Mini-Meta Data: Another way to get information to your PC
Ryan Robertson, Apple Computer, Inc.

This article describes the development of a pair of applications that export data from a Newton
device to adesktop computer. There are two applications: one that runs on a Newton device and

one that runs on a desktop computer.1 They are designed to allow a devel oper to register data
definitions so that soup information can be transferred between the Newton device and the desktop
computer.

You Are the Connection

With al the additions to the Newton 2.0 OS, it may seem like exporting data to your desktop
computer has been overlooked: it has not: the intention is for application developersto incorporate
the Desktop Integration Libraries (DILs) into their existing applications. This approach will alow a
user to directly connect to their Newton device using their favorite desktop application. Before the
DILs became available, the user was required to use a second application called Newton
Connection Kit to transfer their Newton device's datato a more generic format that could then be
used by desktop applications.

The Desktop Integration Libraries are a set of platform-independent C libraries and APIs that can
be easily incorporated into an existing application. They provide all the necessary support to
connect to your Newton and to transfer data between a Newton device and a desktop computer.

There are currently two types of DILs: the communication DILs (CDILSs), and the frame DILs
(FDILS). The communication DILs are used to open a connection with the Newton and to read and
write bytes of data. The frame DILs let you read and write other Newton data types, such as
frames and arrays.

The two largest advantagesto using the DILs are:
1) The DILs abstract all underlying transport detailsinto an easy to use API.
2) Your code will run on MacOS™ and Windows™ with very little modification.

The implementation of the Newton application described in this article isintended to be as generic
and extensible as possible and allows a devel oper to register information about how to format data
beforeit is sent to the desktop computer. By doing this, the Newton application can export data
from many different soups using many different formats (this format will be explained below in
further detail). For instance, you will be able to export your Names file to atab-delimited format
that could be read into a database or a spreadshest.

The desktop application will take the incoming data and dump it into atext file. It should also be

designed so that it will easily port to other platforms. This means that the user interface code will

be separated from the implementation code. Thisimplementation only deals with text data, so the
FDILs are not needed.

I'll begin this discussion by describing the protocol used for transferring data between the Newton
device and the desktop computer. After that, I'll go into more detail of some of the major design
decisions for both the Newton application and the desktop application.

1 Mini-MetaData is a Newton DTS sample that should be available by
press time. You can find the Mini-MetaData source code on AppleLink and
the Newton WWW Site (http://dev.info.apple.com/newton/newtondev.html).
The next Newton Developer CD will also contain this sample.

Yakity Yak, Do Talk Back
The protocol used for sending and receiving dataisfairly simple. First | will discuss the Newton
side of the protocol.

At various times during the connection, the Newton will send one of three things. a command
code, astring length, or a string. The command codes have been purposefully selected as large
numbers so as to avoid conflict with the string length. Table 1 summarizes the command codes
sent from the Newton during the protocol.

Table 1. Command Codes Used by the Newton Protocol
Command codename | Command code value Description

kNewtonCancelled OXOFFF Sent when the user presses the “ Cancel”
button on the Newton.
kNewtonFinished OxOFFE Sent when all of the data has been

transferred to the desktop application.

Command codes are only sent when the user is canceling the operation or the export has
completed. Therest of the protocol on the Newton side consists of sending strings to the desktop
computer. In our protocol, the length of the string is sent first to | et the desktop application know
how large the receiving buffer needsto be. By using this technique, we guarantee that there will be
no ambiguity asto whether the received datais a command code or a string length.

Hereisthe C function that reads data from the CDIL pipe on the desktop. It returnsavaue
indicating whether the read was a success, afailure, acancel, or whether the Newton is ready to
disconnect.

| ong ReadBuf fer(LPSTR bufferPtr, long* length)
{

Bool ean eom
CommEr r ankErr;
| ong command,;

I/ read the first four bytes, this will either be a command code or a string length
*length = 4;
anErr = CDPi peRead(gQurPipe, &ommand, |ength, &om 0, 0, KkPipeTimeout, 0, 0);
if (anErr) {

return kReadError;
}

/]l interpret the command code and act onit. If the data was not a command code,
// then it is a string length, so read in the string
i f (command == kNewt onCancel | ed)
return kNewt onCancel | ed,;
else if (command == kNewt onFi ni shed)
return kNewt onFi ni shed;
else if (command) {
*| ength = conmand;

Il resize the buffer to the size of the string plus one for the null character.
if (realloc(bufferPtr, command+l)) {
anErr = CDPi peRead(gQurPipe, bufferPtr, length, &om 0, O,
kPi peTi neout, 0, 0);
if (ankrr)
return kReadError;

bufferPtr[(*length)] = (char)O0; // Null terminate the string

return kReadSuccess;

}

return kReadError;
} /] ReadBuffer

The desktop PC side of the protocol consists of four command codes which are summarized in
Table 2.

Table 2. Command Codes Used by the Desktop PC Protocol

Command code name Command code value | Description

kHeloCommand OxOFFD Sent when the connection has been
established. Thistellsthe Newton
application to start the protocol.

kGoCommand OxOFFC Sent when the desktop application IS
ready to start receiving the export data.

kAckCommand OxOFFB Sent after the desktop has successfully
received aline of data.

kErrorCommand OxOFF9 Sent If thereisan error during the
connection.

Because most of the data transfer consists of the Newton device sending data to the desktop
machine, the Newton application uses only one input specification for the entire protocol.

{form ' nunber,

Input Script: func(ep, data, termnation, options) begin
if data = kHel | oCommand then begin // Hello command was recei ved,
// start the protocol.
ep: DoEvent (' StartProtocol, nil);
end else if data = kGoCommand then begin // go command was recei ved.
// Initialize and output the first line
ep. _parent. f StatusVi ew StopBarber();

| ocal nuneEntries := ep.fQursor: CountEntries();
ep: Parent (). f Stat us\Vi ew GoGoGadget Gauge(nunintries, kSendi ngDataString);

ep: DoEvent (' QutputData, nil);
end else if data = kAckCommand t hen /1 ack command was recei ved,
//output the next line
ep: DoEvent (' QutputData, nil);
el se begin /! There was an error, so di sconnect
Get Root (): Notify(kNotifyA ert, kAppNane, kProtocol ErrorString);
ep: DoEvent (' Cancel, nil);
ep: DoEvent (' D sconnect, nil);
end;

nil;

end,

Conpl etionScript: func(ep, options, result) begin
ep: DoEvent (' D sconnect, nil);

end,

}

If an unknown command code is received on the Newton device, the Newton application signals a
cancel and disconnects. An unknown command code is likely to be caused by a communications
error. If the protocol were more robust, the Newton could try to resync with the desktop machine
and start sending data again

Protocol of the Wild

Once the connection has been established, kHel | oConmand is sent from the desktop PC to the
Newton device. Seeing the kHel | oConmmand, the Newton application will send the name of the
application for verification purposes. This name is checked on the desktop PC to make sure the
connection iswith the Mini-MetaData application and not with the Newton’ s built-in Connection
application or with the Toolkit App.

The next step is for the Newton application to send the name of thefile that data will be exported
to. Once the desktop PC receives this name, the standard save dialog will be opened with that file
name as the defaullt.

When the user finishes selecting the target file, the desktop application will send k GoComand
indicating it is ready to begin receiving data.

At this point, the Newton application begins sending data in the following pairs. a string length
followed by the string. When the desktop successfully receives and writes this string to the file, it
will send ankAck Command to the Newton to signal that it is ready for more data.

Finally, the Newton application sends kNewt onFi ni shed when it hasfinished transferring data. It
then disconnects.

If the desktop encountered an error during the protocol, it will send kEr r or Cormand to the Newton
and disconnect.

Here is an example of the protocol in action:

Newt on Deskt op

Waits for
connection

Initiates

connection
Sends kHel | oConmand
Sends "M ni - Met aDat a"

Sends fil e nane

Sends kGoCommand

Sends | engt h of

data, then data Sends kAckCommand (Repeat until al

data is sent)

Sends
kNewt onFi ni shed

AN

Sends kByeCommand

Di sconnect s Di sconnect s

Figure 1. Newton-Desktop Communication Protocol
Now that you understand the protocol, lets dive into the code on the Newton.

Newton Side Up

To extend the mini-meta data application, you will add aformat frameto agloba registry. The
format frame includes such information as which soup to send data from, what the query
specification is, and how to create a formatted string from a soup entry. Thisregistry will be
discussed in more detail below.

The Newton application handles the format information and provides asimpleinterface for
selecting which format to use. To keep the implementation as generic as possible, aform of meta
datawas created. Using this meta data, a developer can have a maximum amount of control over
the format of outgoing information without explicitly having to know much information about the
Newton storage or communications systems.

Hereis a screen shot of what the Newton interface looks like.

MetaData

Matrnes File - First, Last

Matres File - First, Last, Address, Phone
Marnes File - First, Last, City

Marmes File - First, Last, City if exists

®Folder All Folders

© &
Figure 2. The Mini-MetaData User Interface

The NTK Project for the Newton application consists of 10 files, 4 of which are layout files.

Igmg mMini-mMetabata gggl
Seq. Name Type Size HMod. Date Path Name
1 Mini-Metalatarsrc Resource 491 4/5/96-3:00 PM HD» Decshotop Folder P inidetabata1 L ﬁ
2 Project Constants Text 2364 SA7/96-3:40 PM HD» Decshotop Folder P inidetabata1 L
3 protoEvent Froto 2444 3/18496-6.57 PM HO» Desbctop Foldet Piniietabata1 .
4 protoState Froto 2444 Z/12/96-6:56 PM HEr Desbotop Foldet Pini-tietabata1 .
5 protoFSH Froto 4208 2/20/96-12:47 PM HEr Desbotop Foldet Pini-tietabata1 .
& Endpoint.t Layout T182 S/T7/96-21Z FM HO» Desdctop Fobdet Pini-ietabata1
T StatusMiew .t Layout 5548 SAT/PE-2012 PM HEr Desbotop Foldet Pini-tietabata1 .
8 ProtocolFSMH Layout 0443 S/T/PE-5 10 PM HEr Desbotop Foldet Pini-tietabata1 .
9 #kaint Layout 12111 5/7796-3 46 PM HOr Dedtop Foldet Pni-tietaData1 .
i
<afm =g,

Figure 3. The NTK Project Window for the Mini-MetaData Application
The important files to look at are: Endpoint.t, StatusView.t, Protocol FSM, and Main.t.
The hierarchy of the Newton application isillustrated in Figure 4.

Mai n Vi-ew
_proto:e P | Prot 0App

Pr ot ocol FSM
_proto:e P | Pr ot oFSM

v

St at usVi ew
_proto:e—}——pp | protoBasi cEndpoi nt

\ 4

Endpoi nt
_proto:e P | protoStatusTenpl ate

Figure 4. Hierarchy of the MiniMetaData A pplication

GoGoGadgetStatusView

It is very important to give the user feedback during the connection. Newton 2.0 OS provides a
terrific proto, pr ot oSt at usTenpl at e, for conveying status information to a user. StatusView.t
contains the template for the status view that is used during the connection. One of the beauties of
using pr ot oSt at usVi ewisthat it has multiple personalities. Among other things, aview based on
protoStatusView can be asingle line of text, a barber pole, or agauge. During our connection we
will use al three of these.

The barber pole element is used during the connection phase. The barber pole was chosen because
the time it takes to connect is not aknown value, and asimple line of text doesn’t necessarily give
the user the impression that alengthy operation is taking place. During the connection phase, the
user may forget to signal a“wait for connection” event on the desktop which leaves the Newton
waiting until the connect request times ouit.

The gauge element is used while data is being sent. Because we know the number of items that will
be sent, adeterministic interface element is a more appropriate choice here.

The ssimple status view is used for disconnecting. A barber pole was not used because the
disconnect operation is usually very fast. The disconnect operation will also complete successfully
regardless of whether the desktop computer is disconnecting.

The status view template has three main methods of interest. They are: GoGoGadget Bar ber Pol e,
GoGoGadget Gauge, and GoGoGadget Si npl eSt at us. Each of these methods will set up the status
template with the correct information and open it if necessary.

There are al'so some additional methods for updating the text, the gauge, and the barber pole once
the view has already been opened.

Back to the Basics

The mini-meta data application uses pr ot oBasi cEndpoi nt asthe prototype for the connection
endpoint. Using pr ot oEndpoi nt isnot recommended, and is actually impossibleto useina”2.0
only" application. This new endpoint proto is much more reliable and functional than

pr ot oEndpoi nt .

Endpoint.t contains the template for our endpoint. In addition to the standard endpoint methods,
there is one other method of interest: Qut put Li ne. Qut put Li ne callsahelper function to format a
soup entry into an output string (this method will be discussed in more detail later). It then outputs
that string and updates the status view.

Here isthe definition of OutputLine:

func() begin
local entry := fQursor:Entry();

// if there is an entry, then output the next line of data. Q herwi se,
/1 out put kNewt onFi ni shed and di sconnect.
if entry then begin

fData := :CGeateStringFronEntry(entry, fMetaDataFrame);

fQursor: Next();

// Qutput the length of the data then output the data. If either
/1l output fails then post a 'cancel event.
Qutput(StrLen(fData), nil,

{async: true,

form ' nunber,
Compl etionScript: func(ep, options, result)
begi n

if NOT result then

ep: Qutput(ep.fData, nil,
{async: true,
form 'string,
Compl etionScript: func(ep, options, result)
begi n

if NOT result then begin
ep. _parent. f Stat usVvi ew Updat eGauge() ;

ep.fData :="";
end el se
ep: DoEvent (' Cancel, nil);
end,
})s
el se

ep: DoEvent (' Cancel, nil);
end,
P
end el se begin
/1 Qutput kNewt onFi ni shed command and di sconnect when the Qutput conpl et es.
:Qut put (kNewt onFi ni shed, nil, {async: true,
form 'nunber,
Compl etionScript: func(ep, options, result)
begi n
ep. _parent. f Statusvi ew Fi ni shGauge();
ep: DoEvent (' D sconnect, nil);
end;
)

end;

end

Holy Finite State Machines Batman!

Using a deterministic finite-state machine for communications was covered in depth in the April
1996 issue of NTJ (volume 1, issue 2). This application leverages off of the sample code
produced for that article. Thefile of interest is Protocol FSM which has the layout of all the states
and events needed for our application.

There are three events worth pointing out. Thefirst event isthe ‘ Create’ event in the Genesis state.
This event sets up the endpoint, the status view, and registers a power off function. Any
initializations needed for the connection should be done here.

Next we have the ‘ Connect Success event in the ‘ Connect’ state. This event sets the input
specification for our protocol, and also has the definition of our input specification in the
flnputSpecification instance variable. This event is performed once there has been a successful
connection with the desktop compuiter.

Finally, we have the ‘OutputDatal event in the ‘ Connected’ state. This event simply calls the
endpoint's cut put Li ne method described above. So why is this event of interest to us? Another
possible implementation for outputting data would have been to call the cut put Li ne method
directly from the input specification. Doing this would remove an event from the state machine,
and make the code more centralized. However, by placing the cut put Li ne method in an event,
canceling functionality is provided for free. When the finite state machine receives a cancel event,
all posted communications requests will be canceled, including the input specification.

By using the finite state machine sample, the code is more understandable, and more modular. This
type of modularity provides an almost complete separation between the interface code and the
communications code. Having this separation will make future revisions easier.

All communications code on the Newton side is asynchronous. This decision was made because
synchronous comms are generally evil. When you post a synchronous comms request on the
Newton, an additional task is created - that’s Newton lingo for a new thread. This adds needless
overhead to the system, and can potentially reveal some interesting problems. For instance, you
may be outputting lots of datain aloop using synchronous output requests. Each time through the
loop anew task will be created, which is arather expensive operation. The new task will take up
system memory, and will not release control until it returns to the main event loop (which does not
happen until you are finished with your output loop). As a consequence, the Newton will
eventualy run out of system memory and come crashing to its knees. Another drawback of using
synchronous comms is that the user loses control of their Newton while the comms request is
waiting to complete.

Grand Central
Our main layout fileis main.t. Thisfile contains the code for selecting aformat, and creating an
output string from a soup entry.

The important function to look at is Cr eat eSt ri ngFr onEnt ry. Thismethod is called repeatedly
during the protocol. It is passed a soup entry and will return a string representation of that entry by
using the format frame. It iterates over the field array in the format frame, building a string from
the elements of that array.

func(entry, netaFrane)
begi n
local line, lineltem result;

line : = foreach lineltemin netaFrane.fields collect begin
// build the itemstring fromthe meta data frane.

/1 if lineltemis a path expression, the resolve it and return the val ue
if AdassCr(lineltem) = '"pathExpr OR AassC(lineltem) = 'synbol then begin
if entry.(linelten) then
entry. (lineltem) & metaFrane.itenBeparator;
el se
net aFr arme. enpt ySpace & net aFr ane. i t enBepar at or;
end else if IsFunction(lineltemformat) AND
HasSlot(lineltem 'pathExpr) then begin
/1 if we have a format function then pass in the value found using
// the pathExpr slot to the function.
result :=call lineltemformat with (entry.(lineltem pathExpr));
if result then
result & metaFrane.itenBeparator;

el se
net aFr ame. enpt ySpace & net aFr ane. i t enBepar at or;
end else if lineltemformat = 'quotedString AND

HasSlot(lineltem 'pathExpr) then begin
/1 if format is 'quotedString, then quote the val ue found using
/1 the pat hExpr slot.
result :=result;
if result then
$" &result & $" & netaFrane.itenBeparator;

el se
net aFr arme. enpt ySpace & net aFr ane. i t enBepar at or;
end else if lineltemformat = 'quotel fExists AND

HasSlot(lineltem 'pathExpr) AND
entry. (I'ineltem pat hExpr) then begin
// if format is 'quotel fExists then quote if the val ue found using
// the pat hExpr slot exists
$" &entry.(lineltempathExpr) & $" & netaFrane.itenBeparator;
end el se
net aFr ame. enpt ySpace & met aFrane. i t enBepar at or ;
end;

// return a string with the proper |ine separator
return Stringer(line) & metaFrane.!|ineSeparator;
end

Don’t Forget the Desktop

Asdiscussed earlier, the desktop application uses the DILsto transfer data between the Newton
device and the output file. The requirements of this application were simple enough that only the
CDILs were needed.

To help in the effort to create cross platform code, the project is broken into two Cfiles. Thereisa
file for the main OS event handling code and afile for the protocol code. They are Interface.c and
Protocol.c. The event code and the dialog code is not cross platform because much of that codeis
specific to either platform. The protocol code is cross platform and consists of the code to open the
connection with the Newton, handle the protocol, and close the connection.

There are four functionsin Interface.c that are not used for handling OS events. They are

Cr eat eNOpenFi | e, Wit eToFil e, Updat eNC oseFil e, and I ni ti al i zePi pe. Thefirst three are
not in Protocol.c because they contain file access routines that are specific to one platform. Why
InitializePipeisnotin Protocol.cisnot asobvious. the underlying transport options are
specified dightly differently depending on whether you are running on MacOS or on Windows.

OS Event Handling

Theinterface codeisin the Interface.c fileif you are using MacOS and isin the INTERFAC.C file
if you are using Windows. These files contain al the standard event handling code and should
probaby look pretty familiar. In addition to the above mentioned functions (Cr eat eNOpenFi | e,
WiteToFile, UpdateNC oseFile,andInitializePipe),the MacOS code contains one other
function of interest: Set upPor t Menu. Thisfunction correctly creates alist of the ports available on
the given machine. For instance, most Macintosh’ s have a printer and a modem port. However, if
the user is running on a Duo there is one printer/modem port.

Protocol.c

Thisfile contains al the code necessary to handle the protocol and the various states of the
connection. It aso contains the code to handle error reporting to the user. Most of the functions
and procedures in thisfile are easy to understand. However, there are a couple of areas that
warrant further discussion.

The procedure that handles most of the protocol is DoPr ot ocol (), and is defined as follows:

voi d DoPr ot ocol ()

{
St andar dFi | eRepl y fileReply;
short fileRef = 0;
| ong | engt h;
char *puf ferPtr = NULL;
| ong f Buf fer Resul t;
| ong ankrr;

/1 preallocate a buffer that we think will be | arge enough for nost data.
// This buffer will be resized as data is received.
if ('(bufferPtr = malloc(256))) {

Conduct Error Di al og(kNoMenoryString);

return;

}

/1 Send kHel | oComrand to the Newton
fBufferResult = WiteCommand(kHel | oCommand);
if (fBufferResult == kWiteError)

Fail (Fail Wite);

/1 Make sure the we have connected to the Mni-MtaData app on the Newton
fBufferResult = ReadBuffer(bufferPtr, & ength);
switch (fBufferResult) {
case kReadSuccess:
if (strcenp(kHel oResponse, bufferPtr)) {
Fai | (Fai | WongApp) ;
}

br eak;
case kNewt onCancel | ed:
Fai | (Newt onCancel | ed);
case kReadError:
Fai | (Fai | Read);
}

// Read the filenanme to save the incomng data to
fBufferResult = ReadBuffer(bufferPtr, & ength);
switch (fBufferResult) {
case kNewt onCancel | ed:
Fai | (Newt onCancel | ed)
case kReadError:
Fai | (Fai | Read);

// create and open the file, then start dunmping data into it.
anErr = GeateNpenFile(bufferPtr, &fileReply, &fileRef);
if (anErr == nokErr) {

fBufferResult = WiteCommand(kGoCommand);

if (fBufferResult == kWiteError) {
UpdateNd oseFil e(fileRef, &ileReply);
Fail (FailWite);

}

/1 Loop until there is either an error, or until the Newton sends a cancel
/! comrand or a finished command
while(true) {

CDidl e(gQurPipe);

fBufferResult = ReadBuffer(bufferPtr, & ength);

switch (fBufferResult) {
case kReadSuccess:
anErr = WiteToFile(fileRef, & ength, bufferPtr);

// if there was an error witing to the file, close the file, display
// an error and return.
if (anErr) {
Fail (Fail WiteFile);
}

// send an kAckCommand, if there was an error then handle it.
fBufferResult = WiteCommand(kAckCommand);
if (fBufferResult == kWiteError) {
Updat eNCl oseFi le(fileRef, &ileReply);
Fail (Fail Wite);
}
br eak;
case kNewt onCancel | ed:
Updat eNd oseFile(fileRef, &ileReply);
Fai | (Newt onCancel | ed);
case kNewt onFi ni shed:
Conduct Error D al og(kDownl oadWasSuccessful);
Updat eNdl oseFi le(fileRef, & ileReply);
free(bufferbPtr);
bufferPtr = NULL;
return;
case kReadError:
Updat eNd oseFi le(fileRef, &ileReply);
Fai | (Fai | Read);

}

Wi teCommand(kError Command);
free(bufferbPtr);

buf ferPtr = NULL;

return;

// These are the CGoto locations that are junped to using the Fail () macro.
Fai | Wite:

Wit eCommand(KError Command);

Conduct ErrorDi al og(kBufferWiteErrorString);

free(bufferPtr);

bufferPtr = NULL;

return;

Fai | Read:

Wit eCommand(KError Command);

Conduct Error D al og(kBuf ferReadErrorString);
free(bufferPtr);

bufferPtr = NULL;

return;

Newt onCancel | ed:
Conduct Error D al og(kNewt onCancel | edString);
free(bufferPtr);
bufferPtr = NULL;
return;

FailWiteFile:
Conduct ErrorDi al og(kFileWiteErrorString);
Wi teCommand(kError Command);
Updat eNCl oseFi le(fileRef, &ileReply);
free(bufferbPtr);
bufferPtr = NULL;
return;

Fai | WongApp:
Conduct Error Di al og(kW ongAppString);
free(bufferbPtr);
bufferPtr = NULL;
return;

} // Handl eProt ocol

ReadBuf f er and W i t eCommand are helper functions used to read to and write from the CDIL
pipe.

Thereturn value is checked to make sure there were no errorsin the protocol. If an error occurred,
it is assumed that there is a problem with the connection, and the connection is aborted. In an effort
to retain some amount of synchronicity, kEr r or Conmand is sent after an error has occurred. There
isagood chance that the kEr r or Command may not be sent because the original error was a
communications error. A more robust protocol would examine the error value and take appropriate
action based on that value. It may be possible to recover from the error and continue receiving data.

Registering the Meta Data

To extend the mini-meta data application, you will add aformat frameto aglobal registry. The
symbol for thisregistry is'[MiniMetaDataRegistry:DTS|. Hereisan example of how you add a
format frame:

| ocal registry;
if Qobal VarExi sts('| M ni Met aDat aRegi stry: DIS|) then
registry = Getd obal Var(' | M ni Met aDat aRegi stry: DTS);
el se
registry : = Defd obal Var(Ensurelnternal (' | M ni Met aDat Regi stry: DTS]),
Ensurelnternal ([]));

AddArraySl ot (registry, nyFormatFrane);

Hereis how you would remove your format from the registry:

if Qobal VarExi sts(' | M ni Met aDat aRegi stry: DTS|) then begin
I ocal registry = Getd obal Var(' | M ni Met aDat aRegi stry: DTS|);
| ocal pos := LSearch(registry, nyFormatSym 0O, '|=|, 'synbol);

if pos then

RenoveS ot (registry, pos);

end;

Here are some examples of what aformat frame might look like:

{title: "NamesFile - First, Last",
symbol: '|Format1:DTS],

soupName: "Names"',

lineSeparator: unicodeCR,

itemSeparator:
emptySpace: " ",

fields: ['name.first, 'name.last]}

{title: "Names File - First, Last, Address, Phone",
symbol: '|Format2:DTS),

soupName: "Names"',

fileName: "Names Export”,
fields: ['namefirst, 'name.last, {format: func(s) if sthen CapitalizeWords(s) else nil,

pathexpr: 'address},

[pathexpr: 'phones, 0]]}

{title: "Names File - First, Last, City",
symbol: '|Format3:DTS|,

soupName: "Names"',

itemSeparator:

lineSeparator: unicodeCR,

emptySpace: “ “,

fields: ['name.first, 'name.last, { format: 'quotedString, pathexpr: ‘city}]}

Each MetaData frame must have the following dots: title, symbol, fields, either GetSoupName or
soupName, and either GetQuerySpec or querySpec. It may optionally have alineSeparator slot,
emptySpace slot, and an itemSeparator Slot.

Hereis amorein-depth description of each slot:

title

Synbol

soupNanme
Cet SoupName

quer ySpec

Cet Quer ySpec

The name of this particular meta data frame. Thisis the name that will
appear to the user in the list of installed meta data frames.

Thisisaunique symbol used to identify this particular meta data frame. If
you register two meta data frames with the same symbol, the second one
that isinstalled will overwrite the first one. Append your devel oper
signature to the symbol.

The name of the soup to export datafrom, or nil.

If you cannot know the name of the soup at compile time, specify this slot
instead of the soupName slot. GetSoupName will hold a function that will
return the name of the soup. Y ou will need to either specify asoupName slot
or aGet SoupName dot. If both are specified the Get SoupNane dot will take
precedence.

The query specification to be used when exporting data. If you do not
provide a query specification, the default ni I will be used.

Optional. If you do not provide a querySpec in the querySpec sot, then you
must provide afunction that returns a query specification in thisslot. You
will need to either specify aquer ySpec slot or aGet Quer ySpec dot. If both
are specified the Get Quer ySpec dot will take precedence.

fil eName

| i neSepar at or

enpt ySpace
i t enBepar at or

fields

The name of thefile to export datato. The default is Untitled for Macintosh
and UNTITLED.TXT for Windows.

Thisdot holds either a character or a string that will be appended to the end
of each line formatted using the fields dot. The default valueis a carriage
return.

Thisdot holds either a character or a string that will be used if a path in the
fields dot did not exist in the soup entry. The default value is a space.
Thisdot holds either a character or astring that will be used to separate each
item in the fields dot. The default value is the comma.

Thisdot holds an array that defines how to export your data. The fields slot
holds al the information necessary to export data from one entry in the
soup. See table 3 for information on filling in this array.

Table 3. Thefields Slot Array

Path expression

The path expression used to find data in the soup entry.

Format frame

A frame with aformat dot and a pathExpr sot. The object obtained from
the path expression will be formatted using the format slot.

The format ot can either be ‘ quotedString, ‘ quotel fEXxists, or afunction.
If it is‘quotedString, then the data found in pathExpr will have quotation
marks put around it. If *quotel fExists is specified then the data will be
quoted if it existsin the soup entry. If format isafunction, then the data
will be passed to the function for formatting. This function should return
the formatted string. Be sure to check that the argument passed to the
function is non-nil before manipulating it.

Ryan Robertson would like to thank David Fedor and Maurice Sharp for their help with thisarticle.

