Newton 2.0 Messaging Enabler

- Get Your Messages Movin'

by Jason Rukman Apple

Computer, Inc.

C onnectivity! Do you carry a

cell phone, pager or possibly
some other device to stay in
touch? If you do, then you
would probably like to transfer
some of this information onto
your Newton PDA. When | have
my Newton with me I'd like the
information on my pager to go

directly to my Newton.

The Messaging Enablerisa 2.0
transport that solves this
problem by providing a
framework specifically designed
for 1-way and 2-way wireless
messaging. With the Messaging
Enabler, developers are able to
get a messaging device working
qguickly, easily and consistently

with the Newton. The

messaging device will be
integrated with the rest of the
Newton system and Newton
applications that support

routing.

For the Messaging Enabler to be
useful, it requires a plug-in
driver, called a message module,
for a particular hardware
device. A message module must
iImplement a set of APIs for
communicating with the
particular hardware device and
the Messaging Enabler looks
after the rest. (This API is
distributed with the Messaging

Enabler development kit.)

Your specialty may be
developing communications
software. The idea behind the
Messaging Enabler is to remove
the user interface requirement
from the Original Equipment
Manufacturer (OEM). This

allows a consistent user

interface for all wireless
messaging products that use the

Messaging Enabler.

Is it for you?

Of course, the Messaging
Enabler won't be suitable for
every messaging system. It has
been designed to enable as many
of the wireless messaging
systems as possible. If you want
to enable a piece of hardware
for the Newton platform, then it
may be worth using the
Messaging Enabler if the
hardware can receive, and
possibly send, messages
wirelessly (for instance pagers,

wireless PC cards, etc.).

A good understanding of routing
Is recommended for developers
using the Messaging Enabler or
writing a message module.
Although an understanding of

transports may be helpful when

writing a message module, it is
not required. You can find
information on routing and
transports in the “Newton
Programmers Guide:

Communications."

The Messaging Enabler does
most of the work for you, so that
you can have your hardware up
and running as soon as possible.
The exciting features of the
Messaging Enabler are covered

below.

Message modules have many
options that may be customized
SO you can support features
specific to the messaging device

being used.

Most Newton applications that
support routing can use the
messaging device via the
Messaging Enabler with no
changes. This is due to the

NewtonScript routing

mechanism. Applications can

also be designed to control the - Device specific preferences.
Messaging Enabler directly Note that not all of these
which is ideally suited for preferences will necessarily be

applications targeted to a displayed for each device

vertical market. Stub Prefs
*Power Jn
Transmitter {Jn
Features #Sound OFf
Connect using ENternal
The following list of features #Clock From Newton to Pager
should give you a better idea of
some of the functions provided Figure 2: Device Specific
by the Messaging Enabler: Preferences

- Standardized preferences for

Messaging Preferences

W Show status slips
W Send plain text only
Get messages Meyer
When receiving Browse
#Notify With sygtem alarm
When Sending Specify when
After sending

Delete

#File read items in

“Unfiled Items™
[B [ant] [* Device] [* Options] @

Figure 1: Messaging Enabler

Preferences

- Send routing slip(s).

¥ 5an Francisco # Tester Page §:00:

*To Rob Anderson

Subject Howdy
[Edit NMessage] [Replies]

[*Page] @

Figure 3: Paging Routing Slip

- Paging address data
definitions. This extends the in-

built address data definitions.
Fagers # All Names

aadcd|eflah] ij |kl jnnjop] ar] stjuvjex]yz
! Anderson, Bob & {(408)555-1234xT
F Flinstone, Fred & x6789222

i Walthrop, Royce &
x5551234 Pager
New Pager dl

i3 Selected Only

2 Selectad @
Figure 4: Pager Address

Listpicker

- Message replying. Some 2-
way messaging devices can
reply to received messages, for

instance the Motorola Tango™.

[@ Reply | ¥ Acknowledgement

Go Jump
All right
g4 Mot this time

Pick a short message
Other

Figure 5: Message Reply Picker

- Automatic message retrieval.
- Automatic control and
combination of multi-part
messages.

- Text message

viewing/editing/and put away.

The following message shows

an item in the In Box made up of

two combined messages

[%]

122345 a1 1/1 12:35 am
This ig the body of a tegt meggage.This is the
econd test mesgage.

% Put Away

El Log

E Reply

#=] Add to Names

Figure 6: Displayed In Box

Message

- Manage and control the 170

Box

- User status feedback.

How it ticks

Built-in
Applications

Installed
Applications

ey

170 Box

vd

Messaging Enabler
(2.0 Transport)
Message Message
Module Module
Receive
Only
Hardware Hardware

Figure 7: Messaging Enabler
Hierarchy

As this diagram shows the
Messaging Enabler fits in at the
same location in the Newton
communications layering as a

2.0 Transport.

Installing a message module

To add a message module to the
system, you create an auto part.
This means that when a
message module is installed, it
adds services to the system but
does not add an application to
the extras drawer; however, an
icon is added to the
“Extensions” folder. You define
a message module based on the
prototype, prot oMsghbdul e.
To add the defined message
module to the system, you call
the RegMsgMbdul e platform file
function from your auto part’s
I nstal | Scri pt function with

the template you have defined.

cal |
with (
kAppSynbol ,
part Frane. part Dat a. Test

kRegMsgModul eFunc

Enabl er

)i

To unregister the message

module you need to supply two

part frame functions:
Del eti onScri pt a n d
RenoveScri pt. T h e
Del eti onScri pt function will
t h e Del et eMsghbodul e

platform file function to remove

call

any preferences for the message
module, and also ensures your
message module RenoveScri pt

is called.

Set Par t Fr ane$S! ot (
" Del etionScri pt,
func() begin
cal |
kDel et eMsghodul eFunc with

(
kAppSynbol

In your RenoveScri pt of the
auto part you should deregister

the message module by calling

the UnhRegMsghbdul e platform
file function:

cal |l kUnRegMsgModul eFunc

with (kAppSynbol):

Working with callbacks and

events

Most of the methods defined in
protoMsghbdule t a k e a
callback as one of the
parameters. The Messaging
Enabler will call methods that
you override in
prot oMsghbdule when the
Messaging Enabler needs to
perform a particular operation.
For example: When the
Messaging Enabler needs a
message from the message
module, it may send the
(et Next Message message,
which could be implemented as

follows:

Get Next Message : =
cal | Back) begin

func(

/'l go get the next

nessage
: doEvent (

KEV_PROGRESS,

{ type: 'vBarber,

statusText: "Al nost

done..."

}
)i
: doCal | Back(

cal | Back ,

kRES_SUCCESS,

nessage /'l your

retrieved nmessage

) ;

end; /| Get Next Message

Note that the calls to the
internally defined methods of
pr ot oMsghbdul e,
and doCal | Back. The method

doEvent,

doEvent was used to change the
status display. The Messaging
Enabler provides a default
status display but by sending
events to the Messaging Enabler
this can be customized. Sending
the doCal | Back message is
required to inform the
Messaging Enabler when the
operation for Get Next Message
has been completed. This also
returns the result from the

requested operation.

You may send other events to
the Messaging Enabler to let it
know when certain things
happen. For example, if a new
message has been received, you
would send a kEV_MESSACGE
event to alert the Messaging
Enabler to read the message.
You would do this by sending the

doEvent message.

Need to send messages?

To support sending you need a
Sendptions frame and a
SendMessage method. The
SendOptions frame defines
options for sending messages.
The Messaging Enabler will call
the SendMessage method when
a new item needs to be
transmitted. The main slot
required for the SendOpt i ons
frame isrout eSl i pType. This
defines the addressing type to
The

Messaging Enabler adds a

use when sending.

paging data definition to the
system. For more information
about data definitions, please
see the "Stationery" chapter in
t he Newton Programmers

Guide: System Software.

A new item will be added to the
action picker based on the
Sendpt i ons frame contents. A
typical SendQptions frame
might be similar to the

following:

{ routeSlipType:

| naneRef . peopl e. pager |,

replyTypes: ['ack,
‘user, 'canned],
dat aTypes: ['text,
‘frame |,
group: ' page,
gr oupl con:
ROM Rout ePagel con,
groupTitle: "Page"
}
& Print Note
ﬂ Beam
=3 Mail
New Routing Type &5 Fax
e & Page
E] Duplicate
@ Delete

Figure 8: Notepad Routing

Picker

This means that any Newton
application that supports
routing for either 'text or
' frane datatypes will now be
able to send this data as a page.
See the "Routing Interface"

chapter in the Newton

Programmers Guide:

Communications.

What's your preference?

The Messaging Enabler
provides several different
mechanisms for controlling user
preferences. The main
preference slip as seen in Figure
1 contains several items that will
only be visible if your message
module overrides certain
prototype slots. For example,
the first option, "When
receiving,” will only be visible if
your message module sets the
dirSupport slot to true.
(Note, however, that this
labelpicker may still be visible if
another installed message

module has this set.)

A separate view displays the
hardware preferences for each
The

Messaging Enabler provides

messaging device.

five generic preferences that you
may use as seen in Figure 2.
These preferences are very easy
to set up. All that is needed is an
array of strings that become the
options for each preference
(such as the | abel Commands for
t h e | abel Pi cker) .

example, you could set

For

soundSt ri ngs to the following

array:

["Of f",
" Annoyi ng",

"Tunes",
"Loud"]

to correspond with the
hardware options for the
particular messaging device.
Note that the first array item
will be the default for each of the
preferences, so it is important to
make the most reasonable
preference setting the first item
in the array. The Messaging
Enabler determines when these
preferences need to be set and
will call the Set Conf i g method

of the message module at the

appropriate time.

A third way to provide user
preferences gives more
customization control, but also
requires more work. Provide
your own preference view
template. You might need to do
this if there is some special
setting that is not covered by any
other preference controls. You
supply this view template in the
prefsTenpl ate slot of your

message module.

As you can see, there are
serveral levels of control for the
user preferences. In most cases,
it is important to remember that
less is often better. Most users
work better with devices that
function in an expected manner,
rather than having to set a
bunch of preferences to get them

to work a particular way.

Controlling the Messaging

Enabler.

The Messaging Enabler may
also be controlled by an installed
Newton application. This
feature is intended primarily for
vertical applications (such as a
health-care dispatch
application) that would need to

set the preferences explicitly.

To change the Messaging
Enabler preferences an installed
Newton application would call
the TransportNotify global

function. For example:

Transport Noti fy(
' MsgEnabl er,
" ChangeConfi g,
[cal |l Back,
{ disable: true,
autoStatus: nil,

hi deltens: nil,

b,

10

{ deviceSym
" MM _nsghbdul e,
power | ndex: 1,

portlndex: 2

)i
This does the following:

= Disables the user access to
the Messaging Enabler
preferences so they cannot
be changed.

e The status dialog will not
be automatically opened.
(The user can still see the
status if it is selected from
the Notify Icon &3 at the
top of the screen.)

e The Messaging Enabler
items will not be displayed
in the 170 Box.

e The installed message
module MM nsghbdul e
will have its preferences

set to the second item in

the power Strings array
and the third item in the

port Strings array.

As you can see, this gives an
application the necessary
control over the Messaging
Enabler. There are many other
preferences of the Messaging
Enabler that can also be set in

this way.

Note that this function is
designed to be integrated with a
single Newton application and
is ideally suited for vertical
market applications. If two
separate Newton applications
were to attempt this operation,
the Messaging Enabler
preferences would be set to a
combination of these two
applications and the results

would be unpredictable.

Give me those In Box items!

11

So how does an installed
Newton application get the
items from the Messaging
Enabler once they are in the In
Box? Because the Messaging
Enabler is a transport, any
installed application can receive
items from the messaging enable
using the standard Newton

routing APIs.

Please refer to the “Newton
Programmers Guide™ for a
description of the different
mechanisms available for
routing items from the In Box,
specifically Regl nBoxApps,
RegAppCl asses, Put Away
and Aut oPut Anay.

* And remember that the names
of the innocent have been

changed to protect the guilty.

Editing support; R. Robertson,
J.C. Bell & A. Weiss.

12

