
The High Level Frame Desktop Integration Library (HLFDIL)
Newton Developer Training

The High Level Frame Desktop Integration Library (HLFDIL) is used
to move Newton frames and arrays to and from a desktop machine,
running either the Macintosh OS or Windows. (In common usage,
HLFDIL is usually shortened to Frame Desktop Integration Library, or
FDIL, and the two terms are used interchangeably throughout this
article.) Before the HLFDIL can be opened a connection between the
Newton and the desktop machine must be established using the
Communications Desktop Integration Library (CDIL).

The FDIL is used to map the dynamic structure of Newton frames to
the static structures used on desktop machines. As with the CDIL, it
is implemented in C++ but has a C language API. The basic
assumption of the FDIL is that the format of the Newton frames
being moved is already known. A C language structure having a one-
to-one correspondence with the Newton frame can be defined, and
the desktop programmer can define the mapping of slots to fields.
However, since there are cases when the programmer may not know
the structure of the Newton frame in advance or when additional
slots have been added to the frame, there must be a way to handle
these unexpected or unknown slots. This is handled by the FDIL by
uploading these slots as unbound data, that is, data for which there is
not a previously defined memory location of the appropriate size and
type. The unbound data is therefore put into memory on the desktop
machine in a tree structure which defines where the data is in the
NewtonScript frame in relation to other slots in the frame.

Throughout this article, the use of the FDIL to transfer Newton frame
data will be discussed. However, it should be remembered that it is
also used to transfer Newton array data. It is worth noting that the
FDIL cannot be used to transfer simple data such as integers or
strings unless they are part of a frame or array. It is recommended
that such data be transferred using the CDIL mechanism, or put into
a simple NewtonScript frame, such as fooFrame:={myInteger:3}.

Opening the FDIL and Creating Objects
After the CDIL connection, or pipe, has been opened, the FDIL may be
initialized and used. The FDIL routine FDInitFDIL is called as follows:

fErr = FDInitFDIL();

Any error in initializing the library will be returned. FDIL errors fall
in the -28000 range and a complete list may be found at the end of
the FDIL section of the document Newton Desktop Integration
Libraries which can be found on the DIL web page at
http://dev.info.apple.com/newton/tools/dils.html.

Next, one or more FDIL objects must be created using the routine
FDILCreateObject which is defined as:

DILObj *FDCreateObject(short objType,
char *objClass);

The first argument describes whether the object being created is an
array or a frame, and the second argument is an optional class name
which NewtonScript arrays may carry. Each frame or array which is
transferred must have a separate object created for it. This includes
sub-frames and sub-arrays within a parent frame or array.

For example, for the following NewtonScript frame, three separate
FDIL objects must be created before the frame can be defined on the
desktop:

aFrame:={
name:"foo",
phone:["333-444-5555","101-202-3333"],
address:{street:"123 Main", town:"Fooburg",
state:'GA, postalCode:12345}
}

There must be an FDIL object for the main frame, aFrame, one for the
phone sub-array and one for the address sub-frame.

The calls to create these FDIL objects would look like this:

DILObj *aFrameObj, foneObj, addrObj;

aFrameObj = FDCreateObject(kDILFrame, NULL);
foneObj=FDCreateObject(kDILArray,"phoneClass");
addrObj = FDCreateObject(kDILFrame, NULL);

In this example FDCreateObject is called twice with the predefined
constant kDILFrame to create an object for defining a frame and once
to create an array object using the kDILArray constant for the first
argument. In the case of the array, we also supply the class name
"phoneClass" as it is a named (classed) array. Named arrays are

described on page 2-9 of the NewtonScript Reference. (An electronic
version of this book is available from the Newton documentation web
page noted above.)

As of this writing a known bug exists which will throw an error on
the Newton when a string is downloaded, if an array includes an
unnamed string (that is, a classless string) as one of its elements. The
workaround is simply to give unclassed strings a class of "string"
when they are array members. See the routine DearchiveFrame in
the FDIL Archive Lab solution code for an example of this work
around. This bug should be fixed in future releases of the HLFDIL.

Defining Objects

Once you have created an FDIL object, you may begin to bind
memory locations to the object. This process describes to the FDIL
where data being transferred to or from the Newton will come from
or go to. In other words, by binding a memory location on the
desktop to a slot in a Newton frame, the FDIL knows where to put
data or where to go to get data. The memory locations used in this
binding may be a variable on the stack, a global memory location or
a dynamically allocated heap location, depending on the use and
duration of the data being transferred.

The routine FDbindSlot is used to connect the memory location with
the Newton slot. Its formal definition is:

objErr FDbindSlot(DILObj *theObj,char*slotName,
void *bindVar, short varType, long
maxLen,long curLen, char *objClass);

The first argument (theObj) is the object created to define the frame
being transferred, and the second (slotName) is the name of the slot
that is being bound.

The third (bindVar) is a pointer to the memory location to which the
slot is being connected. When data is to be downloaded to the
Newton this will be the location of the data being sent. In the case of
an upload from the Newton this is the place where the received data
will be put. In the latter case it is up to the programmer to make
sure there is enough room to hold the data being received. The
maxLen argument is used to describe the length of an object being
sent to the Newton, and the curLen argument describes the length of

an object which is being received from the Newton. In the case of an
array or frame, maxLen or curLen should be set to -1.

The varType argument describes what type of data object the slot
being bound is expected to be. The following table shows the existing
types:

kDILPlainArray // as opposed to a classed array
kDILArray // array with class name associated
kDILBoolean // true or false
kDILUnicodeCharacter // 16-bit character
kDILCharacter // 8-bit ASCII
kDILFrame // object is a frame
kDILSmallRect // packs a Newton rect into a long
kDILImmediate // Newton immediate value (not int)
kDILInteger // 30-bit integer
kDILBLOB // not used
kDILNIL // Newton nil value (NULL)
kDILBinaryObject // double or other binary sequence
kDILString // char *
kDILSymbol // handled as char *

Of these types several are worth special mention.

kDILArray versus kDILPlainArray - many arrays on the Newton are
simply sequences of data but a few have a class associated with
them. kDILPlainArray has no class associated with it while kDILArray
does.

kDILBoolean and kDILNIL - both have platform-specific definitions
for the values true, false and nil.

kDILSmallRect is automatically used when a frame on the Newton
which is used to store a rectangle is sent and the rectangle values
(top, left, bottom, right) all fit in a single byte value. In this case the
values are packed into a single long value.

kDILBLOB is not implemented.

kDILBinaryObject is used for any unspecified binary object (such as
sounds, pictures, and so forth) as well as for the Newton Real type.
Note, however, that unlike integers or immediates, platform-specific
byte ordering must be accounted for.

Make sure you compile using 8-byte doubles if you are going to
transfer Real numbers. When transferring Newton Real numbers, you

must set your development environment to use 8-byte double values
or it will interpret the reals received as a different value than
expected. This is usually an option specific to your system. For
example, Metrowerks defaults to 4-byte doubles and the 8-byte
double option must be specified in the compiler options in the
Preferences menu item. MPW defaults to 8-byte doubles and so no
special action must be taken.

kDILString includes both classed and unclassed strings.

kDILSymbol is a Newton symbol (such as 'mySymbol) transferred to
and from the desktop as a C string.

The last argument in FDbindSlot (objClass) is the class, if any, of
the object. While many objects on the Newton have no class
associated with them, many may have a class assigned by the
programmer or by the system. For example, while most strings have
no class associated with them, they may have one assigned explicitly
by the Newton programmer. Conversely, Newton Real numbers
always are transferred as objects of type kDILBinaryObject with a
class of "Real." If an object has no class associated with it, this
argument should be a NULL . If it has a class it is transferred with a
C string, such as for the class name.

An example taken from the SoupDrink sample code involves
downloading a name frame to the Newton Name soup. The following
pseudo-NewtonScript describes a card frame and its associated FDIL
type:

card := {

cardType:kDILInteger,
Name: kDILFrame,
Address: kDILString,
City: kDILString,
Region: kDILString,
Postal_Code: kDILString,
phones: kDILArray,
sorton: kDILString

}

This is only a code fragment from the SoupDrink example. The
variables shown (such as the name strings) are assigned values in
earlier code. To see the full code, see the SoupDrink code
walkthrough.

In the same way the Name frame and the phones array may be
defined as:

Name := {

class: kDILSymbol,
first: kDILString,
last: kDILString

}

phones := [kDILString, kDILString, ...]

While not shown here, the elements of the phones array each have a
separate class associated with them such as "HomePhone,"
"WorkPhone," and so forth.

The code to create the FDIL object for this structure is:

name = FDCreateObject(kDILFrame, NULL);
FDbindSlot(name, "Class", (void *)&pClass, kDILSymbol,
strlen(pClass), -1, NULL);
FDbindSlot(name, "first", (void *)&fName, kDILString,
strlen(fName), -1, NULL);
FDbindSlot(name, "last", (void *)&lName, kDILString,
strlen(lName), -1, NULL);

phones = FDCreateObject(kDILArray, NULL);
FDbindSlot(phones, NULL, (void *)&phoneNo, kDILString,
strlen(phoneNo), -1, "HomePhone"));

entry = FDCreateObject(kDILFrame, NULL);
FDbindSlot(entry, "cardType", (void *)&cardType,
kDILInteger, sizeof(int), -1, NULL) ;
FDbindSlot(entry, "Name", (void *)name, kDILFrame, 0, -1,
NULL);
FDbindSlot(entry, "Address", (void *)&addr, kDILString,
strlen(addr), -1, NULL) ;
FDbindSlot(entry, "City", (void *)&town, kDILString,
strlen(town), -1, NULL) ;
FDbindSlot(entry, "Region", (void *)&state, kDILString,
strlen(state), -1, NULL) ;
FDbindSlot(entry, "Postal_Code", (void *)&zip,
kDILString, strlen(zip), -1, NULL) ;
FDbindSlot(entry, "phones", (void *)phones, kDILArray, 0,
-1, NULL) ;
FDbindSlot(entry, "sorton", (void *)&sName, kDILString,
strlen(sName), 0, "Name");

Here the FDIL object's name and phones are bound to slots in the
entry object. Note also that the string in the phones array has a class
associated with it, HomePhone. Once the entry object is defined it is
ready to be used to download it to the Newton.

Transferring Data
Once an FDIL object is created and the slots are defined by binding
them to desktop memory, it may be used to transfer data to or from
the Newton. This is done by using the routines FDget to upload and
FDput to download the object and its associated data. These routines
are defined as:

objErr FDput (DILObj *entry, short type, CDILPipe *pipe);

objErr FDget (DILObj *entry, short type, CDILPipe *pipe,
long timeOut, CDILPipeCompletionProcPtr
callBack,long refCon);

Notice that the CDIL pipe is used here since this is the first time that
data will actually be transferred. Note also that the FDget routine
may be called asynchronously by passing a procedure pointer in for
the fifth argument.

In both routines the first argument (entry) is the master object being
transferred. It may have sub-frames and arrays objects bound to it
but this is the top level object. The next argument (type) is the FDIL
type (kDILFrame or kDILArray) of this master object. The third
argument (pipe) is the CDIL pipe being used to transfer the data.

For FDget we have these additional arguments:
The fourth argument (timeOut) defines how long the FDIL should
attempt to transfer the object before giving up and returning an
error. The timeout value is measured in milliseconds on Windows
machines and ticks on Macintosh OS machines.

The next argument (callBack) is a pointer to a callback routine if the
FDget call is made asynchronously. If you are making the call
synchronously, simply pass NULL for this argument.

The last argument (refCon) is an arbitrary value which can be
passed to your completion routine.

SoupDrink downloads the previously defined entry FDIL object to the
Newton using this call to FDput:

FDput(entry, kDILFrame, ourPipe);

The Newton must be in a state to receive a frame or array before it is
sent from the desktop machine. See the SoupDrink code for the
Newton for an example of code which imports and exports frames.

Unbound Data
Unbound data is data which arrives at the desktop but is not bound
to any memory locations by calls to FDbindSlot(). This typically
occurs in two situations: when the desktop programmer does not
know the structure of the Newton data beforehand and when there
are previously unknown slots which have been added to a frame.

An example of the first case is a program which allows the
programmer to select what will be transferred. SoupDrink does this
when it allows the programmer to name a Newton soup which is to
be uploaded. In this case SoupDrink provides a universal way to
handle all soups by uploading the information as unbound data
which it then writes to file.

The second situation occurs either when there is a system or
program update or when applications which "tag along" on system
soups are added. For example, if a new version of the Names
application added new slots to the soup frames stored for a Name
card, SoupDrink would get the data from the old slots if it used the
entry definition shown above but would not have a place allocated to
put new data slots. Similarly, if a new contact application was loaded
into the Newton, it might choose to build off of the existing Names
application but add additional information to the soup entries. In this
case SoupDrink would get the standard data but would not be
prepared for the data added to the Names soup entries.

In either case, unbound data provides a way to accept unknown data
slots and then to parse them for further disposition. Following is a
description of unbound data and how to extract information about
the data once it has arrived at the desktop.

Unbound data is linked together in a chain of data structures of type
slotDefinition. The slotDefinition data type is defined as follows:

typedef struct slotDefinition
{
short varType; // Data type of this variable

void *var; // Actual pointer to data
ulong length; // Length of data (strings)
ulong maxLength; // Maximum Length of data
ulong streamLen; // Length of streaming - internal
ulong bufIndex; // Current buffer index - internal
long namePrec; // Original precedent? - internal
long classPrec; // Original precedent? - internal
char *slotName; // Name of slot for this var
char *oClass; // class of this object
short slotType; // Data type of this slot
ulong truncSize; // Current size of truncated object
long childCnt; // Number of child nodes
long peerCnt; // Number of peer nodes
short dataFilled; // TRUE if data added in this op
long internalFlags; // Internal state flags
short boundData; // for future use
struct slotDefinition *children;
struct slotDefinition *next;
} slotDefinition ;

The fields which are significant to understanding the structure of
unbound data are the childCnt, peerCnt, children and next fields.
Unbound data is stored as a series of linked slotDefinition
structures which may have siblings (peers) or children. In this
scheme, peerCnt is the number of peers an item has, childCnt is the
number of children, next is a pointer to the slotDefinition for the
next peer in the list and children is a pointer to the start of the
chain of slotDefinitions for the children of the item.

This is shown in the following diagram:

Here the slotDefinition structures are linked laterally by the next
field while the children field points to the start of the list of all of the
item's children. They each have their own list of children which do
not intersect.

A more concrete example of this structure is shown below for the
following simple frame:

foo:= {
bar:{none:nil, one:1},
snafu:{tarfu:2},
fubar: 3
}

Not shown in the second diagram is the var field which points to the
actual data associated with the slot. With the addition of this slot we
now have enough information to write the following pseudo-code for
walking through the unbound data list printing the data:

parselist(list)
begin
item:=list[0];
while (item != nil)
begin
if (item !=kDILFrame & item !=kDILArray)
output(item->var)
else
parselist(item->children)
item:=item->next
end
end

The only thing remaining is to find the start of the unbound data list
and dispose of the memory allocated by the FDIL for the unbound
data. The following routines do what is necessary:

SlotDefinition *FDGetUnboundList(DILObj *theFDILObj);
objErr FDFreeUnboundList(DILObj *theFDILObj,
SlotDefinition *list);

FDGetUnboundList returns a pointer to the list of items in the top
level (master frame) of the unbound data while FDFreeUnboundList
frees all the memory allocated for unbound data when FDget is called
and there is data uploaded which has not been defined using
FDbindSlot.

The use of unbound data may be summarized as follows:

Unbound data is the data received from the Newton after a call to
FDget returns slots which do not have a specified location in memory
connected to them. This may occur because the desktop programmer
did not know what the structure of the data would be or because
additional data was added to the frame being uploaded. Once
transferred to the desktop machine the data is put into a linked list
of slotDefinition structures which contain pointers to the next
unbound item as well as items which are children of the current
item. The unbound list may be parsed and extensive information
about the slot associated with the item (including its type, name,
class, and the actual data associated with the item) may be extracted
from its slotDefinition structure.

The list of items of unbound data are kept in an array and the
children field in a slotDefinition is an array of child items.
SoupDrink uses this to parse the unbound data by looping through
each of these arrays. Both algorithms work since *children is
equivalent to children[0] in C.

Destroying Objects and Closing the FDIL

When you are completely finished with an FDIL object, call
FDDisposeObject to destroy the object and all associated memory.
Note that calling FDDisposeObject does not deallocate memory
explicitly allocated by the desktop application. If memory is
allocated off of the heap and then bound to a slot in an object,
FDDisposeObject will not deallocate the heap memory. It must be
explicitly deallocated.

Finally, the FDIL should be closed by calling FDDisposeFDIL. This
should be done before closing the CDIL.
The definition of these routines as follows:

objErr FDDisposeObject (DILObj *theObject);
objErr FDDiposeFDIL();
