
Preliminary Traffic Cop Specification

This paper provides an early look at the Desktop Integration Library’s Traffic Cop
(TCOP) and explores the early implications for developers who may plan to use this
application.

The traffic cop will be an application (or device driver, if required by Copland) that
will act as a serial port arbitrator and application manager for DIL applications. This
is a simple application that has two very rudimentary modes : (1) set-up, and (2)
management. These modes will probably be exclusive.

TCOP Set-up Mode
This mode will consist of a simple dialog that displays a list of applications that can
be launched by the TCOP. The user can add or delete applications from this list. In
adding, the user chooses a menu item or an ADD button and will be presented with
a standard file dialog that will allow selection of an application to add. This
application’s full name (including path) will be added to the list. The user can also
choose to select a nickname for this application. The nickname will generally be the
name of the application without the path, and perhaps other information. For
example, the full name might be “Eggman:Applications:Newton Connection Kit for
Macintosh” and the nickname might be “Newton Connection” or “NCK.” To delete
an application, a user might select the application to delete and choose a menu item
or a DELETE button.

While in the set-up mode, TCOP will also allow the user to select “Preferences…”
from the menu. This will bring up a dialog that will allow selection of automatic
listening on launch and specification of communications port options.

TCOP Management Mode
In this mode, TCOP will be monitoring or arbitrating serial ports, or managing
applications. These functions are best described by presenting a typical simple
traffic cop scenario:

1. At set-up, a user selects applications that can be launched by the TCOP
and sets some basic preferences. This data will be written out to resources,
Windows registry or a preferences file.

At TCOP launch, the TCOP will determine the ports available, but will only
grab ports to listen if the user preferences indicate that the TCOP should listen
for incoming calls or connections at all times.

At this point, there are two possible usage models.

2a. In the first model, the user can launch one or more TCOP-aware
applications. These applications will simply make DIL calls to a TCOP driver
by specifying “TCOP:<connectiontype>” in the CDPipeInit call, where

<connectiontype> is a valid serial communications transport. For example,
an application might call CDPipeInit with the connection type “TCOP:MNP.”
This tells the DIL libraries that the traffic cop is to be used and MNP serial
is the low-level transport. The CDPipeInit call will register these applications
as ACTIVE with the TCOP. When the DILs disconnect, this will deregister
this application. If an application that is registered crashes, the TCOP will first
attempt to talk to the application through the callbacks provided by the
application. If these fail, the TCOP will assume the application has died, and
will launch the application (as in scenario 2b).

2b. In the second model, the TCOP will wait for a request for an application
and will launch that application upon request.

To accomplish either model, the Newton application dials the phone. When
TCOP answers, the Newton application will then send a TCOP
kTCOPRequestForApplication message to the TCOP. All TCOP messages will
consist of a four-byte prefix(‘TCOP’), a four byte message identifier (in this
case, ‘TRFA’), a four-byte data length field (if there is data accompanying this
type of message), and data (in this case, the application full name or
nickname). For example, to launch or talk to NCK by the nickname “NCK”,
the Newton application should send “TCOPTRFA\0\0\0\3NCK”

In the first model, the TCOP will set the appropriate CDIL_State
(kCDIL_ConnectPending) in the space of the appropriate application (if
synchronous), or will call back to the application (if asynchronous) to let this
application know that there has been a connection. In the second model, the
TCOP will launch the application, wait for the application to register and go to
a listening state, and then will perform the above steps. If the application
launch fails, the TCOP will send back the message kTCOPApplicationFailed,
along with a four byte error code, if any (“TCOPTAFD\0\0\0\4\0\0\0\1”).
If launch is successful, the TCOP will return kTCOPSuccess. This will also let
the Newton application know that it is talking to a TCOP and not directly to
the application. A TCOP imitator (an application that will accept TCOP
messages, but is not a TCOP) should return kTCOPNotHere to let the
application know that TCOP messages will not cause a problem with this
application. A non-response or an error response should be taken by the
Newton application as a sign that there is no TCOP or TCOP-aware
application running.

3. Once the application is connected, it will read and write using the
CDPipeRead and CDPipeWrite methods just as it would using another
transport. A Newton application will also just read and write data as
usual. The TCOP will examine the first four bytes in the incoming (from the
Newton to the desktop) stream ONLY for any TCOP messages, and then pass
the data on to its destination. The desktop application will not be required to
send the TCOP messages, The desktop application will be sending implicit

messages to the TCOP though DIL calls.

4. When the Newton application is ready to disconnect from the current
desktop application, it can either send a kTCOPDisconnect message or
simply issue another kTCOPRequestForApplication message. This will allow
the TCOP to inform the desktop application (through DIL state changes) that
it should clean up. The TCOP does not have to wait for the first application to
disconnect to launch the next application and start talking to it , since the first
application does not control the physical port. Once the first application has
issued the last normal CDIL call (CDDisconnect), the TCOP is free to kill this
application, if it was launched by the TCOP.

Newton developers need to create a globally available endpoint that
others can share,with a global usage semaphore to indicate
whether the endpoint is in use currently. A TCOP-aware Newton
application should NOT always create a new endpoint at start-up or close the
endpoint at disconnect, as is commonly done today. Instead, on start-up that
application should check to see if the global endpoint is in use. If it is not, it
should instantiate the endpoint as is done today. On shutdown, the Newton
application should ask the user whether or not to close the endpoint. If the
user chooses to stay connected, the closing application will reset the
semaphore, and close without shutting down the communications. The user
will then probably launch another Newton application. This new
application will need to check the global semaphore and use the endpoint
that is in the global slot instead of instantiating a new endpoint. There may
be an application that will perform these tasks for packages in the future.

Messages:

The following are the four-byte identifiers proposed for the TCOP:

kTCOPPrefix ‘TCOP’
kTCOPRequestForApplication ‘TRFA’
kTCOPApplicationFailed ‘TAFD’
kTCOPSuccess ‘TCOK’

 kTCOPNotHere ‘TCNH’
kTCOPDisconnect ‘TDSC’

