
To appear in the Newton Technology Journal, 3/97 2/9/97

Speech Recognition for the MessagePad
2000
by Stephen Breit and Bent Schmidt-Nielsen,
Dragon Systems, Inc. 320 Nevada St., Newton, MA 02160

Introduction
The MessagePad 2000 has two key ingredients which make Newton, for
the first time, a viable platform for portable speech recognition. One is
the powerful 160 MHz StrongARM microprocessor, and the other is high
quality, 16-bit audio input. With the MessagePad 2000 as an enabler, the
potential benefits of providing speech recognition on Newton devices are
clear. First, in mobile situations, a speech user interface (SUI) can free
one or both hands for other uses, such as handling material or operating
equipment. Second, navigating a complex application can be much
faster with speech than with a pen because speech input need not be
constrained by the tree-like structure of a GUI. And third, as an input
modality, speech is much faster than handwriting. The use of speech
input on small devices such as the Newton platform is particularly
compelling because they may either lack keyboards, or have keyboards
that are too small to use efficiently. Or putting it more succinctly
“Computers keep getting smaller, but our fingers stay the same size”.

By now you are conjuring up visions of holding a Newton device and
having it recognize and understand whatever you say. Providing such a
capability is, of course, our ultimate aim, but we can safely say that this
is at least a few years away. In the mean time, we can offer constrained
speech recognition capabilities which will be a valuable addition to
many applications. Users will be able to say phrases and sentences in a
natural way, i.e. without pausing between words, but the vocabulary and
word order will be constrained to a pre-defined grammar. For example,
for an inventory application, the user will be able to say “Part number
one five three seven”, or, more generally, “<qualifier><digit_string>“,
where <qualifier> might be “Quantity”, “Part number”, “UPC”, etc. and
<digit_string> is a series of 1 to 12 digits. Examples of other applications
which might benefit from this type of speech recognition capability
include medical record keeping, insurance appraisal, meter reading,
rental car returns, sports data acquisition, and law enforcement. And
there will be many others.

In this article, we describe our efforts to port one of Dragon’s speech
recognition engines to Newton, and the capabilities which we expect to
offer to Newton software developers. Since this is the first time that

Copyright 1997, Dragon Systems, Inc. 1

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

anyone has done speech recognition on the Newton platform, and
speech recognition will undoubtedly be new to many readers, we begin
with an overview of a typical speech recognition system. This provides a
basis for understanding the capabilities of the speech recognition system
that we have ported to Newton. Next, we describe some of the
challenges to doing the port, and how we have overcome them. Then,
we describe a grammar for an inventory application. And finally, we
provide some code snippets which illustrate how you include speech
recognition in an application.

Overview of a Speech Recognition System
The majority of commercially available speech recognition systems rely
on Hidden Markov Models (HMMs) and have the key components shown
in Figure 1. To explain how this system works, we begin at the lower left
with the microphone. The analog signal from a microphone is converted
to a digitized wave form by the audio system hardware. This audio
input is processed by the software audio analysis module which converts
it to a form suitable for speech recognition. To do this, the audio
analysis module applies a series of transforms, starting with an FFT, and
outputs a frame of parameters every 20 ms. Typically, each frame
contains 12 to 36 parameters. The audio analysis module also may
apply a the speech detection algorithm to detect transitions from silence
to speech, and from speech to silence. A collection of consecutive frames
which begins and ends with silence is known as an utterance.

Figure 1: The components of a typical speech recognition system.

Before describing what the recognizer does with the utterance, we must
describe the other key inputs. The acoustic models are built by
collecting a set of utterances of similar sounds and assembling them into

Copyright 1997, Dragon Systems, Inc.2

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

what amounts to a prototypical utterance for each sound. The
individual sounds can be either elemental sounds called phones (hence
phonetic modeling) or entire words (hence whole-word modeling). The
accuracy of a speech recognition system is largely dependent on the
quality of the acoustic models. Models that are intended for use by speakers who
have not trained the recognizer are said to be speaker independent. Models that are intended
for a specific speaker, and have generally been trained by that speaker, are said to be speaker
dependent. Both types of models can be further adapted to a particular
speaker, and this generally improves recognition accuracy.

If phonetic models are used, the dictionary provides a translation
between word spellings and their pronunciations in terms of phones. If
whole-word models are used, the dictionary simply provides a mapping
between a word and its acoustic model. The dictionary and acoustic
models are usually supplied with the speech recognition system, but it is
up to the application developer to supply the grammar. The grammar
defines the sequences of words that can be recognized. Some examples of
grammars are given later in this article.

Simply put, the recognizer processes each utterance and returns the
sequence of words that was most likely to have produced the utterance.
Going into a bit more detail, the application specifies an active
grammar, either from a predefined data structure, or by building it “on
the fly”. Then the application tells the audio analysis module to begin
processing audio input. When the audio analysis module detects the
start of an utterance, the recognizer begins its job. To start with, the
recognizer hypothesizes all words that could have started the utterance
based on the active grammar. It then scores each frame in the utterance
against these hypotheses, and the score decreases with each successive
frame. The score is the log probability that the acoustic model could
have produced the observed utterance; thus, the hypothesis with the
highest score had the highest probability of producing the observed
audio input. As the recognizer scores successive frames against all active
hypotheses, it prunes hypotheses whose scores are much lower than the
best-scoring hypothesis in order to save computations.

The Speech API provides a well defined interface by which the
application interacts with the recognition engine. The complexity of the
Speech API depends on the recognition capabilities being offered. It may
have as few as 20 entry points for simple command and control
capabilities, or more than 200 calls to support dictation.

Speech Recognition Capabilities for
Newton

With some background information in hand, we can now describe the
capabilities of the speech recognition engine that we have ported to the

Copyright 1997, Dragon Systems, Inc.3

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

Newton. Dragon has a number of recognition engines in its stable; we
chose one that is known internally at Dragon as C-REC. C-REC was
originally developed to run on a digital signal processor (DSP), so it has a
small memory footprint, and the code is relatively small and portable.

C-REC can recognize phrases and sentences that are spoken continuously,
i.e. in a natural way without pausing between words. Though C-REC
imposes no restrictions on the size of the vocabulary or the grammar, it
is best suited to “small-vocabulary” recognition tasks with simple
context-free grammars. The vocabulary and grammar can be context
sensitive. “Small vocabulary” in this case means that the grammar
perplexity, or average branching factor, should be approximately 50 or
lower in order to achieve real-time performance. The actual vocabulary
size may be quite large (thousands of words). Higher perplexity
grammars can be used if a response time of a second or more is
acceptable.

C-REC works with either whole-word or phonetic models. To build
speaker-independent whole-word models, we need one sample of each
word from many (100 or more) different male and female speakers. This
is a significant disadvantage relative to phonetic models where, once the
models are built, any word for which we have a phonetic pronunciation
can be recognized. On the other hand, experiments with C-REC on
limited vocabularies have shown that whole-word models are more
accurate than phonetic models. And whole-word models require less
computation, at least when the active vocabulary is relatively small.
Due to these considerations, plus some additional factors which are
discussed in the next section, we chose speaker-independent, whole-word
models for the initial port of C-REC to the Newton. We envision offering
a software developer’s kit which includes whole-word, speaker-
independent models for a “standard” vocabulary. With a judicious
choice of words, this standard vocabulary should be sufficient for a
number of applications. If a particular application requires words that
are not in the standard vocabulary, we will record samples of the
additional words and build a set of custom acoustic models for that
application.

We are inevitably asked about recognition accuracy. The answer to this
question depends on many factors, including the size of the active
vocabulary, the grammar, the quality of the microphone, the amount of
background noise, and the quality of the acoustic models. Just to give
some idea, we have estimated from test results that, in quiet conditions
at least, continuously spoken strings of 5 digits should be recognized
completely correctly 98% of the time.

Copyright 1997, Dragon Systems, Inc.4

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

Implementation on the MessagePad 2000
Next, we describe some details of how we ported C-REC to the MessagePad
2000. Our first step was to measure the quality of the audio system,
since we have found a wide variation in the quality of the audio
hardware on notebook computers. As we expected, the signal from the
built-in microphone is not of sufficient quality to do accurate speech
recognition. But we were pleased to discover that we got a high quality
audio signal when we connected a head-mounted, noise-canceling
microphone to the MessagePad via a small, custom-built amplifier and
the line-in pins on the Newton connector.

C-REC is written in C, so we have been using a beta version of the Newton
C/C++ Toolkit to port it to the Newton platform. The Newton C/C++
Toolkit does not allow any global or static variables. Therefore, we had
to remove all such variables from C-REC, and store pointers to persistent
data in a binary object. This proved to be a laborious process because
the Newton C/C++ compiler only indicates that there are global symbols,
but does not give their names.

Before porting the audio analysis module, we had to convert from
floating-point to fixed-point operations because the StrongARM does not
have floating-point instructions. We verified that there was no loss in
recognition accuracy from this change. When we ran the fixed-point
audio analysis on the Newton device, we found that it required only 6%
of the CPU cycles. This was very encouraging because the audio analysis
module must run continuously whenever the microphone is “turned
on”, whereas the recognizer runs only when there is speech input to be
processed.

In order to port the recognizer itself, we had to find a way to store and
load the acoustic models. One approach is to store the models in a
binary object, and pass this binary object to the recognizer. Due to the
NewtonScript garbage collection, the binary object would periodically
move around in the memory system. This would require patching up
pointers to data in the binary object each time the recognizer is called.
An alternative approach, which was expedient and gave better
performance, was to compile the acoustic models into the code. The
disadvantages of this approach are that it takes a lot of memory to do
the compilation, and that the code must be recompiled each time we
change the acoustic models. As of this writing, we are compiling the
models into the code. The memory required for the code alone is
approximately 100 kB. For most applications, the additional memory
required for the acoustic models will be between 250 kB and 1MB.
During recognition, the recognizer requires an additional 250 kB of
dynamically allocated memory.

Copyright 1997, Dragon Systems, Inc.5

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

A Speech Interface for an Inventory
Application

Suppose you want to develop a speech-enabled application for taking
inventory in a store or warehouse. Let’s assume that four pieces of
information are needed to inventory an item: 1) its location in the
warehouse, expressed as a row number and a section number, 2) its 6-
digit number, 3) its color, and 4) the quantity of identical items. You
design a view which has fields for entering this information. You would
like the user to be able to open a new inventory view by voice and enter
data in the fields in any order.

To illustrate the design of the speech interface, we need to introduce a
pseudo code for expressing a grammar. The grammar has three basic
entities: words, rules, and groups. A word may be either a single word or
a phrase consisting of two or more words. We denote a word simply be
spelling out the word. We denote a phrase by putting underscores
between the component words. If we want the recognizer to return text
that is different than the spelling of the word, we enclose the return text
in parentheses following the word. For example, “two(2)” indicates that
the recognizer should return the character “2” when it hears a word that
sounds like “two”.

A group is a collection of words or rules. We denote a group by a
comma-separated list of words or rules enclosed in curly brackets. We
denote the name of a group by text enclosed in angle brackets. For
example,
<global> = {next_item, previous_item, go_back, start_over, enter_data};

defines a group named “global” in which any of the phrases listed on the
right-hand side can be recognized. Each phrase counts as one word. We
purposely called this rule “global” because these words will always be
active in the inventory application. For example, the user will always be
able to return to the previous field on the view by saying “go back”.

To enter numbers between 1 and 99, it is useful define the following
groups (we use ellipses to fill out an obvious sequence of words):

<one2nine> = { one(1), two(2), three(3),..., nine(9)};
<digit> = { zero(0), oh(0), <one2nine>};
<ten2nineteen> = {ten(10), eleven(11), twelve(12),...,nineteen(19)};
<twenty2ninety> = {twenty(20), thirty(30), forty(40),...,ninety(90)};

Now we need to introduce rules. A rule is a sequence of words and/or
states. We denote the name of a rule by text enclosed in square brackets.
For example, the rule

[twentyone2ninetynine] = <twenty2ninety><one2nine>;

Copyright 1997, Dragon Systems, Inc.6

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

allows users to say numbers between “twenty-one” and “ninety-nine”,
excluding multiples of 10. Finally, the group

<number> = {<one2nine>, <ten2nineteen>, <twenty2ninety>,
<twentyone2ninetynine>};

allows users to say, in a natural way, any number between one and 99.
Note that the <number> group is defined in terms of previously defined
groups.

For the inventory application, it will also be useful to define the group

<color> = {black, white, red, blue, green, yellow, orange, purple}

and the following rules:

[location] = row <number> section <number>;
[part_number] = part_number <digit><digit><digit><digit><digit><digit>;
[color] = color <color_name>;
[quantity] = quantity <number>;

Finally, we define a group which encompasses all of the rules for the
inventory application:
<inventory_view> = {[location], [part_number],
 [color], [quantity], <global>};

When this rule is active, the user may enter data in any field on the
form at any time, return to the preceding field if there is an error in it,
clear the entire form, return to the previous item, or move on to the next
item.

This example gives some idea of how you define a grammar. There are a
total of 47 words in this example (each phrase counts as one word). We
expect that all of these words will be part of our standard vocabulary.

Programming Example
This example shows how you incorporate speech recognition in an
application:

Initializing the speech recognition system
The first step is to instantiate the speech recognition system.

SpeechRecog := {
 // put additional variables or overrides here
 _proto: protoDragonSpeechRecognizer;
}
local theView := self;
SpeechRecog:setUp(theView, inputSource, errorCallBack);

The inputSource argument determines whether the system takes audio
input from the built-in microphone, or line-input. You must provide a
function for error callbacks. It is desirable to execute this code when

Copyright 1997, Dragon Systems, Inc.7

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

your application starts up, otherwise the user may experience a brief
delay while the systems allocates memory for the audio input buffers.

Defining the grammar
At this point, you need to define the grammar from which you want to
recognize. We have not implemented the calls for defining a grammar in
NewtonScript yet, so we cannot offer any code fragments here. Suffice it
to say that there will be a set of calls for defining groups and rules as
they are described in the previous section. And there will be calls for
iterating the words in the dictionary, and checking whether a particular
word is in the dictionary.

Starting the audio analysis module
The next step is to start the audio analysis module:

SpeechRecog:startAudio();

This could have been done transparently by setUp(), but there is a good
reason for giving you control over when it starts. Once started, the audio
analysis module must run continuously. This draws power and, more
importantly, overrides the power-down features of the MessagePad 2000.
You need to start the audio analysis module well before you expect
speech input, because it takes almost a second for the MessagePad 2000
to charge up a capacitor in the audio system hardware.

Starting and stopping the recognizer
You define one or more callback functions for processing the results from
the speech recognizer. For example, you may have a different callback
function for each view or context. The transcription parameter is a
text transcription of what was said (it must be permitted by the
grammar, of course). The grammarInfo parameter is a reference to a
NewtonScript frame which allows you to determine which rule was
recognized.

resultCallBack := func(transcription, grammarInfo)
 begin;
 setValue(resultView, ‘text, transcription);
 end;

You start the recognizer:

SpeechRecog:startRecog(resultView, resultCallBack, grammarGroup);

Once started, the recognizer starts recognizing whenever a new utterance
is available and does a callback when it is finished recognizing the
utterance. You must stop the recognizer when you want to change the
grammar or as the first step in the process of shutting down the speech
recognition system:

SpeechRecog:stopRecog();

Stopping the audio analysis module

Copyright 1997, Dragon Systems, Inc.8

Speech Recognition for the MessagePad 2000
(to appear in the Newton Technology Journal, 3/97)

After shutting down the recognizer, you shut down the audio analysis
module:

SpeechRecog:stopAudio();

Shutting down the speech recognition system
Finally, unlike an ordinary NewtonScript program, you must free the
resources used by the recognition system before assigning nil to the
Recog variable:

SpeechRecog:shutDown();
SpeechRecog := nil;

Conclusions
As a result of work by Bent Schmidt-Nielsen, Maha Kadirkamanathan,
and Shaun Keller, a small-vocabulary, continuous-speech recognizer is
now running on the Newton platform. As of this writing (early February
‘97), it recognizes strings of continuously spoken digits and returns a text
transcription within one-half second after the user has finished speaking.
It is very exciting to get this responsiveness from a computer that is
powered by a few AA cells! In the immediate future, we plan to
supplement the digits vocabulary with a set of standard words and
phrases such as those listed in the inventory application example.
Further down the road, we will consider adding other features such as
phonetic models, and the ability to adapt the speaker-independent
models to an individual speaker.

Judging from the enthusiastic response we have already received from
Newton developers who have heard about our efforts, there is a lot of
pent-up demand for speech recognition on the Newton platform. We
are planning to offer a tool kit which will enable Newton developers to
speech enable their applications. The tool kit will include an AutoPart, a
user “proto”, documentation of the NewtonScript API, a microphone, and
a preamplifier. Built into the AutoPart will be acoustic models for a
standard vocabulary. If the standard vocabulary does not meet the
needs of a particular application, we are prepared to develop custom
acoustic models for that application. Beyond the inventory application
that is suggested in this article, we believe that the type of capability we
have described will be useful for many other applications. We look
forward to hearing your requirements for speech recognition on the
Newton platform.

Copyright 1997, Dragon Systems, Inc.9

