
NULL if you want the function called synchronously.

refCon This is a reference constant to be passed to the callback
function. It has no meaning to the CDIL, and is
provided so that you can give information to your
callback function, if you have one.

This function returns an error code or zero on no error. If you call this
function asynchronously, it always returns 0 and any error code is returned
to the completionhook function. On Mac OS-based computers, this function
can return low-level Communications Toolbox (CTB) errors. On
Windows-based computers, it can return driver errors. This function can also
return an unknown exception if the internal pipe object has reached a bad

Table 2-4 Encoding Table Values

Enumerated Value Meaning

kUnicode Do not do Unicode conversion

kMacRomanEncoding Mac OS Roman

kPCRomanEncoding PC Roman

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-23

state. (An exception is an error or other exceptional condition.) In addition,
since this function declares memory on the heap, it can return memory
errors. In certain conditions, this function will return
kPipeNotInitialized, kPipeNotReady, or kInvalidParameter.

If you want to decrypt your data, set up your decryption function by calling
CDDecryptfunction (page 2-16).

If you provide a completionhook parameter, it must be a procedure pointer to a
function that follows this definition format:

void CompletionHook(CommErr errorValue,
void *pData, Size Count,
long refCon, long flags) ;

Any data returned is in the buffer pointed to by the pData parameter.

The parameters to the function are:

errorValue An error code or zero. This is the same value that would
be the return value of CDPipeRead in a synchronous
call.

pData Pointer to the data buffer returned to the function.

Count Number of bytes successfully transferred in the read
operation.

refCon A reference constant you supplied to the original
function, for your own tracking purposes.

flags This may be zero or 1, with a flags value of 1 indicating
that an end-of-message indicator was reached.

C H A P T E R 2

The Communication Desktop Integration Library

2-24 CDIL Reference

CDPipeWrite 2

CommErr CDPipeWrite(CDILPipe *pipe,
void* p,
long* count,
Boolean eom,
long swapSize,
long srcEncoding,
long timeOut,
CDILCompletionProcPtr completionHook,
long refCon) ;

This function writes data to the Newton from the specified buffer p. As
implied by the parameters, this function can complete asynchronously.

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

p Data is written from the buffer pointed to by this
address. If you have installed an encryption function
(see “CDEncryptFunction” on page 2-18) you should be
certain that this buffer is big enough to hold the
encrypted data.

count The number of bytes to write. The number of bytes
actually written is returned in this parameter.

eom If you set this to true, the CDIL flushes the buffer after
this write. If you don’t want the buffer flushed, set this
to false.

swapSize This is usually only useful on Windows-based
computers. The swapSize value deals with switching
Newton values from big-endian to little-endian. This is
the size of byte chunks to swap, if byte-swapping is to
be used. This value should be zero to avoid
byte-swapping. A computer can be described as being
either big-endian or little-endian depending on how it

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-25

arranges bytes within a word. In a big-endian system,
byte 0 is always the most significant (leftmost) byte. In a
little-endian system, byte 0 is always the least
significant (rightmost) byte. A Mac OS-based computer
is a big-endian system; an Intel x86 machine is a
little-endian system. The ARM processor used in
Newton can operate in either mode; Newton uses it in
big-endian mode. Thus, Mac OS-based computers and
the Newton are both big-endian, while Windows-based
computers generally run on little-endian computers.
Only buffers 128 bytes or smaller can be byte-swapped.
What the swapSize value should be depends on the type
of data. For example, if you want to swap Unicode
strings, the swapSize should be 2 (or sizeof(short));
if you want to swap long values, the swapSize should
be 4 (or sizeof(long)).

srcEncoding To select the encoding tables for Unicode conversion.
Encoding is used to convert Unicode characters to
ASCII and to convert ASCII characters to Unicode. Mac
OS-based computers and Windows-based computers
use different encoding tables for ASCII character codes
above 127. If you do not want Unicode conversion, set
this value to kUnicode. You currently can use the
enumerated values shown in Table 2-5.

Table 2-5 Encoding Table Values

Enumerated Value Meaning

kUnicode Do not do Unicode conversion

kMacRomanEncoding Mac OS Roman

kPCRomanEncoding PC Roman

C H A P T E R 2

The Communication Desktop Integration Library

2-26 CDIL Reference

timeout The timeout to be used in this write operation. Timeouts
are measured in milliseconds on Windows-based
computers and ticks (sixtieths of a second) on Mac
OS-based computers. 0 indicates that you want the
default timeout, which is 30 seconds. -1 indicates no
timeout.

completionHook Supply this parameter if you want to call this function
asynchronously. This is a pointer to a callback function
that is called when the data is written or the operation
times out or otherwise fails (see the description of the
callback function following this parameter list). Set to
NULL if you want the function called synchronously.

refCon This is a reference constant to be passed to the callback
function. It has no meaning to the CDIL, and is
provided so that you can give information to your
callback function, if you have one.

This function returns an error code or zero on no error. If you call this
function asynchronously, it always returns 0 and any error code is returned
in the completionhook function. On Mac OS-based computers, it can return
low-level Communications Toolbox (CTB) errors. On Windows-based
computers, this can return driver errors. This function can also return an
unknown exception if the internal pipe object has reached a bad state. In
addition, since this function declares memory on the heap, it can return
memory errors. In certain conditions, this function will return
kPipeNotInitialized, kPipeNotReady, or kInvalidParameter.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-27

Note

You should be careful not to send more data than the
Newton communication buffers can handle. If you do, data
will be lost. One way to make sure is to have your Newton
application send an “all clear” message to the desktop
application once it has received one batch of data. Your
desktop application can then wait for that message before
calling CDPipeWrite again. Note that this is not a built-in
capability; you need to write the code for the “all-clear”
protocol yourself. ◆

If you want to encrypt your data, set up the encryption function using
CDEncryptFunction (page 2-18).

If you provide a completionhook parameter, it must be a procedure pointer to a
function that follows this definition format:

void CompletionHook(CommErr errorValue, long refCon) ;

The parameters to the function are:

errorValue An error code or zero. This is the same value that would
be the return value of CDPipeWrite in a synchronous
call.

refCon A reference constant you supplied to the original
function, for your own tracking purposes.

Pipe Maintenance 2
This group has some functions you can use to abort operations, to flush the
pipe to make certain that data has been written out, and to perform idle
processing. Most applications need to call the idle function, CDIdle,
periodically in their main event loop. The other functions are optional.

C H A P T E R 2

The Communication Desktop Integration Library

2-28 CDIL Reference

CDFlush 2

CommErr CDFlush (CDILPipe *pipe, CDILPipeDirection dir) ;

This function flushes the specified pipe, and ensures that all data is written
out to the appropriate driver. The pipe is cleared of all data. Read calls that
are waiting for data that is not yet in the pipe continue to wait.

If the input is bad, this function does nothing and returns an error code.
Otherwise, it returns zero.

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

dir This indicates the direction of the pipe to flush. The pipe
direction constants are shown in Table 2-7.

CDIdle 2

void CDIdle (CDILPipe *pipe) ;

This function performs required idle processing. You should call this
function periodically, generally from your program’s main event loop,
whenever the pipe is open.

CDIdle manages asynchronous calls and maintains the CDIL’s internal
buffer. There is no need to call it if you are certain that the Newton is not

Table 2-6 Pipe Direction Constants

Constant Meaning

kUndefinedDirection No defined direction; if you give this, the
function does nothing

kReadPipe Read pipe direction; if you give this, and
there are no read calls waiting for data, any
data coming from the Newton is discarded

kWritePipe Write pipe direction

kAllPipes Apply to read and write direction

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-29

sending any data. (You should be sure that no data is going to be received
because the CDIL’s internal buffer can easily overflow if data is received and
CDIdle is not called.)

How frequently you should call this depends on the amount of data to be
transferred and how often it is transferred, and needs to be determined by
experimentation. If you’re losing data, you can try calling CDIdle more
frequently. On the other hand, if you call CDIdle more than necessary, it can
slow your application.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

CDPipeAbort 2

CommErr CDPipeAbort (CDILPipe *pipe,
CDILPipeDirection dir) ;

This function cancels any pending pipe operations on the selected pipe
direction. If a connection is pending, the connection is rejected. While the
aborting process is going on, the pipe state is kCDIL_Aborting. When it is
finished, the state is kCDIL_Disconnected.

The parameters to the function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

C H A P T E R 2

The Communication Desktop Integration Library

2-30 CDIL Reference

dir This indicates the direction of the pipe to abort. The
pipe direction is defined by the constants shown in
Table 2-7.

This function returns an error code or zero on no error. On Mac OS-based
computers, it can return low-level Communications Toolbox (CTB) errors.
On Windows-based computers, this can return driver errors. This function
can also return an unknown exception if the internal pipe object has reached
a bad state.

Information Functions 2
You use the following functions to get and set information about the pipe.

CDBytesInPipe 2

CommErr CDBytesInPipe(CDILPipe *pipe,
CDILPipeDirection dir,
long *count) ;

This function obtains the current number of bytes in the pipe.

The return value is zero if everything is fine. If there is bad input or another
problem, this function returns an error code.

The parameters of this function are:

Table 2-7 Pipe Direction Constants

Constant Meaning

kUndefinedDirection No defined direction; if you give this, the
function does nothing

kReadPipe Read pipe direction

kWritePipe Write pipe direction

kAllPipes Apply to read and write direction

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-31

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

dir Gives the pipe direction. The pipe directions you can
use are shown in Table 2-8. Only one pipe direction may
be specified, so the kAllPipes value is not allowed in
calls to this function.

count The current number of bytes in the pipe.

CDConnectionName 2

char * CDConnectionName (CDILPipe *pipe) ;

This function returns the current connection name, which you set using
CDPipeInit (see page 2-10).

It does not return any error condition, but returns NULL if there is a bad
pipe state and the request can not be answered for some reason.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

Table 2-8 Pipe Direction Constants

Constant Meaning

kUndefinedDirection No defined direction; if you give this, you
always get a count of zero

kReadPipe Read pipe direction

kWritePipe Write pipe direction

C H A P T E R 2

The Communication Desktop Integration Library

2-32 CDIL Reference

CDGetConfigStr 2

char * CDGetConfigStr (CDILPipe *pipe) ;

This returns the configuration string that you set using CDPipeInit (see
page 2-10).

It does not return any error condition, but returns NULL if there is a bad
pipe state and the request can not be answered for some reason.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

CDGetPipeState 2

CDIL_State CDGetPipeState (CDILPipe *pipe) ;

This function returns the current state of the pipe. The state values are
shown in Table 2-1 on page 2-5. Table 2-2 on page 2-6 shows the state
transitions.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

CDGetPortStr 2

char * CDGetPortStr (CDILPipe *pipe) ;

This function returns the current port name, which you set using
CDPipeInit (see page 2-10). For example, for a Windows-based computer,
this might be "COM2".

It does not return any error condition, but returns NULL if there is a bad port
state and the request can not be answered for some reason.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-33

CDGetTimeout 2

long CDGetTimeout (CDILPipe *pipe) ;

This function returns the current timeout setting. The timeout is set by
individual CDPipeRead and CDPipeWrite calls.

A return value of -1 indicates there is no timeout.

It does not return any error condition, but returns zero if the connection has a
bad state and the request can not be answered for some reason.

The parameter to this function is:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

CDSetPipeState 2

CommErr CDSetPipeState (CDILPipe *pipe,
CDIL_State your_state) ;

This function allows you to set the state for a pipe to any value, so you can
set it to a value that has meaning to your program. This value should be a
positive number greater than the kCDIL_Userstate value. (See
“CDGetPipeState” on page 2-32.) If you have called this function to set your
own value, and then want to get communications-based state information
from CDGetPipeState, call this function and pass in a zero.

This function returns an error code or zero on no error.

The parameters to this function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

your_state The new state value.

Advanced Functions 2
The functions in this section perform advanced CDIL functions.

C H A P T E R 2

The Communication Desktop Integration Library

2-34 CDIL Reference

CDPad 2

void CDPad (CDILPipe *pipe, long length) ;

This function pads the write buffer to the boundary indicated by the
parameter. (That is, it fills the write buffer with leading 0 bytes until the
length of the data in the buffer is a whole-number multiple of length.) It will
do nothing if the input is bad, such as a negative number.

The parameters to this function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

length A number of bytes.

CDSetPadState 2

void CDSetPadState (CDILPipe *pipe, Boolean paddingOn) ;

This function turns automatic padding on or off. It is initially off. If you
haven’t called CDPad, padding is to four-byte boundaries.

Automatic padding is done only for write operations where the eom
parameter is set to true.

The parameters to this function are:

pipe The pointer to the internal pipe object returned by
CDCreateCDILObject.

paddingOn Indicates whether padding should be turned on (true)
or turned off (false or any other value).

Error Codes 2

Table 2-9 shows the error codes currently defined for the CDIL. You can also
get some Newton Connection errors, because the Newton uses some

C H A P T E R 2

The Communication Desktop Integration Library

CDIL Reference 2-35

Connection-related code to communicate with the DILs. Those are shown in
Table 2-10.

Table 2-9 CDIL Error Codes

Error Code
Numerical
Value Meaning

kCommErrNoErr 0 No error

kOutOfMemory -28701 Error on memory allocation

kBadPipeState -28702 DIL pipe was set to a bad state

kExceptionErr -28703 An unknown exception has
occurred

kQueueFullError -28704 The queue of asynchronous
calls is full; there can be no
more than 25 outstanding
asynchronous calls for a given
pipe

kPipeNotInitialized -28705 Pipe has not been initialized

kInvalidParameter -28706 Parameter passed in was
invalid

kPipeNotReady -28707 Pipe is not ready for operation

C H A P T E R 2

The Communication Desktop Integration Library

2-36 CDIL Reference

Table 2-10 Newton Connection Error Codes

Error Code
Numerical
 Value Meaning

kDAborted -28003 The communication
operation was aborted.

kDBadConnection -28009 Connection-related code on
the Newton encountered a
serious error while
establishing or in the course
of using a connection.

kDOutOfMemory -28017 Connection-related code ran
out of memory.

kDCantConnectToModem -28029 The modem isn’t
responding. It may not be
plugged in.

kDDisconnected -28030 The connection has been
torn down. Maybe there was
a line failure, maybe the
Newton timed out.

kDDisconnectInRead -28100 While reading,
Connection-related code
detected a disconnect.

kDReadFailed -28101 While reading,
Connection-related code
encountered an error.

kDCommToolNotFound -28102 The communications tool
you requested is not found
in the extensions folder.

kDBadModemToolVersion -28103 On Mac OS-based
computers, the DILs only
support Apple Modem Tool
1.5.1, currently.

3-1

C H A P T E R 3

The High-Level Frames
Desktop Integration Library 3

The High-Level Frames Desktop Integration Library (HLFDIL) helps
desktop applications:

■ Create C data structures that mimic Newton object formats

■ Receive data that a Newton sends in Newton object formats

■ Send data that appears to a Newton to be in Newton object formats

You need to use the CDIL, described in the previous chapter, to make the
connection with the Newton.

Although the HLFDIL is written in C++ and is based on C++ objects, you use
it by making calls to C functions. The FDCreateObject function creates a
C++ object, and returns a pointer to that object. You use that pointer in
calling other functions. (Those functions are actually “wrappers” for C++
methods.)

Figure 3-0
Table 3-0

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-2 General Concepts

General Concepts 3

HLFDIL supports the following features:

■ The HLFDIL takes C data types and converts them to Newton objects.

■ The HLFDIL produces flattened frames that can be sent over a
communications link and “inflates” flattened frames that are received over
a communication link. The frame is a structured type similar to a C
struct. Flattening is a process where a frame is reduced to a series of
bytes that can be sent over an output stream. You never see flattened
frames; the frame data is inflated before your application gets it.

Objects Handled by the HLFDIL 3
This section discusses the Newton object model and the corresponding
HLFDIL object model. See the NewtonScript Programming Language for more
information on Newton types.

The Newton Object Model 3

To use the HLFDIL, you create data structures in the desktop program that
correspond to Newton data structures. The individual pieces of Newton data
end up in variables or other reserved space in the desktop program. To
understand how you should set up these variables, you need to understand
how Newton data is structured.

The Newton object model uses two kinds of 32-bit values to represent objects:

■ immediate, in which the 32 bits contain data

■ reference, in which the 32 bits refer indirectly to an object; the object
referenced can be an immediate or another reference

You cannot directly transfer an immediate value to a desktop computer; all
immediate data that is transferred over a communications link is accessed
through a reference.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

General Concepts 3-3

References refer to four basic types of objects:

■ immediate, which is a piece of data. Examples of immediates are
characters and integers. Although 32 bits are allocated for immediate
objects, two bits are used for the class, so the data can be up to 30 bits long.

■ binary, which is a reference to a string of bytes. Examples of binary objects
are strings and symbols. In a desktop program, you would ignore the fact
that this is a reference, and represent it by a variable of the appropriate
type. A binary is also considered immutable, because when you assign a
new value to a binary, the original string of bytes is destroyed rather than
modified.

■ array, which is an array of values. The values can be references or
immediates. The HLFDIL defines an array object that represents the array;
you attach a C array or other reserved space to the object to hold the
array’s data.

■ frame, which is a set of tag/value pairs (called “slots”). The values can be
references or immediates. A frame is used in the same ways as a record is
used in other data representations. The HLFDIL defines a frame object
that represents the base object; you attach variables to that object to hold
the slot data.

When you send data between a Newton and a desktop computer, you
generally send frames, although you can also send arrays. The data is
contained in the slots of the frame or the elements of the array. Those slots or
elements can be references or immediates. If they are references, they can be
binaries, arrays, or frames. Those second-level arrays and frames can also
contain immediates or references. Ultimately, when you send a frame or
array, you send a tree structure, where the data is contained in the leaves of
the tree.

For example, consider a frame that is defined in NewtonScript this way:

aFrame := { slot1: $b,

slot2: { slot1 : 24,

slot2 : { slot1 : 16,

slot2 : $c},

slot3 : "FISH"} }

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-4 General Concepts

This defines the frame shown in Figure 3-1. It has a top level frame, aFrame,
that has two slots:

■ slot1, which contains the character b

■ slot2, which contains an unnamed frame.

Figure 3-1 Sample Frame on the Newton

The unnamed frame has three slots:

■ slot1, which contains the integer 24

■ slot2, which contains another unnamed frame

■ slot3, which contains a binary object that is the string "FISH"

The third-level unnamed frame has two slots:

■ slot1, which contains the integer 16

CDIL L 03

aFrame

2nd-level frame
immediate
(character)

Slot1

Slot1 Slot2 Slot3

Slot2

b

3rd-level frame
Slot1 Slot2

immediate
(integer)

24

String

binary (string)

F I S H

immediate
(integer)

16

immediate
(character)

c

C H A P T E R 3

The High-Level Frames Desktop Integration Library

General Concepts 3-5

■ slot2, which contains the character c

To get this frame from HLFDIL, you would create a set of objects that
“shadow” the NewtonScript object, as illustrated in Figure 3-2. You need to
create variables or reserve other space for the data that is contained in the
leaves of the tree. You create HLFDIL objects for the structures that make up
the branches of the tree.

Figure 3-2 HLFDIL Representation on the Desktop

Here is some C code that would create the structure that you need. You can’t
have unnamed objects in C, so the object that represents the first unnamed
frame is called fun (for first unnamed), and the object that represents the
second unnamed frame is called sun (for second unnamed).

DIL objects

aFrame

funtopSlot 1 (char)

funSlot 1 (int)

sunSlot 1 (int) sunSlot 2 (char)

sun funSlot 3 (char*)

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-6 General Concepts

Note

The code in this chapter does not show any error handling.
You should be sure to check for errors whenever you call
DIL functions; most of the functions return an error code or
kobjErrNoErr, which is 0. The possible HLFDIL errors are
shown in “Error Codes” beginning on page 3-25. ◆

//These are the variables for the “leaf” data

char topSlot1;

int funSlot1;

char* funSlot3;

int sunSlot1;

char sunSlot2;

//These are used to define the data lengths

int intlength = 4;

int charlength = 1;

int strlength = 4;

/*These are the objects for the branches of the tree.

The HLFDIL returns pointers to the objects, which you

store in DILObj* variables.*/

DILObj *aFrame, *fun, *sun ;

aFrame= FDCreateObject (kDILFrame, NULL);

fun= FDCreateObject (kDILFrame, NULL);

sun= FDCreateObject (kDILFrame, NULL);

/*The following calls “bind” the leaves and objects

together into the necessary structure.

First, put together the top-level frame with its slots.

Here is slot1, which is an integer.*/

fErr= FDbindSlot(aFrame,

"slot1",

(void *)&topSlot1,

C H A P T E R 3

The High-Level Frames Desktop Integration Library

General Concepts 3-7

kDILCharacter,

charlength, -1, NULL) ;

/* Here is slot2, which is the first unnamed frame,

represented by fun */

fErr = FDbindSlot(aFrame, "slot2",

fun,kDILFrame,0, -1, NULL);

/* The following binds the slots of fun */

fErr = FDbindSlot(fun,

"slot1",

(void*)&funSlot1,

kDILInteger,

intlength, -1, NULL);

fErr = FDbindSlot(fun, "slot2",

sun, kDILFrame,0, -1, NULL);

fErr = FDbindSlot(fun,

"slot3",

(void*)&funSlot3,

kDILCharacter,

charlength, -1, NULL);

/* The following binds the slots of sun */

fErr = FDbindSlot(sun,

"slot1",

(void*)&sunSlot1,

kDILInteger,

intlength, -1, NULL);

fErr = FDbindSlot(sun,

"slot2",

(void*)&sunSlot2,

kDILCharacter,

charlength, -1, NULL);

As you can see from this example, you associate a Newton frame with an
HLFDIL object by telling the HLFDIL to create an object of type kDILFrame.
You then make a series of function calls that describe the slots of the frame or

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-8 General Concepts

the elements of the array. This is called binding the Newton slots to the DIL
object; thus, the function you use to make the association is FDbindSlot.

You handle an array in a similar way. For example:

/*First reserve space for the array data. This assumes

the Newton array consists of 100 Newton integers*/

long CArray[100];

/*Then create a kDILArray object*/

DILObj* anArray;

anArray = FDCreateObject (kDILArray, NULL);

/*Finally, bind the array space to the array object*/

fErr = FDbindSlot(anArray, "",

(void *)&CArray,

kDILArray, 0, -1, NULL);

Arrays on the Newton can be named or anonymous. This array is
anonymous. If you wanted to use a named array, you would give a name
instead of an empty string as the second parameter for the FDbindSlot call.

As you can see, when you use the HLFDIL you bind your Newton data types
to HLFDIL objects. These HLFDIL objects are then used to:

■ receive information from the Newton

■ send information to the Newton

■ allow access to Newton data in the desktop application

Because you are responsible for binding the data, two types of data can be
received from the Newton: bound and unbound data.

Bound data is data that has a structure matching an HFDIL object that you
have created and defined.

Unbound data is data that was received from the Newton that does not
correspond to any known data binding. You can ignore this data or you can
retrieve it using the FDGetUnboundList function. See “Unbound Data” on
page 3-19 for more information.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

Using the HLFDIL 3-9

Slots, array elements, and immediates can have names associated with them.
There can only be one symbol with any particular name at a given level
within a given object. Thus, when you bind a slot with a particular name to a
DIL object, you cannot bind a slot with the same name to the same DIL object.

Every DIL object is internally assigned a class that is related to the
corresponding Newton class. That is the purpose of the symbols you can see
in the sample FDbindSlot calls; kDILInteger, for example, tells the
HLFDIL that the Newton class of that slot is Integer.

Using the HLFDIL 3

The HLFDIL is designed to be a flexible system that you can use in different
ways. This section describes the most common use of the HLFDIL.

The following describes creating HLFDIL objects and using the objects. The
sample object has a frame that contains two strings and a frame. The frame
that is contained in the top-level frame itself has two slots.

1. Define space for the individual pieces of Newton data. You can do this in
any way you wish. For example:

char fName[256] = "Mickey";

char lName[256] = "Duck";

char addr[256] = "123 Chenery Street";

char city[256] = "Anytown";

You could also use new to allocate space; it does not matter how the space
is reserved. There must be space reserved for each Newton slot,
immediate, or array element, but not for slots or array elements that
contain frames or arrays.

2. Initialize the HLFDIL. For example:

fErr = FDInitFDIL ();

This assumes you’ve already declared fErr as an objErr type value.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-10 Using the HLFDIL

3. Create one or more HLFDIL objects for your data. For example:

entry = FDCreateObject (kDILFrame, "") ;

name = FDCreateObject (kDILFrame, "") ;

These assume that you’ve declared entry and name as DILObj*
variables.
Notice that you create an object for the top-level frame, entry, and also
for the frame, name, that is contained in a slot of entry. You can see the
binding that places the name object into the entry object in the next step.

4. Bind the slots in your Newton structures to the new DIL objects. For
example:

fErr = FDbindSlot(name,"First",(void *)&fName, kDILString,

strlen(fName), 0, NULL);

fErr = FDbindSlot(name,"Last", (void *)&lName, kDILString,

strlen(lName),0,NULL);

fErr = FDbindSlot(entry, "Name", name, kDILFrame, 0,0,NULL);

fErr = FDbindSlot(entry, "Address", (void*)&addr, kDILString,

strlen(addr), 0, NULL) ;

fErr = FDbindSlot(entry, "City", (void *)&city, kDILString,

 strlen(city), 0, NULL);

Notice that the third binding call is different from the others; it binds the
name object (which represents a frame) in as a slot in the entry object.
These calls create a two-level structure, where there is a name frame that is
contained within an entry frame.

5. Open a pipe to the Newton. See the CDIL chapter for information on
initializing the CDIL and opening the pipe. Note that an application on
the Newton must be running initiate the connection. See Chapter 4 for
information on writing a Newton application for that purpose.

6. Once the pipe is open, you can send or receive frames. For example, this
sends a frame:

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-11

fErr = FDput(entry, kDILFrame, thePipe) ;

This call takes the data that is in the variables bound to entry (addr and
city and in the subframe name, fName and lName) and puts that data in
thePipe.

7. To get some data from the Newton call:

fErr = FDget(entry, kDILFrame, thePipe, 15, NULL, 0);

(See “FDget” beginning on page 3-16 for details of the parameters.) The
HLFDIL waits for data to come down the pipe. If the format of the data
matches that defined for entry, the data is placed in the variables bound
to entry. Any data whose format does not match entry or anything
bound to entry is placed on the unbound data list. You can get the
unbound data list by calling FDgetUnboundList.

8. When you are done, you need to use HLFDIL calls to destroy the objects
you have created and shut down the HLFDIL.

fErr = FDDisposeObject(name);

fErr = FDDisposeObject(entry);

fErr = FDDisposeFDIL();

9. You also need to shut down the CDIL. See the CDIL chapter for
information and examples for doing that.

HLFDIL Reference 3

The functions in this section are divided into related areas.

Setting Up and Shutting Down 3
Before beginning, you must call the FDInitFDIL function. Before shutting
down your application, you should call FDDisposeFDIL.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-12 HLFDIL Reference

FDInitFDIL 3

objErr FDInitFDIL (void);

This function initializes the underlying object system mechanism and
prepares the environment for using DILs.

FDDisposeFDIL 3

objErr FDDisposeFDIL (void) ;

This function shuts down the underlying object system mechanism and
cleans up the environment. You generally call it as part of application
shutdown.

Creating, Destroying, and Defining Objects 3
You need to create objects that represent Newton objects, and define the
structures of the objects to match the Newton structures that you need. When
you are done with the objects, you need to free the memory they use by
disposing of the objects.

FDCreateObject 3

DILObj *FDCreateObject (short objectType, char *objectClass);

This function tells the HLFDIL to create an object.

The return value is a pointer to the new object.

The parameters to this function are:

objectType The type of object that you want created. Give either
kDILFrame or kDILArray.

objectClass You supply this parameter if you have an array with a
class. It can be a string giving the Newton class of the
object you want created, which you use if you want to
create a class derived from one of the DIL object classes.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-13

FDDisposeObject 3

objErr FDDisposeObject (DILObj *Dobj);

This function tells the HLFDIL to dispose of an object. You should call this
when you are done with the object in order to free up the memory used by
the object.

The parameter to this function is:

Dobj A pointer to the object that you want to destroy.

FDbindSlot 3

objErr FDbindSlot (DILObj *Dobj, char *slotName, void
*bindVar, short varType, long maxLen, long curLen, char
*objClass) ;

This function binds something to a slot of a DIL object, so that it represents a
slot of a corresponding Newton object. The thing you bind is always either a
variable, a piece of allocated memory, or another DIL object.

The parameters to this function are:

Dobj The DIL object returned by FDCreateObject.

slotName This is the name of the slot to be bound. This is
required for frames and is required for arrays.

bindVar This is a pointer to a variable or allocated memory that
will hold the information for this slot. That memory is
bound to Dobj. If this slot contains a frame or array, you
must have already created a DILFrame or DILArray
object for that frame or array; you give a pointer to that
DILFrame or DILArray object and that DILFrame or
DILArray object is bound to this DIL object.

Unlike the other parameters of this function, the object
you give for bindVar is referenced during the
FDbindSlot call but is not used until you try to send
data from the slot to a Newton using FDput or get data
from a Newton and place it in the slot using FDget.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-14 HLFDIL Reference

When you use FDget or FDput, you must ensure that
the memory blocks bound to the DIL object are
allocated and fixed until the completion of FDget or
FDput. For instance, if you plan to use an asynchronous
FDput, the space allocated for the slots of the DIL object
must not be memory locations on the stack, in memory
locations that might move (such as unlocked Mac OS
memory handles), or in locations of memory used by an
FDget or an FDput before the first FDput is completed.

varType This is the data type of this slot; see Table 3-1 on
page 3-22.

maxLen This is the maximum length of this data slot. If you’re
binding a frame or array, give zero for this.

curLen This is the current length of the data in the slot. -1
means that the current length should be considered to
be the same as maxLen. If you’re binding a frame or
array, this should be zero or -1. If you’re binding
another type, other than a binary, this should be -1. For
a binary, you can use this value if the bound space is
essentially a buffer that is not currently full, and you
can give the current size. The HLFDIL changes the
current length value dynamically when data is received
from the Newton.

objClass This is the class of the object used in the Newton object
system. For example, the class of a binary object could
be "Real". Use NULL to specify no class.

This function returns an error code or a zero if there is no error.

Here is an example binding call:

fErr = FDbindSlot(obj, "TheSlot", (void *)&myData, kDILString, 7,

-1, NULL) ;

This call creates a slot named TheSlot in the DIL object pointed to by obj.
The data of the slot is in a variable called myData. The data is a string with a

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-15

maximum length of 7 bytes. The curLen value is set to -1, which specifies
that the current length is the same as the maximum length. The object has a
NULL class value.

Getting Data To and From the Newton 3
The functions in this section allow you to get objects from an input stream
and put objects into an output stream. Before you call these functions, you
need to set up a pipe. You use the CDIL to set up a pipe; see the CDIL
chapter for more information.

Objects are transmitted through a stream in a special format called a
flattened frame. HLFDIL automatically converts objects to and from
flattened frame format, so you do not have to deal with that format.

FDput 3

objErr FDput(DILObj *Dobj, short objectType, CDILPipe*pipe);

This function sends the given Newton object through the pipe specified.

The parameters to this function are:

Dobj The DIL object that has the data you want to send to the
Newton. This is the pointer returned by
FDCreateObject, to which you have bound the
variables containing the data by using FDbindSlot
calls.

objectType The type of the object. Give either kDILFrame or
kDILArray. This is almost always kDILFrame, because
that is the basic type used for transport to the Newton.

 pipe This is the CDIL pipe to use in communications with the
Newton.

This function returns an error code upon encountering an error and a zero on
no error.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-16 HLFDIL Reference

Note

You should be careful not to send more data than the
Newton communication buffers can handle. If you do, data
will be lost. One way to make sure is to have your Newton
application send an “all clear” message to the desktop
application once it has received one batch of data. Your
desktop application can then wait for that message before
calling FDput again. Note that this is not a built-in
capability; you need to write the code for the “all-clear”
protocol yourself. ◆

Here is an example FDput call:

fErr = FDput(obj, kDILFrame, thePipe) ;

This puts the data that is in the variables bound to obj into the pipe. You
must have opened and initialized the pipe first.

FDget 3

objErr FDget (DILObj *Dobj, short objectType, CDILPipe
*pipe, long timeOut, CDILPipeCompletionProcPtr
completionHook, long refCon);

This function reads data from the pipe specified. The data is delivered in the
variables bound to Dobj. Data that does not match the format of Dobj is
placed on the unbound data list. (See “Unbound Data” on page 3-19.)

FDget can be called synchronously or asynchronously. When you call it
synchronously, the function does not return until it gets data or the operation
times out or otherwise fails. When you call FDget asynchronously, the
function returns immediately. In your function call, you supply a callback
function that the HLFDIL calls when the operation is completed.

The parameters to this function are:

Dobj The DIL object pointer that you have used in
FDbindSlot calls to describe the kind of data you want.

objectType The type of the object. Give either kDILFrame or
kDILArray.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-17

pipe This is the CDIL pipe to use in communications with the
Newton.

timeout The timeout to be used in this read. Timeouts are
measured in milliseconds on Windows-based
computers and ticks (sixtieths of a second) on
Mac OS-based computers. 0 indicates that you want the
default timeout, which is 30 seconds. -1 indicates no
timeout.

 completionHook This function can be called synchronously or
asynchronously. If you supply a completionHook value,
the function is called asynchronously, and
completionHook is a pointer to a callback function that is
called upon receipt of data. (See information following
the parameter list.) Supply NULL if you want this
function to be called synchronously.

refCon This is a reference constant to be passed to the callback
function. It has no meaning to the HLFDIL, and is
provided so that you can give information to your
callback function, if you have one.

When called synchronously, this function returns an error code upon
encountering an error and a zero on no error. When called asynchronously, it
always returns zero, and any error code is returned to the completionHook
callback function.

If you provide a completionHook parameter, it must be a procedure pointer to
a function that follows this definition format:

void CompletionHook(CommErr errorValue,
void *pData, Size Count,
long refCon, long lFlags) ;

Any data returned is in the data variables you supplied to the DIL object
used to call FDget.

The parameters to the function are:

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-18 HLFDIL Reference

errorValue This is an error code, if there was an error, or zero, if
there was no error.

pData This is NULL, since the data is returned in the data
variables you supplied. (FDget actually calls the
function CDPipeRead, so the callback function follows
the format used by that call. That call normally returns
the data in space pointed to by pData.)

Count This is the number of bytes successfully transferred in
the function.

refCon This is a reference constant you supplied to the original
function, for your own tracking purposes.

lFlags This is 0 or 1, with an lFlags value of 1 indicating that an
end-of-message indicator was reached.

When receiving data from the Newton, if data is encountered that is not in
the set of bound data, this data is added to the unbound list. See “Unbound
Data” on page 3-19 for information.

Here is an example FDget call that assumes you’ve opened the pipe pointed
to by thePipe:

fErr = FDget(obj, /* Points to the object that

describes data you want */

kDILFrame, /* Says that obj is a frame*/

thePipe, /* Points to the pipe that

 connects to the Newton*/

15000, /* Indicates a 15 second

timeout*/

NULL, /*Specifies there is no callback

 function, so this call is

 synchronous*/

0 /*Since no callback function was

 provided, this value is not used.*/

);

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-19

This call tries for 15 seconds to get data from thePipe and, if it gets some,
puts it in the variables bound to obj or on obj’s unbound data list. No
callback function is given, so this is a synchronous call.

You can also make an asynchronous call:

fErr = FDget(obj, kDILFrame, thePipe, 15000, proc, 0);

This call returns immediately, and, when data is available from thePipe or
the operation times out or otherwise fails, the HLFDIL calls the procedure
proc.

Cyclical Frames 3

When you are getting unbound data (see the next section), you can get a
cyclical frame; that is, a frame that contains itself. (There is currently no way
to define a frame like that using FDbindSlot, so the only way you can get a
cyclical frame is in the unbound data list.)

When the HLFDIL finds a cyclical frame, it sets bit 8 of the internalFlags
field of the slotDefinition record. You can, therefore, recognize that you
have a cyclical frame by checking that bit.

Unbound Data 3

When you call FDget and the pipe has data that have definitions that do not
match any definitions bound to the DIL object used in the FDget call, the
HLFDIL places the data on the unbound data list. There can be one unbound
data list for each DIL object.

The unbound data list is actually a slotDefinition struct. The
slotDefinition struct has the following fields:

varType This is a short value that gives the data type of this
variable in the desktop application; see Table 3-1 on
page 3-22.

var This is a void* value that gives the actual variable
pointer.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-20 HLFDIL Reference

length This is an unsigned long value that gives the length
of this string, symbol, or binary variable (not used for
other types).

maxLength This is an unsigned long value that gives the
maximum length of this string, symbol, or binary
variable (not used for other types).

slotName This is a char* value that gives the slot name for this
variable.

oClass This is a char* value that gives the class of this object,
if it has one.

slotType This is a short value that gives the data type of this
slot on the Newton; currently, this is the same as the
varType.

truncSize This is an unsigned long value that gives current size
of a truncated object.

childCnt This is a long value that gives the number of child
nodes. Child nodes contain the data from slots of the
Newton frame.

peerCnt This is a long value that gives the number of peer
nodes (that is, nodes at the same level as this node).

children This is a slotDefinition* that gives the child nodes.

next This is a slotDefinition* that gives the peer nodes.

internalFlags This is a set of flags for internal use. The one flag that
you may be interested in is bit 8; if that bit is set, then
this is a cyclical frame. (See “Cyclical Frames” on
page 3-19.)

The following functions are used to get and free the unbound data list.

To see how this works, suppose that you got the frame shown in Figure 3-1
on page 3-4. Here is the NewtonScript definition of that frame.

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-21

aFrame := { slot1: $b,

slot2: { slot1 : 24,

slot2 : { slot1 : 16,

slot2 : $c},

slot3 : "FISH"} }

Suppose you hadn’t defined the DIL object structure shown in the text in that
section, but you defined a DIL object obj that you used to call FDget. You
could get the unbound data list and use that to get the values b and "FISH"
like this:

slotDefinition* unBound = FDGetUnboundList(obj);

// Get the character from slot1

char bee = *unBound.children.var;

// Get the string from slot3 of the second unnamed frame

char* fish = unBound.children.next.children.next.next.var;

If you don’t know the type and location of the data before hand, you can use
the varType field to determine what kind of data you are dealing with.

FDGetUnboundList 3

slotDefinition *FDGetUnboundList (DILObj* Dobj) ;

The return value of this function is the structure that contains the unbound
data for Dobj.

The parameter to this function is:

Dobj The DIL object that you passed to FDGet.

FDFreeUnboundList 3

objErr FDFreeUnboundList (DILObj* Dobj,
slotDefinition *list) ;

This function frees the memory held by the list of unbound data.

The parameters to this function are:

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-22 HLFDIL Reference

Dobj The DIL object that you passed to FDGetUnboundList.

list The unbound list returned by FDGetUnboundList.

DIL Variable Types 3
The HLFDIL uses the type symbols shown in Table 3-1. The table shows the
C types that you can use to represent the various Newton types. The Newton
types you actually have may be subclasses of types listed here; if you have a
subclass, you can treat it in the same way as the parent type.

Table 3-1 HLFDIL Variable Type Symbols

Newton Type Symbol Desktop Type

Array (Anonymous
Array)

kDILPlainArray DILArray object
that is bound to a
C array or other
space with
sufficient
memory

Array (Named Array) kDILArray DILArray object
that is bound to a
C array or other
space with
sufficient
memory

Boolean kDILBoolean Boolean (see
Table 1-1 on
page 1-2)

Char (The standard
Newton character is a
two-byte Unicode
character)

kDILUnicodeCharacter short

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-23

Char (Although the
Newton always uses
two-byte characters, if
you know that you
have one of the 128
ASCII characters
(character code values
0-127), you can
represent them with
1-byte C char values;
you may be able to do
that with character
code values over 127,
but the platform-
specific translation
tables determine what
Unicode character
results from values
over 127, so you may
not get consistent
results)

kDILCharacter char

Frame kDILFrame DILFrame object

Frame that defines a
small rectangle, (such
as viewBounds) with
four slots, one for each
side, using one
unsigned byte for each
slot, in this order: top,
left, bottom, right.

kDILSmallRect long (each byte
of the long has a
value from one
slot of the frame)

immediate
(Indeterminate
Immediate type)

kDILImmediate long

Table 3-1 HLFDIL Variable Type Symbols (continued)

Newton Type Symbol Desktop Type

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-24 HLFDIL Reference

Integer kDILInteger long (note that
Newton
Integers are 30
bits long, so you
should be careful
you do not use
all 32 bits of the
long)

Large binary object
more than 32 kilobytes
(this is a currently
treated the same as a
kDILBinaryObject,
so you cannot
currently have objects
larger than 32
kilobytes)

kDILBLOB Not currently
available

nil (a special
immediate)

kDILNIL nil (see
Table 1-1 on
page 1-2) or NULL

Real (8 bytes) or other
small binary object
(less than 32 kilobytes)

kDILBinaryObject double or other
corresponding
type with
sufficient space
for the data

String (a kind of
binary object)

kDILString char*

Symbol (a kind of
binary object used as
an identifier)

kDILSymbol char*

Table 3-1 HLFDIL Variable Type Symbols (continued)

Newton Type Symbol Desktop Type

C H A P T E R 3

The High-Level Frames Desktop Integration Library

HLFDIL Reference 3-25

Error Codes 3
HLFDIL functions return error codes, using the type objErr, which is
actually a long value. Table 3-2 has the error codes.

Table 3-2 HLFDIL Error Codes

Error Code
Numerical
Value Meaning

kobjErrNoErr 0 No error

kObjectHeapNoMemory -28801 Out of heap memory

kTempNoMemory -28802 Out of other memory

kUnknownSlot -28803 Slot not known

kSlotSizeExceeded -28804 Slot defined size exceeded

kSlotSizeRequired -28805 A required slot size is missing

C H A P T E R 3

The High-Level Frames Desktop Integration Library

3-26 HLFDIL Reference

NewtonScript Facilities 4-1

C H A P T E R 4

The Newton Side of the DIL
Connection 4

In order to use the DILs you need to have an application on the Newton that
initiates a connection with your desktop application and sends and receives
data over the connection. You will probably need to do some Newton
programming in order to have an application that is specialized for your
purpose. You write Newton applications in NewtonScript using the Newton
Toolkit (NTK).

This chapter deals with the most common case, where you want to add the
ability to send and receive frames and data between a Newton application
and a DIL application.

NewtonScript Facilities 4

There are two parts to the Newton side of a DIL connection: internal code
and user interface code.

Figure 4-0
Table 4-0

C H A P T E R 4

The Newton Side of the DIL Connection

4-2 NewtonScript Facilities

Internal Code 4
To connect to the CDIL, you create a protoEndpoint object and send it
messages. The protoEndpoint object handles the Newton side of the
connection.

The Communications chapter of the Newton Programmer’s Guide: documents
the protoEndpoint proto and has the information you need to connect to a
DIL application and send and receive data. Here are the methods you will
use from that chapter:

■ Connect. You use this method to begin the connection. The connection
with a DIL is always initiated from the Newton side. When the CDIL pipe
has the state kCDIL_Listening and the Newton calls Connect, the
state of the CDIL pipe changes to kCDIL_ConnectPending. When the
DIL calls CDPipeAccept, the state changes to kCDIL_Connected. (See
Table 2-1 on page 2-5 for details of all the pipe states; Table 2-2 on page 2-6
details the state transitions.) The protoEndpoint also has a Listen
method; you do not use that with the CDIL, because the Newton always
initiates the connection.

■ Output. You use this method to send data to the CDIL.

■ OutputFrame. You use this method to send data to the HLFDIL.

■ FlushOutput. You use this to clear the pipe after calling Output or
OutputFrame.

■ SetInputSpec. You use this method to specify the format of input data.

■ Input. You use this method to receive data.

■ Disconnect and Dispose. These close a connection.

There are additional methods that allow you to flush the buffer, to get
incomplete information, to make AppleTalk connections, and to do other
tasks.

User Interface Code 4
You can use the NetChooser function or use other protos to create a user
interface for your connection. NetChooser displays a view that allows the

C H A P T E R 4

The Newton Side of the DIL Connection

NewtonScript Facilities 4-3

user to choose various connection options. You can then get those options
and use them in the Connect method.

C H A P T E R 4

The Newton Side of the DIL Connection

4-4 NewtonScript Facilities

IN-1

Index

A

aborting pipe operations 2-29
accepting a connection

CDPipeAccept function 2-10
example 2-4

ADSP connection type 2-12
anonymous array 3-8
Apple Modem Tool 2-36
AppleTalk 2-11
AppleTalk ADSP connection 2-12
application instance 2-8
array

definition of Newton type 3-3
example of defining 3-8
named and anonymous 3-8

asynchronous mode
definition 2-16
limit of calls 2-16

B

big-endian 2-21, 2-24
binary

definition of Newton type 3-3
binding

explanation 3-8
Boldface type

meaning vii
Boolean type

definition 1-2
bound data

definition 3-8

breaking a connection 2-15
buffer size default 2-12
byte-swapping 2-21, 2-24

C

C++ 2-1
callback function

definition 2-16
canceling pipe operations 2-29
CDBytesInPipe

description 2-30
CDConnectionName

description 2-31
CDCreateCDILObject

description 2-8
example 2-3

CDDecryptFunction
description 2-16

CDDisposeCDIL
description 2-9

CDDisposeCDILObject
description 2-9

CDEncryptFunction
description 2-18

CDFlush
description 2-28

CDGetConfigStr
description 2-32

CDGetPipeState
description 2-32
example 2-4

CDGetPortStr

I N D E X

IN-2

description 2-32
CDGetTimeout

description 2-33
CDIdle

description 2-28
CDIL

cleaning up 2-9
general architecture 2-2
high level components 2-2
initializing 2-8

example 2-3
shutting down 2-4
state transitions 2-5
using 2-3

CDIL and HLFDIL
differences 1-1

CDILCompletionProcPtr type
definition 1-2

CDILDecryptionProcPtr type
definition 1-2

CDILEncryptionProcPtr type
definition 1-3

CDIL error codes 2-34
CDILPipeCompletionProcPtr type

definition 1-3
CDILPipe type

definition 1-3
CDInitCDIL

description 2-8
example 2-3

CDPad
description 2-34

CDPipeAbort
description 2-29
need to initialize after calling 2-11

CDPipeAccept
description 2-10
example 2-4

CDPipeDisconnect
description 2-15
need to initialize after calling 2-11

CDPipeInit

description 2-10
CDPipeListen

description 2-13
example 2-3

CDPipeRead
decryption 2-16
description 2-20

CDPipeWrite
description 2-24
encryption 2-18

CDSetApplication
description 2-8

CDSetPadState
description 2-34

CDSetPipeState
description 2-33

Chenery Street 3-9
class of a Newton object 3-9
cleaning up the CDIL 2-9
CommErr type

definition 1-3
Communications Toolbox (CTB) errors 2-8, 2-10,

2-12, 2-15, 2-16, 2-22, 2-26, 2-30
configuration information errors 2-13
configuration string 2-32
connection

accepting pending 2-10
breaking 2-15
listening for 2-13
refusing a pending connection 2-29

connection name 2-31
connection types 2-12
Connect NewtonScript method 4-2
Courier typeface

meaning viii
Creating a pipe

example 2-3
creating a pipe 2-8
creating HLFDIL objects

example 3-6

I N D E X

IN-3

D

data
bound and unbound, defined 3-8

Decryption 2-16
default buffer size 2-12
definitions of Newton types 3-2
desktop types

correspondence with Newton types 3-22
destroying a pipe 2-9
device driver errors 2-8
DILObj type

definition 1-3
disconnecting

need to initialize after 2-11
disconnecting a pipe 2-15
Disconnect NewtonScript method 4-2
Dispose NewtonScript method 4-2
driver cleanup errors 2-9
driver errors 2-10, 2-15, 2-16, 2-22, 2-26, 2-30
driver setup errors 2-13
Dynamic Linked Libraries 1-1

E

Encryption 2-18
error codes

CDIL 2-34
Newton Connection 2-36

errors
in asynchronous calls 2-16

exception
definition 2-23

F

false
definition 1-3

FDbindSlot
description 3-13
example 3-6, 3-10

FDCreateObject 3-10
description 3-12

FDDisposeFDIL
description 3-12
example 3-11

FDDisposeObject
description 3-13
example 3-11

FDFreeUnboundList
description 3-21

FDget
decryption 2-16
description 3-16
example 3-18

FDGetUnboundList
description 3-21

FDInitFDIL
description 3-12
example 3-9

FDput
description 3-15
encryption 2-18
example 3-11, 3-16

flattened frames 3-2
flushing the pipe 2-28
FlushOutput NewtonScript method 4-2
frame

definition of Newton type 3-3
example of a NewtonScript frame 3-3
example of defining using HLFDIL 3-6

freeing the CDIL 2-9
functions

CDConnectionName 2-31
CDCreateCDILObject 2-8
CDDecryptFunction 2-16
CDDisposeCDIL 2-9
CDDisposeCDILObject 2-9
CDEncryptFunction 2-18
CDFlush 2-28

I N D E X

IN-4

CDGetConfigStr 2-32
CDGetPipeState 2-32
CDGetPortStr 2-32
CDGetTimeout 2-33
CDIdle 2-28
CDInitCDIL 2-8
CDPad 2-34
CDPipeAbort 2-29
CDPipeAccept 2-10
CDPipeDisconnect 2-15
CDPipeInit 2-10
CDPipeListen 2-13
CDPipeRead 2-20
CDPipeWrite 2-24
CDSetApplication 2-8
CDSetPadState 2-34
CDSetPipeState 2-33
FDbindSlot 3-13
FDCreateObject 3-12
FDDisposeFDIL 3-12
FDDisposeObject 3-13
FDFreeUnboundList 3-21
FDget 3-16
FDGetUnboundList 3-21
FDput 3-15

H

HLFDIL and CDIL
differences 1-1

I

immediate
definition of Newton type 3-2, 3-3

initializing after calling CDPipeAbort or
CDPipeDisconnect 2-11

initializing a pipe

CDPipeInit function 2-10
example 2-3

initializing the CDIL 2-8
Input NewtonScript method 4-2
Italic typeface

meaning viii

K

kAllPipes 2-28, 2-30
kBadPipeState 2-35
kCDIL_Aborting 2-6, 2-7, 2-29
kCDIL_Busy 2-6, 2-7
kCDIL_Connected 2-6, 2-7, 2-10
kCDIL_ConnectPending 2-6, 2-7, 2-10

example 2-4
kCDIL_Disconnected 2-6, 2-7, 2-11, 2-15, 2-29
kCDIL_InvalidConnection 2-5, 2-6
kCDIL_Listening 2-5, 2-7, 2-13

example 2-4
kCDIL_Startup 2-5, 2-6, 2-11
kCDIL_Uninitialized 2-5, 2-6, 2-11
kCDIL_Userstate 2-6
kCommErrNoErr 2-35
kDAborted 2-36
kDBadConnection 2-36
kDBadModemToolVersion 2-36
kDCantConnectToModem 2-36
kDCommToolNotFound 2-36
kDDisconnected 2-36
kDDisconnectInRead 2-36
kDefaultBufferSize 2-12
kDefaultTimeout 2-14
kDILArray 3-15, 3-22
kDILBinaryObject 3-24
kDILBLOB 3-24
kDILBoolean 3-22
kDILCharacter 3-7, 3-23
kDILFrame 3-6, 3-15, 3-23

example of defining 3-10

I N D E X

IN-5

kDILImmediate 3-23
kDILInteger 3-7
kDILNIL 3-24
kDILPlainArray 3-22
kDILSmallRect 3-23
kDILString 3-10, 3-24
kDILSymbol 3-24
kDILUnicodeCharacter 3-22
kDOutOfMemory 2-36
kDReadFailed 2-36
kExceptionErr 2-35
kInvalidParameter 2-23, 2-26, 2-35
kMacRomanEncoding 2-22, 2-25
kObjectHeapNoMemory 3-25
kobjErrNoErr 3-25
kOutOfMemory 2-35
kPCRomanEncoding 2-22, 2-25
kPipeNotInitialized 2-9, 2-23, 2-26, 2-35
kPipeNotReady 2-23, 2-26, 2-35
kQueueFullError 2-35
kReadPipe 2-28, 2-30, 2-31
kSlotSizeExceeded 3-25
kSlotSizeRequired 3-25
kTempNoMemory 3-25
kUndefinedDirection 2-28, 2-30, 2-31
kUnicode 2-22, 2-25
kUnknownSlot 3-25
kWritePipe 2-28, 2-30, 2-31

L

listening for a connection
CDPipeListen function 2-13
example 2-3

little-endian 2-21, 2-24

M

memory errors 2-8
MNP (Microcom Networking Protocol) 2-12
Modem connection type 2-12

N

named array 3-8
netChooser NewtonScript function 4-2
Newton Connection error codes 2-36
Newton object model 3-2
Newton types

correspondence with desktop types 3-22
nil

definition 1-3
number of bytes in a pipe 2-30

O

OutputFrame NewtonScript method 4-2
Output NewtonScript method 4-2

P

pending connection
refusing 2-29

pipe
aborting operations 2-29
accepting pending connection 2-10
closing 2-15
creating 2-8
creation

example 2-3
destroying 2-9
flushing 2-28

I N D E X

IN-6

idle processing 2-28
initializing example 2-3
initializing with the CDPipeInit function 2-10
listening example 2-3
number of bytes in, obtaining 2-30
reading from 2-20
virtual 2-1
writing to 2-24

pipe direction 2-30
pipe direction constants 2-28
pipe state

definitions 2-5
getting current 2-32
setting 2-33
transitions 2-5

port name 2-32
protoEndpoint 4-2

R

read and write pipe directions, specifying 2-30
reading from a pipe 2-20
read pipe direction, specifying 2-30
reference

definition of Newton type 3-2
reference constant 2-19
refusing a pending connection 2-29
representing Newton types using HLFDIL 3-22

S

Serial connection type 2-12
SetInputSpec NewtonScript method 4-2
shutting down the CDIL 2-4
shutting down the HLFDIL 3-11
Size type

definition 1-3
slotDefinition structure 3-19

state transitions of pipe 2-5
static linkable libraries 1-1
string

example of defining 3-10
swap size 2-20, 2-24
synchronous mode

definition 2-16

T

timeout
for listening 2-14
for reading 2-22
for writing 2-26
getting current value 2-33

true type
definition 1-3

typefaces
meanings vii

types of connections 2-12

U

unbound data
definition 3-8
obtaining 3-21

Unicode conversion 2-21

V

virtual pipe 2-1

I N D E X

IN-7

W

write pipe direction, specifying 2-30
writing data to a pipe 2-24

I N D E X

IN-8

	About This Book
	Conventions Used in This Book
	Special Fonts

	Overview
	Data Types and Values
	Table�1-1 Data Types and Values (continued)

	The Communication Desktop Integration Library
	General Concepts
	Figure�2-1 CDIL High Level Components

	Using the CDIL
	CDIL Reference
	CDIL Pipe States
	Table�2-1 Pipe States (continued)
	Table�2-2 Pipe State Transitions (continued)

	Setting Up the Pipe
	CDCreateCDILObject
	CDInitCDIL
	CDSetApplication

	Destroying the Pipe and Cleaning up the CDIL
	CDDisposeCDILObject
	CDDisposeCDIL

	Making the Connection
	CDPipeAccept
	CDPipeInit
	Table�2-3 Connection Types

	CDPipeListen

	Breaking the Connection
	CDPipeDisconnect

	Getting and Sending Data
	CDDecryptFunction
	CDEncryptFunction
	CDPipeRead
	Table�2-4 Encoding Table Values

	CDPipeWrite
	Table�2-5 Encoding Table Values

	Pipe Maintenance
	CDFlush
	Table�2-6 Pipe Direction Constants

	CDIdle
	CDPipeAbort
	Table�2-7 Pipe Direction Constants�

	Information Functions
	CDBytesInPipe
	Table�2-8 Pipe Direction Constants�

	CDConnectionName
	CDGetConfigStr
	CDGetPipeState
	CDGetPortStr
	CDGetTimeout
	CDSetPipeState

	Advanced Functions
	CDPad
	CDSetPadState

	Error Codes
	Table�2-9 CDIL Error Codes
	Table�2-10 Newton Connection Error Codes�

	The High-Level Frames Desktop Integration Library
	General Concepts
	Objects Handled by the HLFDIL
	The Newton Object Model
	Figure�3-1 Sample Frame on the Newton
	Figure�3-2 HLFDIL Representation on the Desktop

	Using the HLFDIL
	HLFDIL Reference
	Setting Up and Shutting Down
	FDInitFDIL
	FDDisposeFDIL

	Creating, Destroying, and Defining Objects
	FDCreateObject
	FDDisposeObject
	FDbindSlot

	Getting Data To and From the Newton
	FDput
	FDget
	Unbound Data

	DIL Variable Types
	Table�3-1 HLFDIL Variable Type Symbols (continued)...

	Error Codes
	Table�3-2 HLFDIL Error Codes�

	The Newton Side of the DIL Connection
	NewtonScript Facilities
	Internal Code
	User Interface Code

	Index

