
1

Newton 2.0 Messaging Enabler

- Get Your Messages Movin'

m e s s a g i n g d e v i c e w i l l b e

integrated with the rest of the

Newton system and Newton

a p p l i c a t i o n s t h a t s u p p o r t

routing.

b y J a s o n R u k m a n A p p l e

Computer, Inc.

C onnectivity! Do you carry a

cell phone, pager or possibly

For the Messaging Enabler to be

useful, i t requires a plug-in

driver, called a message module,

f o r a p a r t i c u l a r h a r d w a r e

device. A message module must

implement a set of APIs for

c o m m u n i c a t i n g w i t h t h e

particular hardware device and

the Messaging Enabler looks

a f t e r t h e r e s t . (T h i s A P I i s

distributed with the Messaging

Enabler development kit.)

some other device to stay in

touch? I f you do, then you

would probably like to transfer

some of this information onto

your Newton PDA. When I have

my Newton with me I'd like the

information on my pager to go

directly to my Newton.

The Messaging Enabler is a 2.0

t r a n s p o r t t h a t s o l v e s t h i s

p r o b l e m b y p r o v i d i n g a

framework specifically designed

for 1-way and 2-way wireless

messaging. With the Messaging

Enabler, developers are able to

get a messaging device working

quickly, easily and consistently

w i t h t h e N e w t o n . T h e

Y o u r s p e c i a l t y m a y b e

developing communications

software. The idea behind the

Messaging Enabler is to remove

the user interface requirement

from the Original Equipment

Manufacturer (OEM). This

a l l o w s a c o n s i s t e n t u s e r

2

i n t e r f a c e f o r a l l w i r e l e s s

messaging products that use the

Messaging Enabler.

writing a message module, it is

not required. You can f ind

information on routing and

t r a n s p o r t s i n t h e “Newton

P r o g r a m m e r s G u i d e :

Communications."

Is it for you?

O f c o u r s e , t h e M e s s a g i n g

Enabler won't be suitable for

every messaging system. It has

been designed to enable as many

o f t h e w i r e l e s s m e s s a g i n g

systems as possible. If you want

to enable a piece of hardware

for the Newton platform, then it

m a y b e w o r t h u s i n g t h e

M e s s a g i n g E n a b l e r i f t h e

hardware can rece ive , and

p o s s i b l y s e n d , m e s s a g e s

wirelessly (for instance pagers,

wireless PC cards, etc.).

The Messaging Enabler does

most of the work for you, so that

you can have your hardware up

and running as soon as possible.

The excit ing features of the

Messaging Enabler are covered

below.

Message modules have many

options that may be customized

so you can support features

specific to the messaging device

being used.

A good understanding of routing

is recommended for developers

using the Messaging Enabler or

wri t ing a message module .

Although an understanding of

transports may be helpful when

Most Newton applications that

support routing can use the

m e s s a g i n g d e v i c e v i a t h e

Messaging Enabler with no

changes. This is due to the

N e w t o n S c r i p t r o u t i n g

3

mechanism. Applications can

also be designed to control the

Messaging Enabler direct ly

which i s idea l ly su i ted for

a p p l i c a t i o n s t a r g e t e d t o a

vertical market.

- Device specific preferences.

N o t e t h a t n o t a l l o f t h e s e

preferences will necessarily be

displayed for each device.

Features

The following list of features

should give you a better idea of

some of the functions provided

by the Messaging Enabler:

Figure 2: Device Specific

Preferences

- Standardized preferences for

wireless messaging.

Figure 1: Messaging Enabler

Preferences

4

- Send routing slip(s).

Figure 5: Message Reply Picker

- Automatic message retrieval.

- Automatic control and

combination of multi-part

messages.

Figure 3: Paging Routing Slip

- P a g i n g a d d r e s s d a t a

definitions. This extends the in-

built address data definitions.

- Text message

viewing/editing/and put away.

The following message shows

an item in the In Box made up of

two combined messages.

Figure 4: Pager Address

Listpicker

Figure 6: Displayed In Box

Message
- Message replying. Some 2-

way messaging devices can

reply to received messages, for

instance the Motorola Tango™.
- Manage and control the I/O

Box

5

- User status feedback. To add a message module to the

system, you create an auto part.

T h i s m e a n s t h a t w h e n a

message module is installed, it

adds services to the system but

does not add an application to

the extras drawer; however, an

i c o n i s a d d e d t o t h e

“Extensions” folder. You define

a message module based on the

p r o t o t y p e , protoMsgModule.

To add the defined message

module to the system, you call

the RegMsgModule platform file

function from your auto part’s

InstallScript function with

the template you have defined.

How it ticks

Built-in
Applications

I/O Box

Installed
Applications

Messaging Enabler
(2.0 Transport)

HardwareHardware

Message
Module

Message
Module

Receive
Only

Routing

Figure 7: Messaging Enabler

Hierarchy

call kRegMsgModuleFunc

with (
As th is d iagram shows the

Messaging Enabler fits in at the

same location in the Newton

communications layering as a

2.0 Transport.

kAppSymbol,

partFrame.partData.Test

Enabler

);

Installing a message module
T o u n r e g i s t e r t h e m e s s a g e

module you need to supply two

6

p a r t f r a m e f u n c t i o n s :

DeletionScript a n d

RemoveScript. T h e

DeletionScript function will

c a l l t h e DeleteMsgModule

platform file function to remove

any preferences for the message

module, and also ensures your

message module RemoveScript

is called.

the UnRegMsgModule platform

file function:

call kUnRegMsgModuleFunc

with (kAppSymbol);

Working with callbacks and

events

Most of the methods defined in

protoMsgModule t a k e a

c a l l b a c k a s o n e o f t h e

parameters. The Messaging

Enabler will call methods that

y o u o v e r r i d e i n

protoMsgModule w h e n t h e

Messaging Enabler needs to

perform a particular operation.

F o r e x a m p l e : W h e n t h e

Messaging Enabler needs a

message f rom the message

m o d u l e , i t m a y s e n d t h e

GetNextMessage m e s s a g e ,

which could be implemented as

follows:

SetPartFrameSlot(

'DeletionScript,

func() begin

call

kDeleteMsgModuleFunc with

(

kAppSymbol

);

end

);

In your RemoveScript o f t h e

auto part you should deregister

the message module by calling

7

GetNextMessage := func(

callBack) begin

doEvent was used to change the

status display. The Messaging

Enabler provides a defaul t

status display but by sending

events to the Messaging Enabler

this can be customized. Sending

t h e doCallBack m e s s a g e i s

r e q u i r e d t o i n f o r m t h e

Messaging Enabler when the

operation for GetNextMessage

has been completed. This also

returns the resul t f rom the

requested operation.

....

.... // go get the next

message

....

:doEvent(

kEV_PROGRESS,

{ type: 'vBarber,

statusText: "Almost

done..."

}

);

....

:doCallBack(You may send other events to

the Messaging Enabler to let it

k n o w w h e n c e r t a i n t h i n g s

happen. For example, if a new

message has been received, you

w o u l d s e n d a kEV_MESSAGE

event to alert the Messaging

Enabler to read the message.

You would do this by sending the

doEvent message.

callBack ,

kRES_SUCCESS,

message / / y o u r

retrieved message

);

end; // GetNextMessage

N o t e t h a t t h e c a l l s t o t h e

internally defined methods of

protoMsgModule, doEvent,

and doCallBack. The method

Need to send messages?

8

To support sending you need a

SendOptions f r a m e a n d a

SendMessage m e t h o d . T h e

SendOptions f r a m e d e f i n e s

options for sending messages.

The Messaging Enabler will call

the SendMessage method when

a n e w i t e m n e e d s t o b e

transmitted. The main s lot

required for the SendOptions

frame is routeSlipType. This

defines the addressing type to

u s e w h e n s e n d i n g . T h e

M e s s a g i n g E n a b l e r a d d s a

paging data definition to the

system. For more information

about data definitions, please

see the "Stationery" chapter in

t h e N e w t o n P r o g r a m m e r s

Guide: System Software.

{ routeSlipType:

'|nameRef.people.pager|,

replyTypes: ['ack,

'user, 'canned],

dataTypes: ['text,

'frame],

group: 'page,

groupIcon:

ROM_RoutePageIcon,

groupTitle: "Page"

}

New Routing Type

Figure 8: Notepad Routing

Picker

This means that any Newton

a p p l i c a t i o n t h a t s u p p o r t s

rout ing for e i ther 'text o r

'frame datatypes will now be

able to send this data as a page.

See the "Routing Interface"

c h a p t e r i n t h e Newton

A new item will be added to the

ac t ion p icker based on the

SendOptions frame contents. A

t y p i c a l SendOptions f r a m e

m i g h t b e s i m i l a r t o t h e

following:

9

P r o g r a m m e r s G u i d e :

Communications.

five generic preferences that you

may use as seen in Figure 2.

These preferences are very easy

to set up. All that is needed is an

array of strings that become the

options for each preference

(such as the labelCommands for

t h e labelPicker) . F o r

e x a m p l e , y o u c o u l d s e t

soundStrings to the following

array:

What's your preference?

T h e M e s s a g i n g E n a b l e r

p r o v i d e s s e v e r a l d i f f e r e n t

mechanisms for controlling user

p r e f e r e n c e s . T h e m a i n

preference slip as seen in Figure

1 contains several items that will

only be visible if your message

m o d u l e o v e r r i d e s c e r t a i n

prototype slots. For example,

t h e f i r s t o p t i o n , " W h e n

receiving," will only be visible if

your message module sets the

dirSupport s l o t t o true.

(N o t e , h o w e v e r , t h a t t h i s

labelpicker may still be visible if

a n o t h e r i n s t a l l e d m e s s a g e

module has this set.)

[" O f f " , " T u n e s " ,

"Annoying", "Loud"]

t o c o r r e s p o n d w i t h t h e

h a r d w a r e o p t i o n s f o r t h e

particular messaging device.

Note that the first array item

will be the default for each of the

preferences, so it is important to

m a k e t h e m o s t r e a s o n a b l e

preference setting the first item

in the array. The Messaging

Enabler determines when these

preferences need to be set and

will call the SetConfig method

A separate view displays the

hardware preferences for each

m e s s a g i n g d e v i c e . T h e

Messaging Enabler provides

10

of the message module at the

appropriate time.

Controlling the Messaging

Enabler.

A third way to provide user

p r e f e r e n c e s g i v e s m o r e

customization control, but also

requires more work. Provide

y o u r o w n p r e f e r e n c e v i e w

template. You might need to do

this i f there is some special

setting that is not covered by any

other preference controls. You

supply this view template in the

prefsTemplate s l o t o f y o u r

message module.

The Messaging Enabler may

also be controlled by an installed

N e w t o n a p p l i c a t i o n . T h i s

feature is intended primarily for

vertical applications (such as a

h e a l t h - c a r e d i s p a t c h

application) that would need to

set the preferences explicitly.

T o c h a n g e t h e M e s s a g i n g

Enabler preferences an installed

Newton application would call

t h e TransportNotify g loba l

function. For example:A s y o u c a n s e e , t h e r e a r e

serveral levels of control for the

user preferences. In most cases,

it is important to remember that

less is often better. Most users

work better with devices that

function in an expected manner,

ra ther than having to se t a

bunch of preferences to get them

to work a particular way.

TransportNotify(

'MsgEnabler,

'ChangeConfig,

[callBack,

{ disable: true,

autoStatus: nil,

hideItems: nil,

},

11

{ deviceSym:

'MM_msgModule,

t h e powerStrings array

and the third item in the

portStrings array.powerIndex: 1,

portIndex: 2

} As you can see, this gives an

a p p l i c a t i o n t h e n e c e s s a r y

control over the Messaging

Enabler. There are many other

preferences of the Messaging

Enabler that can also be set in

this way.

]

);

This does the following:

• Disables the user access to

the Messaging Enabler

preferences so they cannot

be changed.

N o t e t h a t t h i s f u n c t i o n i s

designed to be integrated with a

single Newton application and

is ideally suited for vertical

market applications. If two

separate Newton applications

were to attempt this operation,

t h e M e s s a g i n g E n a b l e r

preferences would be set to a

c o m b i n a t i o n o f t h e s e t w o

applications and the results

would be unpredictable.

• The status dialog will not

be automatically opened.

(The user can still see the

status if it is selected from

the Notify Icon at the

top of the screen.)

• The Messaging Enabler

items will not be displayed

in the I/O Box.

• The ins ta l led message

m o d u l e MM_msgModule

will have its preferences

set to the second item in

Give me those In Box items!

12

S o h o w d o e s a n i n s t a l l e d

Newton applicat ion get the

i t e m s f r o m t h e M e s s a g i n g

Enabler once they are in the In

Box? Because the Messaging

Enabler i s a t ransport , any

installed application can receive

items from the messaging enable

using the standard Newton

routing APIs.

P lease re fer to the “Newton

Programmers Guide" f o r a

description of the different

m e c h a n i s m s a v a i l a b l e f o r

routing items from the In Box,

s p e c i f i c a l l y RegInBoxApps,

RegAppClasses, PutAway

and AutoPutAway.

* And remember that the names

o f t h e i n n o c e n t h a v e b e e n

changed to protect the guilty.

Editing support; R. Robertson,

J.C. Bell & A. Weiss.

