
Mock Entries for Debugging

by Bob Ebert, Newton Developer Technical Support

The Problem
The NSDebugTools package, part of NTK 1.6, allows you to set
breakpoints in NewtonScript code. This is very powerful and will
help you find many of your bugs which don't raise exceptions.
However, once in a while what you need to know is when some
object is accessed, not when some line of code is executed. One way
to do this is to set the global variable trace to TRUE, but then you
typically have to wait a long time for the trace output to stop
scrolling by, then wade through reams of data to find the accesses
you're interested in.

Mock Entries to the Rescue
A little-known and even less frequently used feature that was added
to the Newton OS in the 2.0 release is the ability to create entry-like
objects, called Mock Entries. These objects are composed of two
parts. One part is a simple NewtonScript frame, often called the
cached entry. The other part is a handler which knows how to create
and save the cached entry. The parts together are sometimes called
a fault block; when something needs the cached entry and it doesn't
exist, a fault occurs and a message is sent to the handler, which then
creates or faults in the entry.

The Newton OS in 2.0 allows you to create these fault blocks for your
own objects, which means you get to write the code that executes
when the cached object needs to be faulted in. The code that creates
the cached entry can also do other things, for example it could enter
a breakloop, which would give you a chance to look at the stack and
see what's accessing the frame.

Here's a simple example of using a fault block for debugging. We'll
create a simple frame that prints an exclamation point in the
inspector and beeps the speaker every time it's accessed.

handler := {
object: {foo: 'bar},
EntryAccess: func(mockEntry)

begin
write("!");
GetRoot():Sysbeep();
object;

end,
};

f := NewMockEntry(handler, nil);

f is now a Mock Entry. Here's how it looks to the OS:

f

handler

nil

object:
EntryAccess:

foo: 'bar

func...

handler

cached object
"fault block"

When any slot in f needs to be accessed, the OS checks to see if there
is a cached object. Because we passed NIL as the 2nd argument to
NewMockEntry, and EntrySetCachedObject hasn't been called, there will be
no cached object for f. When there is no cached object, the OS calls
the handler's EntryAccess method, which is expected to create the
cached object, tell the OS about it using EntrySetCachedObject, and
return it.

We cheat and don't call EntrySetCachedObject. The OS uses the return
value of EntryAccess as the object for this access, and since we return
handler.object everything works, but next time something touches f,
EntryAccess will be called again. There's our hook—every time some
part of the OS reads or writes any slot in f, EntryAccess is called.

To almost all of the Newton OS, f looks like a regular frame. f.foo
evaluates to 'bar. ClassOf(f) is 'frame. f.baz := 42 will add a slot to
the frame, which is also referenced as handler.object in our example,
so the next time the frame is accessed, the modified object will be
returned. The illusion is complete, only the test function IsMockEntry()
can tell that f is a mock entry and not a normal NewtonScript frame.

An Improvement
If you try this, you'll see that the frame is accessed a lot more often
than you might think. Getting the value of f.foo calls EntryAccess
twice. Setting a slot also calls EntryAccess twice. Creating a new slot
calls it 11 times. The print function must do a lot, because printing f
in the inspector calls the EntryAccess method a whole bunch of times.

In our application debugging example above, we really only want to
know when the object is being used for the first time in a while.
Recall that if the OS finds that a cached object exists, it won't call
EntryAccess but will simply use the object. So to prevent excessive
calls, our EntryAccess method will now create the cached object. The
trick then becomes clearing the cached object. I've found that
clearing the object at a deferred time works well—typically it's

cleared the next time control returns to the top level, which is soon
enough to catch most bugs. Here's how to do that: (the bold text is
new)

handler := {
object: {foo: 'bar},
EntryAccess: func(mockEntry)

begin
write("!");
GetRoot():Sysbeep();
EntrySetCachedObject(mockEntry, object);
AddDeferredCall(

GetGlobalFn('EntrySetCachedObject),
[mockEntry, nil]);

object;
end,

};

f := NewMockEntry(handler, nil);

You might want to experiment with clearing the cached object at
other times.

Limitations
The EntryAccess method of the handler object is called only when a
slot in the frame is accessed. That is, a statement like g := f won't
cause the EntryAccess method to be called, since no slot in f is
accessed. The result of that statement will be that you now have two
references to the mock entry "fault block", and either g.foo or f.foo
will cause the EntryAccess method to be called.

The Newton 2.0 OS only supports creating mock objects that are
backed up by frames. While it's not guaranteed, you might
experiment and see what happens if the object is an array or a
binary object. (But back up your data first!) Try some special case
binary objects like strings or real numbers. Depending on your
situation, you may be able to use this debugging technique with
arrays or binary objects as well as with frames.

I've found that some parts of the OS work normally in this case—the
mock object is treated just like a string, bitmap, array, or whatever.
Other parts of the OS "notice" that the object is a fault block and not
the appropriate object type, which typically causes a throw. The
error messages in this case can be interesting. For example, putting
the string "foo" in the object slot of the handler will create an object
that appears to be a string. Printing works, but functions like
StrLen(f) or the accessor f[0] "notice" that the object isn't a string,
and throw with the seemingly contradictory error message: "Expected
a string, got "foo"." This happens because the exception printer

doesn't notice that the mock object isn't a string, and so it calls
EntryAccess, gets the string, and prints it.

Advanced Techniques
You can put any NewtonScript code in the handler, specifically in the
EntryAccess method, so you can use this trick to do other things. For
example, you could add a counter and find out how many times a
frame is accessed during some operation. You could add in a test to
see if some slot in the frame has changed, and stop when it gets a
certain value.

Unfortunately, when the EntryAccess method is called you don't have
any information about what's happening. You can't tell if a slot is
being read or set. You can't tell which slot (or element, or byte) is
being accessed. If you write code that watches for changes you end
up finding out after the change takes place.

But this can still be useful. Consider if your handler set trace to TRUE
and then set it to NIL again in a deferred call. This would do a great
job of limiting the trace output to only code that actually used the
object. The EntryAccess method might also watch for some change
and, upon detecting the change, set trace to NIL and enter a
breakloop. That way you'd know without doubt that the last section
of trace output was the one you needed to look at.

You might even consider using mock objects to implement a kind of
sentinel that lets you know when other applications access your
objects.

Conclusion
Being able to have your code execute when a frame is accessed is
powerful, and has lots of good uses. However, keep in mind that any
observations you or I make about how the OS deals with mock
objects should be used only for debugging. That is, it would be a
mistake to write production code that relies on EntryAccess being
called twice when reading the value of a slot. See the Newton
Programmer's Guide for Newton OS 2.0 for more information on using
Mock Entries, including what's supported and how to do mundane
things like simulating real soup entries.

