
Introducing Works for Newton

By Henry Cate, Apple Computer Inc.

A new application framework is included in the new products from
Apple. The framework, called Works, is intended to provide a simple
yet powerful shell for productivity applications, much like desktop
products with similar names.

Four applications will be initially available in the Works framework:
a word processor, a drawing tool, a spreadsheet, and a calculator with
graphing capabilities. This article will give you the necessary
background to begin developing additional applications for the
Works framework.

Works Goals

Simple Environment
An important requirement for the Shay product was a simple
environment where students could perform the kinds of tasks that
currently require a desktop computer. The Works framework
addresses this need. It uses a document metaphor that clearly
separates individual projects.

When the Shay device is set to the simplified classroom mode, the
title bar and filing interface are hidden to prevent work from
appearing to be lost. Works keeps the user data separate when in
the multi-user mode. Works is also tightly integrated with the new
classroom connection server.

Unlike desktop productivity applications, Works on the Newton
platform is extensible through the stationery mechanism. Third
parties will be able to add tools to existing stationery, and register
whole new types of stationery. New stationery should try as much
as possible to maintain easy to understand interfaces and use
established patterns for user interfaces such as command key
equivalents and menus.

About Works
Like the existing Notes application, Works is written around the
NewtApp framework for Newton applications. Those who have
written stationery for the Notes application will find that writing for
Works is very similar.

Works itself is similar to the Notes application in many ways. The
headers, title slips, menus, status bar, and overview are all stock

elements. There are some differences; however, for example Works
has scroll bars. Because documents like papers or drawings are
commonly larger than even the larger screen of the new devices,
users need scroll bars to navigate their work. A find and replace
feature is also new to the Works framework.

Using Works
Works is the default backdrop application on the Shay platform, so
it's always readily available. A common classroom scenario might
have a student opening the Shay to start work. A couple of
keystrokes creates a new word processor document, and the student
begins writing their paper.

When graphics need to be added, there are a couple of options. A
"quick sketch" tool integrated with the word processor stationery
allows a student to easily insert sketches. For more detailed
drawings, a new drawing document is created and edited. (The
student can also use the drawing stationery to create drawing
documents.) When the drawing is done, the student copies the result
to the clipboard, switches back to the paper, and pastes the drawing
in. Common clipboard formats are used to aid in data exchange
between Works applications and other applications in the system.

When the paper is complete, it can be printed from within Works
and turned in. It could also be beamed to another machine, either to
hand it in to the teacher or hand it off to another student for
collaborative work.

If additional work is required to finish the document, it can be
moved to a desktop computer via the classroom connection server.
The document will appear on the desktop as a separate file, and
translators will allow it to be opened in ClarisWorks and other
popular desktop applications. Once on the desktop, additional
finishing work such as adding color graphics or incorporating
multimedia content can be done.

With the classroom connection server, documents can be moved off
the Shay unit when work is complete. Rarely will students in the
classroom have more than a few documents at a time in Works, so
the file management tasks in that scenario are minimal. Of course,
Works will be used outside the classroom and on other Newton
devices, and the filing user interface is available in those cases to
help with document management.

Since the Shay units will typically be more readily available than
desktop machines, more students will be able to do individual work

more quickly. Works is the vehicle for this type of productivity
within the Newton OS.

Inside Works

This section gets into the technical details of extending Works. It
provides a starting point for developers interested in creating Works
applications.

When to use Works
Since Works is a NewtApp application, deciding to add stationery to
Works is similar to deciding if you want to add stationery to Notes or
some other NewtApp application. Additionally a good candidate for
Works is any kind of document editor. If you can structure your
stationery so it allows the student to view and modify some type of
document, then you may want to use Works. This document can be
any unit of electronic data, for example it might be a spreadsheet or
a sheet of music. Also remember that though Works will be
available to anyone running N2 or Shay, its primary focus is the
education market. So consider the target market; will they often be
using Works, or will they be more often in another NewtApplication?

Stationery with some extensions
To add an application to Works, the DataDef & ViewDef need all the
methods and slots normally used in stationery, plus additional
methods and slots. Note, Works is designed to only use one ViewDef,
the 'default ViewDef. Other ViewDefs are allowed for routing.

To take advantage of the additional features Works provides, the
DataDefs and ViewDef needs some additional slots and methods. In
addition there are some APIs for registering and unregistering tools
with a particular DataDef. We'll walk through some typical actions
students would do with Works, and explore the APIs invoked.

New Document
When a student taps on the "New" button, Works checks to see what
stationery is registered. To provide stationery to Works, the
standard stationery APIs are used. These are the global functions
RegDataDef, UnregDataDef, RegisterViewDef, and UnregisterViewDef. Check
the Newton Programmer's Guide (NPG) - System 2.0 for general
information about these functions. Note, the DataDef's superSymbol
must be 'newtWorks.

After a user selects a particular piece of stationery, the title slip
comes up. You can put information in this slip. Works makes a

conditional call to the DataDef's method InfoBoxExtract. This method
is passed the target, a bounds frame, your ViewDef, and should
return a shape. The shape can be anything. It might be a small
sketch of a drawing, or the result of calling MakeShape on some text
summary of the document. The shape will be appended to the
bottom of other content that appears in the infoBox.

Preferences
One of the next things a student might do is tap on the information
button and bring up the preferences. Additional preference
information can be added by setting a 'prefs slot in the DataDef. The
frame in the 'prefs slot is similar to a frame passed into PopupMenu as
documented in the NPG 2.0. This frame must also contain a
'prefsTemplate. This template contains the view template needed for
the user to set the DataDef specific preferences. For example the
DataDef can add a "Special Prefs" choice to the information button
which brings up the prefsTemplate containing document specific
preferences.

When preferences is selected from the information slip, Works will
set the slots 'target, 'newtAppBase, and 'viewDefView appropriately in
the 'prefsTemplate, and then build the context. The template must
read the appropriate information in the viewSetup method, and store
the information in the viewQuitScript method. You can use
GetAppPreferences to get and set your particular preferences.

When the global Works preferences change Works will conditionally
call the ViewDef method PrefsChange with a preferences frame.
Currently the frame has two boolean slots, 'metricUnits and
'internalStore.

Searching and Finding
There are a number of methods available for assisting Works when a
student does a search. There are two types of Find available in
Works. The first is the standard Newton Find, a search which
searches one or more applications. For example the student could
search for a text phrase in both Works and Notes. The second type is
a document find, specific to just Works, this allows the student to do
things like find and replace in the current document.

When Works does a Newton find, it first uses the global function
FindStringInFrame to see if the string is found in the entry. If
FindStringInFrame does not find a match, then the DataDef's method
FindFn is called to let the stationery do additional matching. The
FindFn is passed the entry, the string to look for, and an offset.

Currently the offset is always zero. If there is a match, FindFn should
return TRUE, otherwise return Nil. Once Works finds a match, the
DataDef's method FindSoupExcerpt is called. FindSoupExcerpt returns
the text that will appear in the Find Overview. This method takes
the same arguments as the FindSoupExcerpt documented in NPG 2.0.

If Works gets one match, or a particular entry is selected from the
Find Overview, the ViewDef method ShowFoundItem is called. The
method can update the view to show where the match is in the
entry. Check the NPG 2.0 for information about what is passed to
ShowFoundItem.

When a student does a Works Find, the ViewDef method FindChange is
called. FindChange is passed two variables. The first is the action the
student is doing, currently: 'find, 'change, or 'changeAll. Depending on
the action, the second variable will have information about the string
to find, and possibly the string with which to do the replacing. The
return value also depends on the action. FindChange is responsible
for updating the view.

Scrolling
Often users are going to want to scroll, to see more of the document.
If the set of methods below are defined, then Works will do the
scrolling.

The ViewDef method GetScrollableRect returns a bounds frame if
scrolling is to be done by Works. If GetScrollableRect returns a
bounds frame, the scroll bars will be displayed. If GetScrollableRect
returns nil then the scroll bars are not displayed, and no other
scrolling methods need to be defined. Nil might be returned if
scrolling is not allowed, or if the ViewDef will do its own scrolling.

A group of ViewDef scroll methods provide status information; they
take no variables and just return data. GetScrollValues returns a
frame of the current scroll values. The frame should have 'x & 'y
slots with the current position as integer values. GetTotalHeight and
GetTotalWidth each return an integer, corresponding respectively to
the height and width of the view.

The second group of methods are implemented by the ViewDef to
update the view in response to a scroll request. Two methods,
ViewScrollUpScript and ViewScrollDownScript, need to update the image
in response to an Up or Down arrow key. If these methods are not
defined, then Works will do a default action of scrolling up or down
one screen. The method Scroll is passed a frame with 'x and 'y slots.
These are integer values which specify the number of pixels to scroll

the image by. Note, the Scroll method must call the ViewDef's
UpdateAllScrollers method, which we will discuss next.

The last scrolling method is UpdateAllScrollers. This ViewDef method
is implemented by Works and is designed to be called by your code.
It takes the view, and four booleans. The booleans in order are TRUE,
if the total height changed, if the vertical scroller thumb needs to be
updated, if the total width changed, and if the horizontal scroller
thumb needs to be updated. If the width and/or height changed,
then UpdateAllScrollers will call GetTotalHeight and GetTotalWidth, and
recalculate its internal data structures. If the position of the
thumb(s) changed, then UpdateAllScrollers will call GetScrollValues,
and again recalculate its internal data structures.

Scrolling can be confusing, so we'll go into a little more depth on how
the methods above work together. When a ViewDef is opened, or at
any time that the total height or total width changes, the
UpdateAllScrollers method should be called. It will call GetTotalHeight
and GetTotalWidth.

GetTotalHeight and GetTotalWidth provide the total size of the object to
be scrolled. The GetScrollableRect method provides a bounds frame
with the size of the currently visible area. So for example let's say
there is a 1000 by 1000 pixel area to be scrolled, and a 100 by 100
visible area. GetTotalHeight and GetTotalWidth would each return
1000, while GetScrollableRect would return {left: 0, top: 0, right:
100, bottom: 100}.

GetScrollValues controls the position of the scroll bar thumbs. The 'x
& 'y values of the frame returned by GetScrollValues specify the
scroller position in relation to the values provided by GetTotalHeight
& GetTotalWidth. So with the example above, if GetScrollValues
returned {x: 500, y: 500}, the scroll bar thumbs would be positioned
exactly halfway along the scroll bar.

Scroll is the method which provides the actual scrolling functionality
implemented by the ViewDef. After updating the image, Scroll
should call the Works' method UpdateAllScrollers, which in turn will
call the ViewDef's GetScrollValues method and correctly set the
scroller position.

The Status Bar
To provide any custom buttons in the status bar, the ViewDef has
two slots, 'statusLeftButtons and 'statusRightButtons which each hold
an array of button frames. Check the NPG 2.0 for more information
about button frames in a NewtApplication's status bar.

The ViewDef has a method, UpdateStatusBar, which is called when
there is a change to the auxiliary button registry. This can occur if a
package installs or removes an auxiliary button for Works. The
UpdateStatusBar method should update the two status bar arrays.

There is also a newtAppBase method called UpdateStatusBar which can
be called when there is a need to recreate the status bar. It will
check for a currently active ViewDef, and call the active ViewDef's
UpdateStatusBar method.

Providing Help
If the student taps on the information button, and then selects Help,
the first thing Works will try is to call the optional ViewDef method,
DoHelp. DoHelp can do anything special which needs to be done. If
DoHelp returns 'loadHelp, Works will also try to load the help book.

If DoHelp is not implemented, or if DoHelp returns 'loadHelp, Works will
use two ViewDef slots 'helpManual and 'viewHelpTopic to open a help
book. The 'helpManual slot should have a help book frame. Check the
"Beyond Help" DTS sample for information about how to create a help
book. The 'viewHelpTopic can be set to specify what topic to open to
when the help book appears.

Data Storage
The saving of the current entry is done by Works. Before saving the
entry, the ViewDef method SaveData is called. There are two times
SaveData will be called. First SaveData is called periodically by Works.
Secondly if you want the entry to be saved call the method
StartFlush, this will cause the method EndFlush to be called after a
period of time. The method EndFlush will call the ViewDef's method
SaveData.

The method SaveData is passed the current entry. It can update slots
in the entry, and return a value indicating if the entry should be
saved. SaveData should return nil if there is no reason to save the
entry, or return the symbol 'NoRealChange or TRUE to save the entry. If
there have only been lightweight changes, 'NoRealChange will cause
the entry to be saved, but the modification time stamp will not be
updated.

Using Tools in Works
Tools can be added for a specific type of stationery. A ViewDef has
the responsibility for displaying the tools installed for that stationery
type, and correctly calling the tool when it is invoked.

There are two Works methods, RegNewtWorksTool and UnRegNewtWorksTool
to handle adding and removing tools from a type of stationery. The
first is passed a tool symbol, and a tool frame. The frame is similar
to the frames documented for PopupMenus, check the NPG 2.0 for more
information. The toolsFrame has a slot, dataTypeSymbol, which
specifies the stationery type it is registered to. For Paper and
Drawing a second key part of the toolsFrame is cmdFunc, the method is
passed a viewDefView (the main ViewDef view), and the newtAppBase.
There are a few more slots needed in the tool frame; check the
Works API documentation for more information.

These methods would typically be used in the install and remove
scripts, and would be called like:

GetRoot().newtWorks:RegNewtWorksTools (toolSym, toolsFrame);
GetRoot().newtWorks:UnRegNewtWorksTools(toolSym);

There are two additional Works methods. The first, GetNewtWorksTools
which returns an array of the tools belonging to the specified
stationery type. The second, GetNewtWorksTool, takes a tool symbol and
returns the tool frame.

To be notified when tools are added or removed, add a ToolsChanged
method to the viewDef. If the viewDef is the current view when
there is a change in the tools register, the ToolsChanged method is
passed the action and the tool symbol.

View Changes
When the view bounds change, for example if the horizontal scroller
is no longer needed, or if the icon bar in N2 is moved from the side to
the bottom, Works will call the ViewDef method viewChangedScript.
This ViewDef method is also called anytime a SetValue is done on the
view. Check the NPG 2.0 for more information.

Two help slots
There are two helpful slots in the Works base view. The first is
newtAppBase which contains the Works base view. The second is
viewDefView which contains the current ViewDef view. This can be nil
if there is no currently active ViewDef, for example when Works is in
overview mode.

Conclusion

Works is a built-in application framework that takes care of many
basic programming tasks, allowing developers to focus on the core
work of creating a document editor. Works' users are guaranteed a
consistent means of creating and managing their work. Works is

readily available, making it the framework of choice for document-
centric applications, and especially those intended for the classroom.

For more information on Works
For more information on adding an editor to Works, check the
reference document on the developer CD. A Works sample shows a
barebones framework needed to add an editor to Works. This is a
good starting place for your development. You can change the name,
the symbol, and then plug in some functionality.

For more information on NewtApp & Stationery
A good place to start for learning NewtApp is the NewtApp overview
article in the June 1996 Newton Technology Journal. The Newton
Programmer's Guide has a chapter on NewtApp and a chapter on
Stationery. Since adding to Works is done by creating stationery, the
chapter on Stationery will be frequently used; however, the
Stationery chapter builds on concepts in the NewtApp chapter so
read the introduction of the NewtApp chapter. The sample
"WhoOwesWhom" is found on the developer CD and shows how to
add stationery to the Notepad. The sample "Cardfile Extensions" also
shows some stationery techniques in adding additional functionality
to the Names app.

