slimPicker: A Slimmer listPicker Proto
by Jeremy Wyld and Maurice Sharp, Apple Computer, Inc.

The Newton 2.0 OS provides many new prototypes for developers to use. One of the
popular onesispr ot oLi st Pi cker . It was designed to provide a generalized framework
and interface for presenting lists of choices to the user. Unfortunately, pr ot oLi st Pi cker
also triesto do everything for the developer. The result isacomplex API, and overhead in
gpace and time that is not necessary in alot of cases. This article presents aslimmer picker.

The Data Isthe Picker (listPicker)

Most of the overhead from listPicker is due to the way that it handles data. The purpose of
listPicker isto display lists of datathat the user can select items from. The data items can be
elementsin an array, soup entries, or amix of both. To make the developers life easier,
listPicker requires some understanding of what the datais and how it isformatted. Thisis
where the pickerDef and nameRef structures come from.

A nameRef is ageneric datawrapper. It can be used to wrap an array element or a soup
entry. All of the relevant data dots are part of the top level frame of the nameRef so that
listPicker does not need to modify the actual datareferenced by the nameRef. The
pickerDef isthe code object responsible for creating and managing nameRefs.

The pickerDef and nameRef structure provides flexibility, but datathat is only array based
or only soup based pays the overhead for representing the mixed array/soup data. Every
line of data displayed in the listPicker requires a nameRef structure which requires heap
space. Each nameRef created requires several levels of function callsto the pickerDef
object. Each access to a nameRef requires several levels of functions cals. Thisistrue even
for asimple access such as comparison. Caching the data in the nameRef can sometimes
avoid the calling overhead, but it costs heap space.

The pickerDef/nameRef abstraction does provide some benefits. In addition to the obvious
mixing of array and soup items, it aso enables listPicker to render the individual data
display lines with little developer intervention. It also makesfiling easy. On the downside,
the representation is quite brittle. The seemingly simple task of using an icon asthefirst
item in the rendered line of datais actually very difficult to implement.

A hidden cost isthe complexity of learning to use listPicker. To create assimple picker that
displays developer data requires understanding protoListPicker, the pickerDef object (such
as protoNameRefDataDef) and the nameRef wrapper. It also requires learning how these
three entities interact. Thereisno clear delineation of data manipulation and display
characteristics. A good example of thisis single selection, which is a characteristic of the
pickerDef not the listPicker.

Another hidden cost isthe “cursor” used by the listPicker. In order to handle both array-
and soup-based data, the listPicker must implement a pseudo-cursor that can wrap both
types of data. Unfortunately, the details of the implementation are hidden. This means that
it isvery difficult to use listPicker on datathat is represented across multiple soups.

If you are displaying lists of names, or if your data can be both array and soup based,
listPicker provides anice proto for you to use. However, for most developers, al they
want isto display soup-based datain alist. Enter slimPicker...

2

You Data, Me Picker (slimPicker)
When we set out to design slimPicker, we set four goals (well five, see below):
1 ProvidethelistPicker look and fedl.
2 Minimize space and time costs.
3 Makeit easy for the developer to understand and use.
4 Allow the devel oper to customize it with minimal effort.

Originally, we had afifth goal of keeping the same API aslistPicker. We hoped that a
developer could just substitute slimPicker for listPicker and everything would work.
However, we dropped that requirement after finding that supporting the API required very
similar overhead to listPicker. Most of the overhead came from an iterator that could work
with both soup cursor and arrays.

Once we dropped the requirement for supporting the API, we aso dropped the pickerDef
and nameRef structures. This contributesto all four goals. Most of the overhead of
listPicker isin the pickerDef/nameRef call chains, asis most of the complexity and
brittleness of implementation.

Therest of this section gives some examples of how the goals effected the design and
implementation.

L ook and Feel

Thelook and feel was easy to do. We examined listPicker to see which individua e ements
were used in its construction. We had the source code, but you could do asimilar thing
using DV in theingpector. We used the same elementsin dimPicker with only one notable
exception: instead of using apr ot oSt ati cText for the selection counter, we draw it. This
saves a hit of time and space (though not much.)

The main part of dimPicker isimplemented using a protoOverview because it can be used
with either array- or soup-based data. It requires a cursor (or cursor-like) object for
iterating over the data. The other nice feature of protoOverview isthat it handles the
selection check boxes.

The downsideisthat there is no supported way to cache the shapes used for each data
display line. Thisresultsin atime penalty every time the display list of data linesis rebuilt.
Unfortunately, this occurs any time you update the visual display list (that is, scrolling and
the RefreshPicker call.) Luckily, imPicker doesthis faster than listPicker. If SlimPicker
were built into ROM, we could overcome this difficulty by using undocumented features.
However, we did not use these features because they are likely to change in future Newton
OS devices.

Space and Time

The main performance gains come from making the developers responsible for their data.
Thereisno pickerDef or nameRef structure to provide a generic data wrapper. Instead there
isawell defined interface between dimPicker and the data. The devel opers are responsible
for rendering the shape that is aline of data. They are aso responsible for providing the

3

cursor structure used by protoOverview, handling verification, creating new items
(including any editing dips) and maintaining alist of the current selections.

Note that eliminating the pickerDef aso eliminates the popup and validation overhead. In
listPicker, the only way to determineif agiven item in a column requires a popup character
isto build the popup. That means each line of data built by listPicker requiresacall to
MakePopup in the pickerDef. In slimPicker, if apopup isrequired, the developer renders
the popchar into the display line for that data. They also need to detect if ahit to that lineis
in the popable item, pop the correct picker and handle the result.

Although it seems like we have added more work for the developer, it isactually easier to
implement a simple soup-based dimPicker than an equivalent listPicker.

In essence, we speeded up simPicker and reduced the space by removing the data
abstraction layer. This does increase the work a developer must do, but it also removes
most of the overhead as well as reducing the complexity of the proto.

Easy to Understand and Use

In addition to eliminating the pickerDef/nameRef/listPicker interactions, we also reduced
the overall number of dots and methods that a devel oper needs to learn. As an example, all
of the listPicker "suppress’ settings are now in one bit field called

vi si bl eChi | drenFl ags.

Another good exampleis adding new items. In listPicker you had to enable the New button
and then provide several methodsin your pickerDef. In addition, the callbacks for adding
the new item are sent to the pickerDef context, not to the listPicker. In imPicker, you
enable the New button and provide one method called Cr eat eNewl t em On the downside,
dimPicker will not do any work such as bringing up adip or calling back when the dip is
dismissed. Instead, Cr eat eNewl t emis called when the New button is pushed. Everything
elseisup to you.

The change that provides the most flexibility is letting you render aline of data. You
provide an Abst r act method that is given the dataitem and a bounding box and returns a
shape that represents the data item. That means you can put anything in that shapethat is
required, including icons and columns. In listPicker, adding an icon was difficult at best.
In slimPicker, just add it to the shape for your dataline.

dimPicker also provides an Al phaChar act er cal that letsyou return the character used for
sorting a particular item of data. In listPicker you would have to provide at least one
method (possibly two) and set up the column description. If the first displayed column of
data was not the one used for sorting, there are additional methods and dlots that must be
provided. This meansthings like displaying iconsin the first column is very difficult. For
slimPicker, you can display what you wish, and control the order with Al phaChar act er .

A downside of dimPicker isthat the developer isresponsible for tracking selection. The
developer needsto providethel sSel ect ed and Sel ect | t emmethods that do the right
thing. Each change in selected state will require an update in the visua display of the data
lines, which means redoing the children of the overview (that is, acall to Ref r eshPi cker

).

Single select isrelatively easy to implement, use asingle dot to represent the selected item
and refresh the picker. Your sel ect | t emmethod will replace the value of the slot and your

4

| sSel ect ed method will only return true if the entry passed in matches the one in the dot.
Therest is handled by slimPicker.

Easy to Customize

Even though single selection is provided by listPicker (through the pickerDef!), it provides
anice example of how dimPicker is easy to customize. It also points out that, once again,
eliminating the pickerDef/nameRef representation was a good decision.

Perhaps the biggest area of customization in imPicker isthe ability to change the data
types and representation on the fly. In listPicker it is not possible to change the pickerDef
or modify the cursor that access the data. The only way to do that is to close and open the
listPicker. With dimPicker you have complete control over how the datais accessed
(cursor) and how it is represented (Abst r act). All that isrequired isacall to

Ref r eshPi cker, and everything will update.

Another exampleisfiling. To add filing you just add the support you normally would in an
application. That is, activate the folder tab (set the appropriate flag in

vi si bl eChi | dr enFl ags), then provide the standard system API for filing (appAl I,

NewFi | i ngFi | t er, etc.). When the filter changes, you can change your cursor and call
Ref r eshPi cker.

Six of One, a Dozen of Another

This section gives you some comparisons between listPicker and imPicker. To be candid,
the tests are stacked in favor of imPicker. They are based on simple soup-based viewing.

All the tests were performed on the same MessagePad. MP 120, running Newton OS 2.0
and having 79 entriesin Names. The listPicker-based FAX picker was opened from faxing
anote and choosing "Other Names' from the Name picker. Heap space was measured
before and after the picker was opened using HeapShow in the accurate setting with no
timed updates. Timing started when the picker including "Other Names' was closed and
stopped when the FAX picker was opened.

For the listPicker based People picker, we used the PeoplePicker-1 sample from Newton
Developer Technical Support. Heap usage was measured using HeapShow. Timing started
after the pen was released on the icon in the extras drawer and ended when the people
picker appeared and was ready for input.

The dimPicker measurements were done on the protoSlimFaxPicker-1 and
protoSlimPeoplePicker-1 code samples. These will be on Newton Developer CD #10 and
on the web at http://dev.info.apple.com/newton/techinfo/slimPicker.html.

listPicker simPicker
Heap Used | FAX picker 9300 3856
in bytes People picker 8496 2740
Timeto Open | FAX picker 5 3
in seconds People picker 3 2

5

Asyou can see from the table, dimPicker is more efficient than listPicker in all cases. For
heap usage thisis not really surprising: listPicker has the overhead of nameRefs, amore
complex selection tracking, extra cursors and apickerDef. And slimPicker aso has minimal
extrainformation.

Timeto open isabit different. Both listPicker and slimPicker use protoOverview, but
listPicker also hasto construct the soup/array iterator and the nameRefs. In addition, each
data access has the overhead of calling through the pickerDef object. dimPicker can just
iterate over thevisible dataand call Abst r act on each entry. Thereisvery little
housekeeping overhead.

Unfortunately, slimPicker is still fairly slow to launch. A quick profile of limPicker shows
that about 10% of the opening time is spent in the Abst r act method of protoOverview.
The other major piece is probably soup access. This means there is no effective way to
speed up the code. The usual idea of caching is not useful since the slownessis part of the
opening process. If the lowness was in scrolling, caching might makes sense, but of
course that would increase the memory footprint.

One measure that is harder to estimate is the size of the object. We can get a good measure

of dimPicker by either looking at the size of the package on the desktop, or by using
TrueSize on the MessagePad. Thereis no similar way to find the size of listPicker.

API

This section presents the API to slimPicker. Of course, you will have al of the source code
so you could modify anything. But just in case this code shows up in ROM someday, stick
tothe API.

Slots

cursor
Thisdlot isrequired.
The iterator for the data displayed by the slimPicker. Can be either a soup cursor or a
devel oper-defined object that implements the methods required by the cursor slot of

protoOverview. See the Newton Programmers Guide or Newton Developer Technical
Support Q& A for more information on the protoOverview cursor structure.

f ol der TabTitl e

The text to put into the protoFolderTab. Thisis used to identify the dimPicker that is
open. The default isNIL (i.e., no title).

Y ou can use SetVaue to change the value at runtime.

revi ewSel ecti ons
If true, the dimPicker will only display the selected items. If NIL, al itemswill be
displayed. Corresponds to the " Selected Only" checkbox in the user interface of the
dimPicker. The default isNIL.

Y ou can use SetValue to change the value at runtime.

vi ewLi neSpaci ng

An integer representing the height of each line of datain the dimPicker. Thisvalue
must be at least the height of the checkbox. The default is 14.

vi si bl eChi | drenFl ags

Bit flags identifying which child views are to be visible. The values are:

Constant Value | Shows/Hides

vNewBut t on (1 << 0) | New button for adding new data items
vScrol lers (1<<1) | Scrollersfor scrolling the list
vAZTabs (1<<2) | AZTabsfor alphabetica navigation
vFol der Tab (1 << 3) | Folder tab for filing

vSel ectionOnly | (1<<4) | Sdection Only checkbox

vCl oseBox (1 <<5) | Closebox for closing the slimPicker

vCount er (1 << 6) | Count of selected items

The default isall viewsvisible.

Methods

sl i mPi cker: Abstract (entry, bounds)
This method is required.
Returns the shape that represents the given entry in the slimPicker. The shape must
not be larger than bounds. Thisiswhere the devel oper renders an individual line of
data. The returned shape must be one that DrawShape can use.

sl i mPi cker: Al phaChar acter(entry)
Thismethod isrequired if the AZTabs arevisible.

Returns a character representing the index value for the given entry. The character
will be used to set the appropriate tab in the AZTabs.

sl i mPicker: CreateNew tem()
This method isrequired if the New button isvisible.

The method is called when the user taps the "New" button. The developer is
responsible for any work that needs to be done to add the new entry. Thisincludes

7

creating and opening any editing or data entry dlip, adding the data to the cursor,
selecting the new item, and refreshing the imPicker (see RefreshPicker below).

slimPicker: GetHiliteShape(xcoord, bounds)
Thismethod is called to get the hilite box for alist item. The developer should
provide this method if they wish to create a multiple column picker. This method
should return something suitable for DrawShape.
xcoor d isthe current x coordinate of the pen normalized to bounds.
bounds isthe bounding box for the item being hilited.

slimPicker: Get NumSel ect ed()
Thismethod isrequired if the counter isvisible or Updat eSel ect edText iscalled.

Returns the number of selected items.

slimPicker:HitListltemindex, xcoord, ycoord)
Called if auser has tapped on one of the itemsin the list. This method is called after
the user has lifted the pen, not during the tracking of the hilite. It isonly caled if the
tap occurred in the devel oper portion of theline. It isnot called if the tap occurred in
the checkbox.

Thei ndex is 0 based from the top of the displayed items. Note that cursor:Entry()
correspondsto index 0. You can find the hit item by using cursor:Move(index).

xcoor d and ycoor d are the pen coordinates of the pen just before it waslifted. If you
are displaying multiple columns, you can use these values to determine which column
was hit. These coordinates are normalized to the picker list.
Note, the context of this call isthe picklist embedded in the imPicker proto.
The default method does nothing.

slimPicker:|lsSelected(entry)
This method is required

Return trueif the given entry is selected, NIL if it isnot. Note that tracking the
selected items is up to the developer. imPicker provides no mechanism to do this.

slimPicker:PickLetterScript(letter)
Thismethod isrequired if the AZTabs are displayed.

Called by the AZTabs in the dimPicker when the user selectsagiventab. | etter isa
string containing a single character indicating which letter was tapped in the AZTabs.

This method should move the cursor to the appropriate entry and call RefreshPicker
to update the displayed data.

sl imPicker: RefreshPi cker ()

This method forces an update of the itemsin the dimPicker. Thisincludes the picker
itself, the AZTabs, and the arrows.

The dataitems will be re displayed from the current cursor entry.
slimPicker: Selectltem(index)
This method is required.
The user has clicked on the checkbox of the index'th data item. The devel oper should
update their list of selected items accordingly. Note that the implementation details of
keeping track of the selected itemsis up to the devel oper.
See Hitltem above for adiscussion of how to find the index'th data item.
slimPicker: Toggl eShowSel ecti ons(i sOn)
Thismethod isrequired if the Selections Only checkbox is shown.

Called when the user taps on the " Selections Only" checkbox. i son istrueif the
checkbox is checked, NIL if itisclear.

The developer should update the cursor to show either only selected items (i sOn is
true), or al items (i son isnil). slimPicker will refresh based on this new cursor.

slimPicker: Updat eSel ect edText ()

Force the dimPicker to update the text that displays the number of selected items. Call
thisif you programatically change the selected items without user intervention.

Other Pieces

If you use the filing tabs, you must supply the slots and methods required by the standard
protoFolderTab. See the Newton Programmers Guide information on filing for more
information on these slots and methods.

If you are using soup-based data it is recommended that you register for soup change
notification while the picker is open. That way you can programmatically update the picker
using RefreshPicker when stores change or the soup is changed.

