
Debugging Tutorial:

Finding and Fixing Bugs in an
Application

Excerpted from Programming for the Newton, 2nd edition Julie
McKeehan and Neil Rhodes, Academic Press. 1996

Beeping Button Brouhaha
We’ve written a very simple application in which the user can write
a number. Pressing the “Beep” button makes the Newton beep that
many times. Figure 1 shows the application. Figure 2 shows the
application templates in NTK.

Figure 1: Beeping Button application.

Figure 2: Structure of the Beeping Button project.

First Problem
The first thing that happens when we write in a number and then
press the Beep button is a notification on the Newton: “Sorry, a
problem has occurred (-48807)." Let’s turn on breakOnThrows
(clicking the icon in the Inspector Window) and press the button
again. Now, the Inspector prints out

Undefined variable: numBeeps
evt.ex.fr.intrp;type.ref.frame
-48807

(#6008D1D1).buttonClickScript(), 3: Push 'text
Entering break loop: level 1

If we look at the code we see that we’re trying to access the numBeeps
variable from our buttonClickScript. That variable should refer to
our protolabelInputLine view. What could be wrong? If we’ve
correctly declared numBeeps to the protoFloatNGo, the protoFloatNGo
view should have a slot named numBeeps. Let’s look in that view for
numBeeps. (That view is the parent of our current self.).First, let’s get
self:

// get current self
beepingButton := GetCurrentReceiver(0);

#440F63D {_parent: {_parent: {#440D221},
 _proto: {#6008D0C1},
 viewCObject: 0x110926D,
 viewclipper: 17863292,
 base: <1>,
 viewFlags: 577,
 viewBounds: {#440F5C1}},

 _proto: {buttonClickScript:<function, 0
arg(s)#6008D239>,
 text: "Beep",
 viewBounds: {#6008D539},
 _proto: {@226}},
 viewCObject: 0x110A530,
 viewFlags: 515}

Now, let’s get the parent slot and we will have the right view:
floatNGo := beepingButton._parent
#440F5DD {_parent: {minute: 178,
 downButton: {#440B2E9},
 calculator: {#4406159},
 mailEditor: {#44064C1},
 extrasDrawer: {#4409671},
 defaultTransport:Newton:
{#4405DD9},
 OutOfMemoryAlert: {#4405D95},
 notification: {#4405D35},
 remindSlip: {#44060C5},
 namesButton: {#44063D9},
 folderEdit: {#4405DF1},
 phoneKeyboard: {#4405ECD},
 ovButton: {#440643D},
 upButton: {#4406461},
 thegang: {#44065F9},
 printerSerialPicker: {#4405D05},
 ...},
 _proto: {viewBounds: {#6008D199},
 stepChildren: [#6008D1B9],
 _proto: {@180},
 debug: "myFloatNGo",
 appSymbol: |Demo:NTK.Demo|},
 viewCObject: 0x110926D,
 viewclipper: 17863292,
 base: <1>,
 viewFlags: 577,
 viewBounds:{left:-25, top:173, right:139,
bottom:265}}

The numBeeps slot doesn’t seem to be in the floatNGo. The view
otherwise appears to be correct. It sounds like a problem in
declaring. Let’s check the Template Info dialog for that template (see
Figure 3). Well, well, well. Turns out it actually wasn’t declared. We’ll
checkmark the “Declare To:” checkbox and rebuild.

Figure 3: Template Info dialog showing undeclared numBeeps.

Second Problem (a Hard One)
We rebuild, download, and rerun. We write in a number and tap the
“Beep” checkbox. We get the following error in the Inspector:

Undefined variable: numBeeps
evt.ex.fr.intrp;type.ref.frame
-48807

(#6008D229).buttonClickScript(), 3: Push 'text
Entering break loop: level 1
This is exactly the same error at the same place we had it before.
Let’s check the floatNGo view again:

beepingButton := GetCurrentReceiver(0);
floatNGo := beepingButton._parent

and here is what we find when the Inspector returns our result:
#4412B0D {_parent: {minute: 181,
 downButton: {#440B129},
 calculator: {#4406159},
 mailEditor: {#44064A1},
 extrasDrawer: {#4409651},
 defaultTransport:Newton:
{#4405DD9},
 OutOfMemoryAlert: {#4405D95},
 notification: {#4405D35},
 remindSlip: {#44060C5},
 namesButton: {#44063D9},
 folderEdit: {#4405DF1},
 phoneKeyboard: {#4405ECD},
 ovButton: {#440643D},
 upButton: {#440EF4D},
 thegang: {#44065D9},
 printerSerialPicker: {#4405D05},
 ...},
 _proto: {viewBounds: {#6008D1F1},
 stepChildren: [#6008D211],
 _proto: {@180},
 debug: "myFloatNGo",
 numBeeps : NIL,
 stepAllocateContext: [#6008D731],

 appSymbol: |Demo:NTK.Demo|},
 viewCObject: 0x1108C2C,
 numBeeps : {_parent: <2>,
 _proto: {#6008D5D1},
 viewCObject: 0x1109F0C,
 entryLine: {#4419229},
 labelLine: {#4418E49},
 width: 73,
 indent: 75,
 height: 13},
 viewclipper: 17863746,
 base: <1>,
 viewFlags: 577}

The numBeeps slot seems to be there and seems to point to what looks
like it could be our view. Let’s try to access it from the Inspector:

floatNGo.numBeeps
#2 NIL

That doesn’t make sense. We can see that it is there. Let’s try another
way to get to that view using the Debug function:

Debug("numBeeps")
#2 NIL

Curiouser and curiouser. However, look very closely at the way the
numBeeps slot prints out versus any other slot:

_proto: {viewBounds: {#6008D1F1},
 stepChildren: [#6008D211],
 _proto: {@180},
 debug: "myFloatNGo",
 numBeeps : NIL,
 stepAllocateContext: [#6008D731],
 appSymbol: |Demo:NTK.Demo|},
 viewCObject: 0x1108C2C,
 numBeeps : {_parent: <2>,
 _proto: {#6008D5D1},

Other slots have no space before the colon (“:”), while the numBeeps
slot has one space there. Could this have anything to do with our
problem? What if that space were significant? Let’s try calling Debug
with an extra space after numBeeps:

Debug("numBeeps ")
and here is the Inspector return result that we get:

#4418AF5 {_parent: {_parent: {#4412B25},
 _proto: {#6008D0C1},
 viewCObject: 0x1108C2C,
 numBeeps : <2>,
 viewclipper: 17863746,
 base: <1>,
 viewFlags: 577},
 _proto: {viewBounds: {#6008D681},
 label: "Num Beeps:",
 entryFlags: 10753,
 _proto: {@189},
 debug: "numBeeps ",

 preAllocatedContext: |numBeeps |},
 viewCObject: 0x1109F0C,
 entryLine: {_parent: <2>,
 _proto: {#356429},
 viewCObject: 0x110A83B,
 viewFlags: 10753,
 viewBounds: {#4418F4D},
 text: "2"},
 labelLine: {_parent: <2>,
 _proto: {#356569},
 viewCObject: 0x110A871,
 text: "?Num Beeps:",
 viewFont: {@100},
 viewBounds: {#4418E2D}},
 width: 73,
 indent: 75,
 height: 13}

So if it acts as though the name had an extra space—maybe it does.
Let’s check the Template Info dialog for that template more carefully
(see Figure 4). Indeed, there is a trailing space after numBeeps. We’ll
delete it and rebuild.

Figure 4: Template Info dialog for numBeeps with an extra space at the end.

Third Problem
We rebuild, download, and rerun. We write the number “2” and tap
“Beep." We get the following error in the Inspector:

Expected an integer, got nil
evt.ex.fr.type;type.ref.frame
-48406
(#6008D229).buttonClickScript(), 27: PushConstant NIL
Entering break loop: level 1

We’re still in our buttonClickScript, about to execute the code at
program counter 27. Here’s the NewtonScript code for the
buttonClickScript:

func()
begin

local beeps := StringToNumber(numBeeps.text);
for i := 1 to beeps do

:SysBeep();
end

Let’s look at the disassembled code for the buttonClickScript:
Disasm(GetCurrentFunction(0))
 0: FindVar numBeeps
 1: Push 'text
 2: GetPath 1
 3: Push 'StringToNumber
 4: Call 1
 5: SetVar beeps
 6: PushConstant 1
 7: SetVar i
 8: GetVar beeps
 9: SetVar i|limit
 10: PushConstant 1
 11: SetVar i|incr
 12: GetVar i|incr
 13: GetVar i
 14: Branch 23
 17: PushSelf
 18: Push 'SysBeep
 19: Send 0
 20: Pop
 21: GetVar i|incr
 22: IncrVar i
 23: GetVar i|limit
 24: BranchIfLoopNotDone 17
 27: PushConstant NIL
 28: Return
#2 NIL

We’re about to execute the code at offset 27—it looks as though we’re
at the end of the loop. Let’s look at the values of our variables to see
if they are reasonable:

GetAllNamedVars(0);
#4419641 {beeps: NIL,
 i: 1,
 i|limit: NIL,
 i|incr: 1,
 numBeeps: {_parent: {#4418345},
 _proto: {#6008D5D9},
 viewCObject: 0x110A57D,
 entryLine: {#44186F5},
 labelLine: {#44181FD},
 width: 73,
 indent: 75,
 height: 13},
 text: "Beep",
 SysBeep: <function, 0 arg(s) #350E8D>}

It doesn’t seem right that beeps is nil. In fact, that would explain the
error we got. The for loop expected an integer, but got nil. But why is
beeps nil? It was obtained from calling StringToNumber on
numBeeps.text. Let’s start by looking at numBeeps more closely:

numBeeps := GetNamedVar(0, 'numBeeps);
#4417EA9 {_parent: {_parent: {#4411D11},
 _proto: {#6008D0C1},
 viewCObject: 0x110A483,
 numBeeps: <2>,
 viewclipper: 17863765,
 base: <1>,
 viewFlags: 577},
 _proto: {viewBounds: {#6008D689},
 label: "Num Beeps:",
 entryFlags: 10753,
 _proto: {@189},
 debug: "numBeeps",
 preAllocatedContext: numBeeps},
 viewCObject: 0x110A57D,
 entryLine: {_parent: <2>,
 _proto: {#356429},
 viewCObject: 0x110A58C,
 viewFlags: 10753,
 viewBounds: {#4418301},
 text: "2"},
 labelLine: {_parent: <2>,
 _proto: {#356569},
 viewCObject: 0x110A5C2,
 text: "?Num Beeps:",
 viewFont: {@100},
 viewBounds: {#44181E1}},
 width: 73,
 indent: 75,
 height: 13}

Now let’s look at the value of the text slot in numBeeps. Expecting to
find the value of 2, we get a surprise instead:

numBeeps.text
#4632AD ""

There isn’t a text slot in the numBeeps view or template. So the value
of numBeeps.text must be coming from the protoLabelInputLine
itself. Notice, however, that there does seem to be a text slot with
the value "2" in numBeeps.entryLine. But of course! For a
protoLabelInputLine, the input text isn’t found in the text slot of the
labelInputLine view, but in the text slot of the child view where the
input is actually done. With this bit of fresh information we can now
modify the code in the buttonClickScript. Our code should actually
be

func()
begin

local beeps :=
StringToNumber(numBeeps.entryLine.text);

for i := 1 to beeps do
:SysBeep();

end

Fourth Problem
We rebuild, download, and rerun. We write in “2” in the input line
and tap the Beep button. We get the following error in the Inspector:

Expected an integer, got <a real number>
evt.ex.fr.type;type.ref.frame
-48406
(#6008D229).buttonClickScript(), 27: PushConstant NIL
Entering break loop: level 1

Hmm. This is the same location where we broke before. Last time the
error was “Expected an integer, got nil." This time it got a real
number. Let’s take a look at beeps:

GetNamedVar(0, 'beeps);
#4418E79 2.00000

Well, that’s the problem. The beeps variable is a real number, not an
integer. Using our brilliant deductive capabilities we realize that
StringToNumber must return a real number. Let’s check within the
Inspector:

StringToNumber("2");
#4419331 2.00000
StringToNumber("2.5");
#44193ED 2.50000

We’ll use the Floor function, which rounds down a real number to an
integer, to fix our problem:

Floor(StringToNumber("2"));
#8 2

Floor(StringToNumber("2.5"));
#8 2

Let’s rewrite the buttonClickScript. We’d better keep in mind that
StringToNumber might return nil if we pass in a nonnumeric string
(wonder what would happen if we called Floor with nil?):

func()
begin

local beeps :=
StringToNumber(numBeeps.entryLine.text);

if beeps then
for i := 1 to Floor(beeps) do

:SysBeep();
end

We rebuild, download, and rerun. We write in “2” in the input line
and tap the Beep button. Lo and behold, the Newton beeps (although
it’s hard to tell there are two beeps because the second beep starts
before the first beep finishes). Just to be thorough, we write in “two”
in the input line and tap the Beep button. Nothing happens, just as
we desire.

