
Finite State Machines. A model for Newton Communications.

Communications between the Newton and other devices tends to be a
complex task. Between managing the endpoint, and handling the interactions
with the user there is a lot going on. Modeling the communications using a
Finite State Machine provides a way of simplifying the task of designing a
communications based application.

What exactly is a Finite State Machine
A Finite State Machine (FSM or simply state machine) is a collection of

states, events, actions and transitions between states. Here we see an example
of a simple FSM:

Start

End

State1

State2

Event2

Event1

Event2

Event1

Action2

Action3

Action4

Action1

Figure 1: Simple Finite State Machine

This FSM has four states (Start, State1, State2 and End) and responds to
two different events (Event1 and Event2). The actions occur when moving
from one state to the next. For example, if the FSM is in the Start state and
Event1 occurs then Action1 will be performed as the FSM is moving to State1.
It is often easier to draw a State Transition Diagram (like Figure 1) than it is to
describe in words (and often code) what the actions are.

Given a State Transition Diagram it is easy to create a State Transition
Table like the following:

Event
Current State Event1 Event2

Start (Action1, State1) (Action3, State2)
State1 - (Action2, End)
State2 (Action4, End) -
End - -

The State Transition Table is the key to creating FSMs for Newton
Communications. With a State Transition Table, NTK and protoFSM,
building Finite State Machines is actually quite easy.

protoFSM
ProtoFSM, protoState and protoEvent are a set of user-prototypes that can

be used to easily construct Finite State Machines. The state machine, the states
and the events are laid out as if a view was being created. The state machine is
the parent, with the states as children. Each state contains event children for
each event that the state responds to. The event contains an action function
and the symbol of the next state to transition to after the action has
completed.

The state machine itself has a few additional slots. The vars slot is a frame
that contains any additional variables that the actions may need to use. An
endpoint is a good example of something to put into the vars frame because
many of the action procedures will need to access the endpoint in a
Communications based state machine. There are also slots that reflect the
current state, the current event and the current action procedure.1

Once a state machine is set up, using it is simply a matter of calling the
doEvent method of the machine. DoEvent takes two parameters. The first is
the symbol of the event, the second is an array of additional parameters for
the action procedure. The action procedure is invoked in the context of the
state machine, with the current state, event and additional parameters passed

1 ProtoFSM is a Newton DTS Sample that should be available by press time. You can find
ProtoFSM and the accompanying sample code on AppleLink and the Newton WWW Site. The
next Newton Developer CD will also contain this sample

in. After the action procedure returns the state will be changed according to
the nextState defined for the event.

Why use a state machine?
Many Newton applications that perform communications have two main

‘tasks’ operating essentially in parallel.2 The main ‘tasks’ of a
communications application are user-interface management (and in general
the primary operation of the application) and communications management.
An example of this separation is the Llama-Talk sample from Newton DTS.
This application has user-interface elements to send various kinds of objects
over an ADSP connection. The user-interface elements (buttons) queue up
requests to send the objects and an idle-script actually performs the
communications.

A state-machine runs in a similar fashion. The user-interface elements
will typically post events to the state machine based on what the user has
requested. This includes things like initiating a connection, disconnecting,
sending items, etc. etc. The response to the event (the action procedure) will
perform the actual endpoint calls asynchronously with the completion scripts
also posting events to indicate the success or failure of the action.

An Example of a state machine
To help illustrate all this, let’s have a look at a state machine for doing

simple endpoint setup and tear down. The endpoint will establish a serial
connection, send and receive simple items, and do a disconnect in response to
a user action, or whenever an error occurs. First we need to draw a State
Diagram to show the behavior of the endpoint state machine:

2 The word ‘task’ should not be confused with the idea of any sort of multi-tasking. Though
Newton 2.0 OS is a multi-tasking (or more properly multiprogramming) operating system, this
is not available to NewtonScript-based applications.

Start Instantiated Binding

Unbinding
Bound

Connecting
Discon-
necting

Connected
Output

In
Progress

Instantiate

Dispose

Bind

Error

Unbind
Complete

Bind
Complete

Unbind

Disconnect
Complete

Connect

Connect
Complete

Disconnect

Output

Output
Complete

Error

Error

Input
Arrived

Error

Error

The actions on each
transition have been
left off for the sake of
brevity.

The next
step is to
construct a
State
Transition
Table from
this diagram.
Again, for the
sake of
readability,
the table is
being
presented
more as an
outline. This
helps match
the form the
state machine
will take in
NTK.

• Start State:

•
Instanti
ate
Event:

•
N
e
x
t
S
t
a
te: Instantiated

• Action: Create an endpoint frame in vars, call ep:Instantiate()

• Instantiated State:

• Bind Event:

• NextState: Binding

• Action: call ep:Bind asynchronously, the completionScript will
post either Error, or BindComplete

• Dispose Event:

• NextState: Start

• Action: call ep:Dispose() and throw away the endpoint frame.

• Binding State:

• BindComplete Event:

• NextState: Bound

• Action: none

• Error Event:

• NextState: Instantiated

• Action: Post a Notify that an error occurred. Could also post a
Dispose event from here!

• Bound State:

• Connect Event:

• NextState: Connecting

• Action: call ep:Connect asynchronously, the completionScript
will post either Error or ConnectComplete

• Unbind Event:

• NextState: Unbinding

• Action: call ep:Unbind asynchronously, the completionScript
will post either Error or UnbindComplete

• Connecting State:

• ConnectComplete Event:

• NextState: Connected

• Action: Setup the inputSpec. The inputScript will post an
InputArrived event, the completionScript will post an
InputError event if an error occurs.

• Error Event:

• NextState: Bound

• Action: Post a Notify that an error occurred. Could also post an
Unbind event from here!

• Connected State:

• InputArrived Event:

• NextState: Connected.

• Action: Handle the input somehow.

• Output Event:

• NextState: OutputInProgress

• Action: Call ep:Output asynchronously. The completionScript
will post either an OutputComplete or an Error event.

• Disconnect Event:

• NextState: Disconnecting

• Action: Call ep:Disconnect with the cancel option selected. The
completionScript will post either Error or DisconnectComplete.

• OutputInProgress State:

• OutputComplete Event:

• NextState: Connected

• Action: none

• InputArrived Event:

• NextState: OutputInProgress

• Action: Handle the input somehow

• Error event:

• NextState: Disconnecting

• Action: Post a Notify that an error occurred. Call ep:Disconnect
with the cancel option selected. The completionScript will post
either Error or DisconnectComplete.

• Disconnecting State:

• DisconnectComplete Event:

• NextState: Bound

• Action: none

• Error Event:

• NextState: Bound

• Action: Post a Notify that an error occurred. Could also post an
Unbind event from here!

• Unbinding State:

• UnbindComplete Event:

• NextState: Instantiated

• Action: none

• Error Event:

• NextState: Instantiated

• Action: Post a Notify that an error occurred. Could also post a
Dispose event from here!

From this table it is easy to lay out the elements of the state machine in NTK.
The final thing worth noting is that you can pass parameters to the action
procedure along with the event. For example, the Output event could take an
additional parameter: the item to be output. The error event could take an
additional parameter: an exception frame, etc. In general it is best to make the
actions as simple as reasonably possible, and to try to capture as much of the
behavior in the states as possible.

Summary
Finite State Machines are a simple and elegant way to model the behavior

of applications. Referring to a State Diagram it is easy to see if all
contingencies have been handled. ProtoFSM provides a nice clean way to

specify state machines for Newton applications. Communications protocols
are often specified in terms of a state machine. Being able to easily transcribe a
protocol definition into a finite state machine conveniently will help reduce
the development time, and reduce the complexity of the resulting
communications code.

Communications on the Newton platform is complex enough, using state
machines is a clean way of reducing that complexity to a more manageable
level. Because state machines lend themselves better to performing
communications asynchronously, applications will gain a performance
advantage by using state machines. Synchronous communications calls
involve a fair amount of overhead.

