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Introduction
This series of articles focuses on information useful to those who
have mastered the basics of the Newton data storage APIs.  They
assume the reader is already familiar with NewtonScript and the
Newton data storage concepts in the Newton Programmer's Guide
(NPG) and has some experience writing Newton applications.

In part 1 of this series we talked about how soups index their
entries, and how to create efficient searches.  There we asserted that
reading in entries was slow.  This article gives the details behind
what happens when entries are read and written.  Knowing how this
works can help you write the most efficient applications.

Correction
In part 1 of the series, the first paragraph in the first section, "Under
the Hood," showed incorrect calls to soup:AddXmit and
soup:AddToDefaultStoreXmit.  Both calls were missing a second
argument, which is the change symbol for the notification.

Caveat Coder
Warning: This article contains undocumented, unsupported details
regarding how the current release of the Newton OS caches data
storage objects.  The information is presented because I believe that
understanding what's going on helps.  Knowledge like this makes it
easier to design efficient code, easier to debug problem code, and
may give you ideas for your own designs.  This information is not
presented so that you can write code that relies on the current
design.  Do not do this.

At least one developer made this mistake, creating a 1.x application
that used an undocumented slot in a cursor.  That application
subsequently failed because of changes made for the 2.0 release of
the OS.  What was worse was that the operation in question could
have easily been done in a supported way.

There is almost always a supported way to do what you
want.  Look for it!

Entries
As explained in part 1, entry data isn't kept in the user store in a
form that is directly accessible to NewtonScript.  There isn't anything
like a frame on the user store.  Instead, strings are written one place,



the rest of the frame is serialized and written to another place, and
tagged and indexed slots are stored still elsewhere for efficient
searching.

When you call the Entry method of a cursor, you get a frame built up
from the data on the user store.  We generally blur the distinction
between the data on the store and the frame that temporarily exists
in memory, calling both things an entry.  When a distinction needs
to be made, the frame in the NewtonScript heap is called the cached
entry frame or simply cached entry.

At some point the OS must read data from the store and create the
cached entry frame.  Obviously, this must be done before any data in
the entry can be accessed.  However, it's often the case that an entry
needs to be referenced but no data from that entry is needed.  When
you move a cursor using a method like Next, Prev, Move, or Reset the
cursor "points at" an entry, but at this point nothing may need data
from the entry.  It would be a waste of time and memory to do the
work of creating the cached entry frame as soon as a cursor pointed
to an entry.

Entries are Fault Blocks
A soup entry is really a special object called a fault block, which is
a special class of object composed of two parts.  One part is a simple
NewtonScript frame often called the cached frame.  The other part is
a handler which knows how to create and save the cached frame.

Most of the OS treats a fault block as if it were a simple frame.  When
a slot is accessed the OS checks to see if the cached frame exists, and
if so the slot is simply looked up in that frame.  When a slot is added
or changed it works the same way, if the cached frame exists the slot
is set in that frame.

When the cached entry doesn't exist, a fault occurs and a message is
sent to the handler, which creates or faults in the cached frame.
Once this is complete and the cached frame exists, slot access
continues as described above.

In the case of soup entries, the cached frame is the cached entry
frame.  It's what the rest of your code reads and modifies when you
work with soup entries.  When a cursor accesses a new entry, a fault
block gets created with a handler that knows how to retrieve the
data, but the cached frame does not yet exist.  It's not until the first
time some code looks at the slots in the entry that the cached entry
frame gets created.  This explains why validTests are potentially
slow.  The validTest function typically looks at slots in the soup



entry, which reads in the entry data from the user store
(deserializing the entry's elements) and creates the cached frame
(allocating space from the NewtonScript heap.)

The overhead of reading in the soup entry is incurred the
very first time a slot in the entry is touched.

There are functions which work with a entry that do not cause the
entry to be faulted in.  Most of the global functions that work with
entries, such as EntryUniqueID, EntryModTime, or
EntryRemoveFromSoupXmit don't cause the cached entry frame to be
created.

You can read more about entry caching in the Newton Programmer's
Guide section on data storage.  Fault blocks (and how to create your
own versions) are covered in the section on Mock Entries.

It's now easy to understand how some of the other entry
management functions work.  It is the cached entry frame that holds
all modifications made to a soup entry.  These modifications don't
become permanent until EntryChangeXmit is called.  EntryChangeXmit
causes the fault block's handler to write the data in the cached frame
to the user store.  IsSoupEntry checks to see if the object passed is a
fault block for soups, rather than a regular frame.

EntryUndoChanges works by throwing away the cached entry frame.
The next time someone needs to access data in the entry, the entry
handler faults again, creating a new cached frame from the
(unmodified) data on the user store.

AddXmit and the other entry adding methods are an unusual case.
When you call an add method, you pass a regular NewtonScript
frame that will be turned into a soup entry.  The add method does
the necessary work to write the data in the frame to the user store,
but it then has to somehow turn that frame into a fault block, so that
any references to that frame now refer to the soup entry (the fault
block.)

These add methods are very unusual functions which effectively
modify one of their arguments.  Note the distinction: lots of functions
modify the contents of a passed frame, array, string, or other binary
object, but all function calls in NewtonScript are call-by-value, so
actually modifying an argument isn't otherwise possible.
ReplaceObject is what actually accomplishes this trick.  The add
methods uses ReplaceObject to change any and all references to the
passed frame into references to the fault block.



Entry Management
With the 2.0 release of the Newton OS, some new functions were
added to allow you to more closely manage the entry's cached frame.

AddFlushedXmit does exactly the same thing that AddXmit does with
respect to creating the fault block, writing the data to the store,
updating indexes, etc.  The difference is the fault block that's created
will not have its cached frame set.  There are also flushed versions of
the add methods for union soups.

As part of adding a soup entry with AddXmit, the OS does two
important things.  It walks the frame being added, writing the data
to the store, and it uses EnsureInternal to create the cached frame,
so that the requirement that data in soup entries is safe from card
ejection is met.  This EnsureInternal step can be expensive.  Since
AddFlushedXmit doesn't create the cached frame, it can skip the
EnsureInternal step.  The process of reading in an entry from the
user store (faulting it in) guarantees the cached frame will be safe
from card ejection.

AddFlushedXmit saves both time and memory, and can be a real win
if you know that nothing is going to cause the entry to be faulted in
right away.  On the other hand, if things are set up so that an entry is
used or modified right after it's created, AddFlushedXmit doesn't help,
since the first access will cause the cached frame to be created.  You
should experiment with AddXmit and AddFlushedXmit when creating
entries.  If you're building up a soup from static data,
AddFlushedXmit may be a lot faster.  If you're creating entries one at
a time as the user enters data, the difference may not be as
noticeable.

EntryFlushXmit and EntryChangeXmit are similar in the same way.
EntryChangeXmit does an EnsureInternal on the cached frame, then
writes the data to the soup.  EntryFlushXmit skips the
EnsureInternal step, writes the data to the soup, then discards the
cached frame so that the entry must be read in again next time it's
needed.

Use EntryFlushXmit if you need to keep a reference to the entry
around for some reason, but have no plans to touch data in the entry
for a while.  The big win comes from avoiding EnsureInternal.  Keep
in mind that EntryFlushXmit doesn't actually reclaim the
NewtonScript heap space used by the cached entry frame, it just
removes the only reference to it.  The garbage collector still has to do
cleanup, the same cleanup that it would normally do if you no longer
referenced the entry itself (that is, the fault block.)  Making sure you



don't keep references to unneeded entries or cursors may pay off
more than trying to be tricky with EntryFlushXmit.

Other Caches
You may have noticed that each time you call GetStores, you get an
array containing the same objects, one per store.  That is, the OS
doesn't create new store objects each time you make this call, but
rather appears to return an existing object.  This is hardly surprising;
there are a lot of objects that exist even when your application isn't
using them, like global variables, other applications, or the root view.

However, you may not have noticed that each time you call
store:GetSoup or GetUnionSoup to get a particular soup, you also get
the same object.  Once again, the OS appears to return an existing
object rather than create one each time you call the function.  This
also isn't very surprising, because clearly there is only one instance
of a soup on a given store, and naturally you expect to get that one
each time.

When you perform a Query, you get a cursor object.  In this case, if
you call the Query method a second time with the same arguments,
you don't get the same object, but rather a new different cursor.
Again, this makes perfect sense, each cursor needs to have its own
"pointer" into the soup, and if you always got the same cursor for the
same query, there would be no way to have them reference different
entries.

When you call cursor:Entry, you get a soup entry.  If you navigate
some other cursor to the same place in the soup, and call
cursor2:Entry, you get the identical entry object—the same fault
block.  This makes sense too, since clearly there's only one copy of
the entry on the store.  The OS gives the illusion that there is some
entry object in memory, just waiting for someone to ask for it, and
which will be given to anyone who asks.

As an aside, this is occasionally a problem for programming.  If one
application modifies an entry's cached frame, any other application
that happens to be using that entry is suddenly working with a
modified object, even though EntryChangeXmit or EntryFlushXmit
wasn't called and no notification has yet been sent.  The OS designers
had to make a tradeoff between living with this behavior and the
alternative, which would be to give each application a separate
version of the entry and add a more complex database-like locking
scheme to prevent multiple applications from modifying the same
entry at the same time.



In a handheld single user device, it's unlikely that two applications
will need to be modifying the same data at the same time, and so you
can adopt a programming technique to avoid the problem.  The
technique is to make sure your application calls EntryChangeXmit or
EntryFlushXmit relatively soon after modifying an entry.  This is a
good idea anyway, since a reset between when you change an entry
and when you save it back to the soup would cause data loss.  Built-
in applications and applications based on the NewtApp framework
typically save changes within a few seconds of modifying an entry's
cached frame and when closing an editor.

Back to the mystery of identical objects.  Clearly there isn't enough
memory in the NewtonScript heap for the OS to really keep all the
stores, soups, cursors, and entries around just waiting for someone to
need them.  Something special is going on behind the curtain to
maintain this illusion.

The OS maintains independent lists of stores, union soups, soups,
cursors, and entries that are in use.  When someone asks for one of
these objects, the OS first looks in its list to see if the needed object is
present, and if it is, it returns that object.  If the needed object isn't
there, a new object of the proper type is created, tucked away in the
list, and returned.  These lists, or caches, are NewtonScript arrays.

The caches are more than just standard arrays, however.  If they
were normal arrays, then the references to the objects in the array
would be enough to keep the objects themselves from being garbage
collected.  The OS would have to know when no other application
needed the soup, store, cursor, or whatever and explicitly remove the
reference from the cache.

The caches are implemented using a special NewtonScript object
called a weak array.  Weak arrays are just like normal arrays in
most respects, with one important distinction.  During garbage
collection, if the only references to an object are in weak arrays, then
that object is disposed of and the corresponding elements of the
weak arrays are set to NIL.  Weak arrays are documented in the
Newton Programmer's Reference, and can be created using the global
function NewWeakArray.

Here's a quick demonstration, from the NTK inspector.  Note the
contents of the array weenie change after garbage collection.  The
otherwise unreferenced string "Atlas" disappears, but the location
string remains.

weenie := NewWeakArray(2);
weenie[0] := "Atlas";



weenie[1] := GetUserConfig('location).name;
weenie
#4418B25  [_weakarray: "Atlas", "Cupertino"]

GC();
weenie
#44146D1  [_weakarray: NIL, "Cupertino"]

Where the OS Caches Objects
Stores are not cached in a weak array, there is a real array of store
objects maintained by the OS.  The GetStores function simply returns
this array.  When a memory card is inserted a new store object is
created and stored in the array.  When the card is removed the
stores in unmounted and the object removed from the array.

Inside each store object is a slot called 'soups which contains a weak
array of soups in use on that store.  When the OS needs to use a soup
on the store, a soup object is created and stored in this weak array in
an empty position, or in a newly created element if there are no
empty positions.  Since it's a weak array, there is no worrying about
when the soup is no longer needed, garbage collection takes care of
the cleanup.  The store methods GetSoupNames and GetSoup should be
used to access soups in a supported way.

The OS maintains a separate weak array of union soup objects.  There
is no direct access available to this weak array from scripting.  Again,
garbage collection takes care of the cleanup.

Each union soup maintains a list of member soups in a slot called
'soupList.  This is not a weak array, since the member soups are a
finite set and will be needed for as long as the union soup is needed.
Note that this list may not contain a soup for each store, since
member soups are not created until needed.  The union soup method
GetSoupList should be used to access this array in a supported way.

Each soup or unionSoup maintains a weak array of cursors that use
that soup in a slot called 'cursors.  This cache isn't necessary for
implementing the Query method, but it's part of how the OS manages
to keep cursors up to date when the soup contents change.  Again,
since the cursors are kept in a weak array, garbage collection takes
care of the cleanup.  The soup method Query should be used to get a
cursor in a supported way.

Soups maintain a reference to the store which contains them, in a slot
called 'storeObj, for use in various soup methods such as
RemoveFromStore.  The supported way to get at this is the soup
method GetStore.



Each soup (but not union soup) also maintains a weak array of entry
frames from that soup that are currently in use, in a slot called
'cache.   This cache is used to ensure that different cursors or
different applications all read and write to the same cached entry
frame.  The only supported way to get a soup entry is via a cursor.

It's harder to tell what's in a cursor, since the implementation is all
done in a C++ class and NewtonScript slots aren't used, but each
cursor holds a reference to the soup or union soup which it's
searching.

It's also harder to tell what's in an entry fault block, since that's also
implemented in a C++ class and doesn't use NewtonScript structures,.
However, each fault block also maintains a reference to the soup
object that the entry is contained in. That soup together with
indexing information about the entry is sufficient to allow the cursor
to locate the real data when an entry needs to be faulted in.  That
same data allows the EntrySoup and EntryStore functions to be
easily implemented.

Don't write production code that uses undocumented slots
in stores, soup, union soup, or cursor objects.

As you can see, there is a lot of cross-referencing going on with the
data storage model.  All this cross referencing means that lots of data
can be kept in memory by just a single reference.  By forgetting to
clean up a single reference to a single entry or cursor, you can force
the soup and unionSoup objects to remain in memory.

If you've ever used TrueSize to try to get the space used by a given
entry's frame, you'd have been surprised.  It typically returns results
that are much larger than expected.  A quick test I did showed my
card in the "Names" soup takes over 110K!  Clearly that's not right.
All this cross-referencing explains why.

e := GetUnionSoup("Names"):Query(
{indexpath: 'sorton,

 startKey: "Ebert Bob"}
):Entry();

TrueSize(e, nil);
objects             431            121254
...

TrueSize follows references and knows how to look inside some
kinds of C++ objects, like entry fault blocks and cursors, for contained
references.  This means that calling TrueSize on a soup entry
actually counts the size of everything soup or store related that's
currently in memory!  The links are followed from the entry fault



block to the soup, to the store to other soups on the store and from
there to cursors and entries for those otherwise unrelated soups.  If
you want to know how big a cached entry frame is for a particular
entry, just clone it before passing it to TrueSize.  Note that the size of
the cached frame in the NewtonScript heap is different from the size
of the entry on the store.  The global function EntrySize will tell you
how much store space an entry requires.

TrueSize(Clone(e), nil);
objects             26             1002
...

EntrySize(e);
#6B4      429

You can make use of the various cross-reference lists to help track
down unneeded references.  By forcing a garbage collection then
looking in the various lists you can easily tell if something in your
application is referencing a soup, cursor, or entry that it shouldn't,
because the item will appear in a list where you don't expect it to.

To easily track down where an unneeded reference exists, you can
use the other feature of TrueSize, which is searching (nearly)
everywhere for an object.  If I wanted to find out what was hanging
on to my names soup entry, for example:

TrueSize(nil, e);
...

  person                      undo[0][0].receiver._proto
.realData.faultSoup.storeObj
.soups[4].cache[2]

  person                      vars.e

This tells me that there's two places holding a reference to this entry,
one is in a global variable e, which I expect since I created it.  The
other is in some weird place that I've never heard of before, but
appears to be in one of the caches (in this case a weak array) in a
soup that's reference by a store that happens to be referenced from
some other soup needed for some undo action.  (See, those cross-
references are pervasive!)

My first thought on seeing this was that I should have forced a
garbage collection first to get rid of the reference in the cache, which
shows that even experienced programmers can have wrong thoughts.
Forcing a GC wouldn't clear out the reference in the cache weak
array, because the global variable has a "strong" reference to the
entry.  To really get rid of it, I'd clear out the global variable first,
then force a garbage collect.  Once that's done, there's no way to
verify that the entry is really gone using only TrueSize, since there's



no longer anything to pass to that function!  To verify that nothing
else is holding a reference I'd have to go poke around in those
undocumented lists in the stores and soups, or carefully check free
memory with GC and Stats.

Conclusion
Entries in NewtonScript are special objects and there is significant
overhead involved in both reading and writing them from the user
store.  Careful thought while designing your applications will pay off
by minimizing the NewtonScript heap space used and the time
needed to access your data.  You have control over when an entry's
cached frame is or is not faulted in, and you can take advantage of
this to improve performance.

Knowing how stores, soups, union soups, cursors, and entries relate to
each other helps when creating efficient applications, and helps even
more when tracking down performance or space problems.  If you're
ever unsure about how to optimize your application, experiment with
different alternatives, measure the space and speed differences, and
choose accordingly.


