Debugging Tutorial:

Finding and Fixing Bugs in an
Application

Excerpted from Programming for the Newton, 2nd edition Julie
McKeehan and Neil Rhodes, Academic Press. 1996

Beeping Button Brouhaha

We’ve written a very simple application in which the user can write
a number. Pressing the “Beep” button makes the Newton beep that

many times. Figure 1 shows the application. Figure 2 shows the
application templates in NTK.

Murn Beeps:

[Beep

Figure 1: Beeping Button application.

=

Layout.t browser £

protoFloatNGo : ryFloatMGa
protaTextButtan

ifs

buttonClickSeript
tect

L protolabelinputline : nurnBeeps viewBounds
............................. _Flr-l:ltl:l
myRloaGe. -]
- |pumBeeps- e : [Specific][Methad:
- |beclired i muFlgatime - | -

— protoTextButton buttonClickSceript

lérafﬁ-?’ex#ﬁ'u#tm- -:'} ----- funcd 2
begin
..................... local beeps = StringToMumberChumBesps .
..................... for i = 1 to bEEpE do
............................. :SysBeepl]
end
o [3

Figure 2: Structure of the Beeping Button project.

First Problem

The first thing that happens when we write in a number and then
press the Beep button is a notification on the Newton: “Sorry, a
problem has occurred (-48807)." Let’s turn on br eakOnThr ows
(clicking the icon in the Inspector Window) and press the button

again. Now, the Inspector prints out
Undefi ned vari abl e: nunBeeps
evt.ex.fr.intrp;type.ref.frame
- 48807
(#6008D1D1) . buttond i ckScript (),
Entering break | oop: level 1

If we look at the code we see that we’re trying to access the nunBeeps
variable from our but t ond i ckScri pt . That variable should refer to
our protol abel I nput Li ne view. What could be wrong? If we’ve
correctly declared nunBeeps to the pr ot oFl oat NGo, the pr ot oFl oat NGo
view should have a slot named nunBeeps. Let’s look in that view for
nunBeeps. (That view is the parent of our current self.).First, let’s get
sel f:

3: Push 'text

/1l get current self
beepi ngButton : = Get Current Recei ver (0);

#440F63D { _parent: {_ parent: {#440D221},
_proto: {#6008D0Cl1},
vi ewClhj ect: 0x110926D
vi ewcl i pper: 17863292,
base: <1>,
Vi ewFl ags:
vi ewBounds:

577,
{#440F5C1} },

_proto: {buttondickScript:<function, O
ar g(s)#6008D239>,
text: "Beep",
vi ewBounds: {#6008D539},
_proto: {@26}},
vi ewClhj ect: 0x110A530,
vi ewFl ags: 515}
Now, let’s get the parent slot and we will have the right view:
fl oat NGo : = beepi ngButton. _parent
#440F5DD {_parent: {mnute: 178,
downBut t on: {#440B2E9},
cal cul ator: {#4406159},
mai | Edi tor: {#44064Cl},
extrasDrawer: {#4409671},
def aul t Transport : Newt on:
{#4405DD9} ,
Qut O MenoryAl ert: {#4405D95},
notification: {#4405D35},
rem ndSlip: {#44060C5},
nanesButton: {#44063D9},
fol derEdit: {#4405DF1},
phoneKeyboar d: {#4405ECD},
ovButton: {#440643D},
upButton: {#4406461},
t hegang: {#44065F9},
printerSerial Pi cker: {#4405D05},

.
_proto: {viewBounds: {#6008D199},
stepChil dren: [#6008D1B9],
_proto: {@80},
debug: "nyFl oat NGo",
appSynbol : | Deno: NTK. Deno| },
vi ewClbj ect: 0x110926D,
vi ewcl i pper: 17863292,
base: <1>,
vi ewFl ags: 577,
vi ewBounds: {l eft:-25, top: 173, right: 139,
bott om 265} }
The nunBeeps slot doesn’t seem to be in the f| oat NGo. The view
otherwise appears to be correct. It sounds like a problem in
declaring. Let’s check the Template Info dialog for that template (see
Figure 3). Well, well, well. Turns out it actually wasn’t declared. We’ll

checkmark the “Declare To:” checkbox and rebuild.

Template Info

Name : | numBeeps

DDenlare To : | iy FloatMNGo ""'I

Figure 3: Template Info dialog showing undeclared numBeeps.

Second Problem (a Hard One)

We rebuild, download, and rerun. We write in a number and tap the
“Beep” checkbox. We get the following error in the Inspector:
Undefined variable: numBeeps
evt.ex.fr.intrp;type.ref.frame
-48807
(#6008D229).buttonClickScript(), 3: Push 'text
Entering break loop: level 1
This is exactly the same error at the same place we had it before.

Let’s check the f | oat NGo view again:
beepi ngButton : = Get Current Recei ver (0);
fl oat NGo : = beepi ngButton. parent
and here is what we find when the Inspector returns our result:

#4412BOD {_parent: {mnute: 181,
downBut t on: {#440B129},
cal cul ator: {#4406159},
mai | Edi tor: {#44064A1},
extrasDrawer: {#4409651},
def aul t Transport : Newt on:

{#4405DD9}
Qut O MenoryAl ert: {#4405D95},
notification: {#4405D35},
rem ndSlip: {#44060C5},
nanesButton: {#44063D9},
fol derEdit: {#4405DF1},
phoneKeyboar d: {#4405ECD},
ovButton: {#440643D},
upBut t on: {#440EF4D},
t hegang: {#44065D9},
printerSerial Pi cker: {#4405D05},

.
_proto: {viewBounds: {#6008D1F1},
stepChil dren: [#6008D211],
_proto: {@80},
debug: "nyFl oat NGo",
nunBeeps : N L,
stepAl | ocat eCont ext: [#6008D731],

appSynbol : | Deno: NTK. Deno| },
vi ewClhj ect: 0x1108C2C
nunBeeps : { _parent: <2>,
_proto: {#6008D5D1},
vi ewClhj ect: 0x1109F0C,
entryLi ne: {#4419229},
| abel Li ne: {#4418E49},
wi dth: 73,
i ndent: 75,
hei ght: 13},
viewcl i pper: 17863746,
base: <1>,
vi ewFl ags: 577}
The nunBeeps slot seems to be there and seems to point to what looks

like it could be our view. Let’s try to access it from the Inspector:
f | oat NGo. nunBeeps
#2 NI L

That doesn’t make sense. We can see that it is there. Let’s try another

way to get to that view using the Debug function:
Debug(" nunBeeps")
#2 NI L
Curiouser and curiouser. However, look very closely at the way the
nunBeeps slot prints out versus any other slot:
_proto: {viewBounds: {#6008D1F1},
stepChil dren: [#6008D211],
_proto: {@80},
debug: "nyFl oat NGo",
nunBeeps : N L,
st epAl | ocat eCont ext: [#6008D731],
appSynbol : | Deno: NTK. Deno| },
vi ewClhj ect: 0x1108C2C
nunBeeps : { _parent: <2>,
_proto: {#6008D5D1},
Other slots have no space before the colon (*:”), while the nunBeeps

slot has one space there. Could this have anything to do with our
problem? What if that space were significant? Let’s try calling Debug

with an extra space after nunBeeps:
Debug(" nunBeeps ")
and here is the Inspector return result that we get:
#4418AF5 { _parent: {_parent: {#4412B25},
_proto: {#6008D0Cl1},
vi ewCCbj ect: 0x1108C2C,
nunBeeps : <2>,
vi ewcl i pper: 17863746,
base: <1>,
vi ewFl ags: 577},
_proto: {viewBounds: {#6008D681},
| abel : "Num Beeps: ",
entryFl ags: 10753,
_proto: {@89},
debug: "nunBeeps ",

preAl | ocat edCont ext: | nunBeeps |},
vi ewClhj ect: 0x1109FO0C,
entryLine: { _parent: <2>,
_proto: {#356429},
vi ewClhj ect: O0x110A83B,
vi ewFl ags: 10753,
vi ewBounds: {#4418F4D},
text: "2"},
| abel Li ne: { _parent: <2>,
_proto: {#356569},
vi ewClhj ect: O0x110A871,
text: "7?Num Beeps:",
vi ewFont : { @00},
vi ewBounds: {#4418E2D}},

w dt h: 73,
i ndent: 75,
hei ght: 13}

So if it acts as though the name had an extra space—maybe it does.
Let’s check the Template Info dialog for that template more carefully
(see Figure 4). Indeed, there is a trailing space after nunBeeps. We’ll
delete it and rebuild.

Template Info

Name : | nurmBeeps

Eneclare To : | rny FloathGa "’I

|Eance|| | (1] 4 |

Figure 4: Template Info dialog for numBeeps with an extra space at the end.

Third Problem

We rebuild, download, and rerun. We write the number “2” and tap
“Beep.” We get the following error in the Inspector:
Expected an integer, got nil

evt.ex.fr.type;type.ref.frane
- 48406

(#6008D229) . buttond ickScript(), 27: PushConstant N L
Entering break | oop: level 1
We’re still in our buttond i ckScri pt, about to execute the code at
program counter 27. Here’s the NewtonScript code for the
buttond i ckScri pt :
func()
begi n
| ocal beeps := StringToNunber (nunBeeps.text);
for i := 1 to beeps do

end

: SysBeep() ;

Let’s look at the disassembled code for the buttond i ckScri pt:

D sasn(Get Current Function(0))

Fi ndVar
Push
Cet Pat h
Push
Cal |

Set Var

nunBeeps

"text

1

" StringToNunber
1

beeps

PushConst ant 1
Set Var [
Cet Var
Set Var
PushConst ant 1
Set Var i
Get Var i]incr
[
2

o
NEQOINONRWNERO

13: Get Var

Br anch
17: PushSel f
18: Push ' SysBeep
19: Send 0
20: Pop
21: Cet Var
22: | ncr Var I
23: Cet Var
24: Branchl f LoopNot Done 17
27: PushConst ant NI L
28: Return

#2 NI L

We’re about to execute the code at offset 27—it looks as though we’re
at the end of the loop. Let’s look at the values of our variables to see

if they are reasonable:
CGet Al | NamedVar s(0) ;
#4419641 {beeps: NL,
i 1,
ijlimt: NL,
i|incr: 1,
nunBeeps: {_parent: {#4418345},
_proto: {#6008D5D9},
vi ewClbj ect: 0x110A57D,
entryLi ne: {#44186F5},
| abel Li ne: {#44181FD},

H
oy

wi dth: 73,

i ndent: 75,

hei ght: 13},
text: "Beep",

SysBeep: <function, 0 arg(s) #350E8D>}
It doesn’t seem right that beeps is nil. In fact, that would explain the
error we got. The for loop expected an integer, but got nil. But why is
beeps nil? It was obtained from calling St ri ngToNunber on
nunBeeps. t ext . Let’s start by looking at nunBeeps more closely:

nunBeeps : = CGet NanmedVar (0, 'nunBeeps);
#4417EA9 { parent: { _parent: {#4411D11},
_proto: {#6008D0Cl1},
vi ewClbj ect: 0x110A483,
nunBeeps: <2>,
vi ewcl | pper: 17863765,
base: <1>,
vi ewFl ags: 577},
_proto: {viewBounds: {#6008D689},
| abel : "Num Beeps: ",
entryFl ags: 10753,
_proto: {@89},
debug: "nunBeeps",
preAl | ocat edCont ext: nunBeeps},
vi ewChj ect: 0x110A57D
entryLine: { _parent: <2>,
_proto: {#356429},
vi ewClhj ect: O0x110A58C,
vi ewFl ags: 10753,
vi ewBounds: {#4418301},
text: "2"},
| abel Li ne: { _parent: <2>,
_proto: {#356569},
vi ewClhj ect: O0x110A5C2,
text: "7?Num Beeps:",
vi ewFont : { @00},
vi ewBounds: {#44181E1}},

w dt h: 73,
i ndent: 75,
hei ght: 13}

Now let’s look at the value of the t ext slot in nunBeeps. Expecting to

find the value of 2, we get a surprise instead:
nunBeeps. t ext
#4632AD "

There isn’t at ext slot in the nunBeeps view or template. So the value
of nunBeeps. t ext must be coming from the pr ot oLabel | nput Li ne
itself. Notice, however, that there does seem to be a t ext slot with
the value "2" in nunBeeps. entryLi ne. But of course! For a

pr ot oLabel I nput Li ne, the input text isn’t found in the text slot of the
| abel I nput Li ne view, but in the text slot of the child view where the
input is actually done. With this bit of fresh information we can now

modify the code in the buttond i ckScri pt . Our code should actually
be

func()
begi n
| ocal beeps : =
Stri ngToNunber (nunBeeps. entryLi ne. text);
for i := 1 to beeps do
: SysBeep() ;

end

Fourth Problem

We rebuild, download, and rerun. We write in “2” in the input line

and tap the Beep button. We get the following error in the Inspector:
Expected an integer, got <a real nunber>
evt.ex.fr.type;type.ref.frane
- 48406
(#6008D229) . buttond i ckScript(), 27: PushConstant N L
Entering break | oop: level 1
Hmm. This is the same location where we broke before. Last time the
error was “Expected an integer, got nil." This time it got a real
number. Let’s take a look at beeps:
Cet NanedVar (0, ' beeps);
#4418E79 2. 00000
Well, that’s the problem. The beeps variable is a real number, not an
integer. Using our brilliant deductive capabilities we realize that
St ri ngToNunber must return a real number. Let’s check within the
Inspector:
StringToNunber ("2");
#4419331 2. 00000
StringToNunber("2.5");
#44193ED 2. 50000
We’ll use the Fl oor function, which rounds down a real number to an
integer, to fix our problem:

Fl oor (St ri ngToNunber ("2"));
#8 2

Fl oor (Stri ngToNunber ("2.5"));
#8 2

Let’s rewrite the buttond i ckScri pt. We’d better keep in mind that
Stri ngToNunber might return nil if we pass in a nonnumeric string
(wonder what would happen if we called Fl oor with ni | ?):
func()
begi n
| ocal beeps :=
Stri ngToNunber (nunBeeps. entryLi ne. text);
i f beeps then
for i := 1 to Floor(beeps) do
: SysBeep() ;
end
We rebuild, download, and rerun. We write in “2” in the input line
and tap the Beep button. Lo and behold, the Newton beeps (although
it’s hard to tell there are two beeps because the second beep starts
before the first beep finishes). Just to be thorough, we write in “two”
in the input line and tap the Beep button. Nothing happens, just as
we desire.

