
Inside This Issue

continued on page 3 continued on page 6

Volume III, Number 2 March 1997

Newton Technology Communications Technology

Newton Technology
Behind Bars 1

Communications Technology
Binary Communication 1

Newton Technology
in Education
eMate in the Classroom 10

Advanced Techniques
Data Structures, part 2 of 3 12

Marketing Strategy
Why Newton beats WinCE 15

New Product Technology
Speech recognition for the
MesagePad 2000 16

Newton Technology
Surviving the Grip 20

Newton Systems Profile
Meet Debbie Carlton 22

Newton Training
Developer Training Update 23

Binary
Communications
by Ryan Robertson, Apple Computer, Inc.

Sending and receiving binary data using the
Newton OS has always been something of a
voodoo art. Unlike other computer systems,
the Newton’s communication architecture does
not provide a GetByte or PutByte equivalent.
The Newton OS instead implements a very
flexible endpoint architecture.

Sending data is fairly straight-forward; you
create your data, then pass it to the endpoint’s
Output method. You can specify to send data
either synchronously or asynchronously.

Receiving data is much different than with a
traditional computer operating system. To
receive data, you must post an input
specification which specifies the type of data you
want to receive. Input specifications are — by
nature — asynchronous.

There are advantages and disadvantages to
the flexibility of this system.

Advantages include:
• You can post an input specification, then go

do other processing until the termination
conditions of the specification are met.

• The abstraction provided by the
Newton’s communication architecture
makes it very easy to switch between
different transport types. Its just as easy
to open a serial connection as it is to
open an ADSP connection.
Disadvantages include:

• You must do extra work to send and receive
just a few bytes of data.

• The architecture doesn’t lend itself well to
stream based programming.

• It is very difficult to simulate synchronous input.

Behind Bars
by Michael S. Engber, Apple Computer
Newton ToolBox Group

INTRODUCTION AND LONG DISCLAIMER

This article discusses various issues related to
the screen orientation and the Button Bar in the
most recent line of Newton devices. For example,
on the MessagePad 2000 the Button Bar is drawn
on the LCD screen. Therefore, it is possible to
obscure it, reconfigure it, change its appearance,
or entirely replace it.

This article describes how to do things that
will put the Newton in a non-standard
configuration that users may find confusing.
Normal, well-written applications should have
no need to do this. This information is intended
for applications with special needs and should
be thought of more as techniques for
customizing a particular Newton device rather
than general purpose APIs.

Do not give in to the temptation to add
frivolous features to your applications. Every
application does not need a preference checkbox
to put its icon on the Button Bar.

Furthermore, most of the information
presented here is not officially supported and is
not guaranteed to work on future Newton
Devices. Applications that use it run the risk of
incompatibility with future systems. Of course,
efforts will be made to maintain compatibility,
but changes in design may make compatibility
impossible. For example, the Button Bar could
be radically redesigned making many of the
options no longer applicable.

Despite this caveat, I’m sure there are still
developers anxious to use this information.
By following the suggestions in this article
you will maximize your application’s chances
for compatibility with future Newton devices.

March 1997 Newton Technology Journal

2

THE FUTURE OF NEWTON

Given the uncertainty around Apple
recently, the understandable question on
everyone’s mind has been, “What is the
future of Newton?” I want to take some
time now to reassure our developers and
customers that the Newton platform is
strong and moving ahead as planned.
Amidst the chaos, the Newton Systems
Group is completely intact. In fact, we
have recently hired more engineers. At the
time of this writing, the MessagePad 2000
and eMate 300 are off the production line
and in the hands of the first new
customers. By press time, you should all
have your units in hand, and the Newton
Systems Group will be well on their way
developing what’s next for Newton.

Clearly, the Newton effort does not end
with shipping the eMate 300 and
MessagePad 2000. New technology is being
developed in the form of enhanced C++
and development tools, and developer
releases of the Newton driver DDKs. New
futures are being investigated in the form
of Newton/ Java research and development.
Now, with the explosion of the world-wide-
web, the shrinking costs of mobile
communications hardware, and the
publicly acknowledged need for low-cost
high-tech educational tools, we’re seeing
the emergence of real-world problems for
which Newton technology provides
solutions. The new combination of greatly
increased chip speeds, useful new form
factors, a licensed OS, and modernized
software make the answer obvious to the
trained eye, and an exciting possibility to
those new to Newton.

So let’s get down to business. This issue of
Newton Technology Journal is chock full of
useful technical information. “Behind Bars”
illustrates what you can do with the new soft

button bar on the MessagePad 2000, and
other button bar issues. You can find out
more about sending and receiving binary data
using Newton endpoints in “Binary
Communications.” As promised, part II of our
data storage series goes into detail about how
the OS caches entries and soups, and
“Surviving the Grip” discusses what to do
when Newton still needs the card you
removed. Dragon Systems is our guest author
this issue with an article outlining their efforts
with speech recognition. See how WinCE
stacks up against Newton in “Why Newton
Beats Windows CE”. We also introduce you to
a key members of the Newton Systems
Group, and let you in on the extraordinary
experience of field-testing the eMate 300.

I recently had the pleasure of talking
with many potential customers at the
HIMMS conference (Healthcare Information
Management Systems) in San Diego, CA
where the MessagePad 2000 enjoyed a great
reception. No less impressive than the
hardware itself were the software solutions
being demonstrated. Virtually every doctor,
nurse, or healthcare administrator who
visited the Newton pavilion left with a
lasting impression of the promising
possibilities that Newton solutions could
bring to their organizations.

To all our Newton developers: Thank you
for the solutions you contribute, thank you
for your faith in Newton technology, and
thanks for hanging in there through the
uncertainty. It’s now time to watch what the
future will bring, and then continue to create
an even better one!

Jen Dunvan
<dunvan@newton.apple.com>

……………………………………………………

Published by Apple Computer, Inc.

Jennifer Dunvan • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, David Fedor,
Ryan Robertson, Jim Schram, Maurice Sharp,
Bruce Thompson

Contributors
Bob Ebert, Mike Engber, Ryan Robertson, Garth
Lewis, Don Davis, Styephen Breit, Bent Schmidt-
Nielson, David Austin, Debbie Carlton

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

Jessica Courtney • Production Editor

InfoGraphix • Design/Production

……………………………………………………

© 1997 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. Developer Central
is a trademark of Xplain Corporation. CompuServe, Pocket
Quicken by Intuit, CIS Retriever by BlackLabs, PowerForms by
Sestra, Inc.,ACT! by Symantec,Berlitz, and all other trademarks are
the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Volume III, Number 2 March 1997 Letter From the Editor
by Jennifer Dunvan

Editor’s Note

Newton Technology Journal March 1997

3

Each section ends with a compatibility note to explicitly summarize
these considerations.

CHANGING THE SCREEN ORIENTATION

There has always been an API for getting the current screen orientation,
GetOrientation. Now there is an API for changing the screen
orientation, SetScreenOrientation. It takes one argument, an
integer specifying the desired orientation (See Table 1).

Table 1. Screen Orientations for the MessagePad 2000 and eMate300

The return value of SetScreenOrientation is a nil or
non-nil value indicating failure or success. For example, if the backdrop
application is not compatible with the new orientation, the rotate will fail.
Also note that SetScreenOrientation may present the user
with a dialog giving the option of canceling the rotation because certain
applications won’t work in the new orientation. If the user cancels the
operation, SetScreenOrientation will return nil.

Compatibility Notes
• SetScreenOrientationwas added in 2.1. Check for

its existence using GlobalFnExists if your code needs to
run on earlier ROMs.

• Remember to use LegalOrientations to get an array of
the available orientations.

• Check the return value (or call GetAppParams) instead of
assuming the unit is in the new orientation.

• Do not use the seductively named function,
SetOrientation. It is unsupported and does not do what
its name implies.

Moving the Button Bar
There are hooks within the system to allow changing the position of the

standard Button Bar and the position of the controls, scroll arrows and
overview button. They are all controlled by userConfig values which are
arrays of four elements, one element for each orientation. For example,
array[kPortrait] specifies the value for the portrait orientation.

To restore any of these settings to their default value, set their entire
userConfig value to nil. Individual orientations can also be set — use their
default value by specifying nil for the corresponding array element.

buttonBarPositions
buttonBarPositions is an array of four elements
which specify the location of the Button Bar. The allowed values
for the elements are the symbols top, left, bottom, &
right; and nil.

buttonBarControlsPositions
buttonBarControlsPositions is an array of four
elements which specify the location of the scrolling and overview
controls within the Button Bar. The allowed values for the
elements are the symbols top & bottom, for when the
Button Bar is on the right or left, the symbols left & right,
for when the Button Bar is on the top or bottom, and nil.

bellyButtonPositions
bellyButtonPositions is an array of four elements
which specify the location of the overview button relative to the
scroll arrows. The allowed values for the elements are the symbols
outside, inside, left, & right; and nil.

Compatibility Notes
• Make sure there is a soft Button Bar (if

GetRoot().Buttons.soft …) before setting
these values.

• Make sure your positioning of the controls is consistent with
the position of the Button Bar.

• Positioning the Button Bar so that the appArea becomes less than
320 high means that views without a ReOrientToScreen
method will be unable to open – à la the behavior of MessagePad
120 and 130 units in landscape orientation.

COVERING THE BUTTON BAR

Applications that wish to cover the entire screen need to ensure they
work in all screen orientations and all Button Bar positions – especially on
MessagePad 2000 units in landscape orientation with the Button Bar on the
left – the key point being the appArea having non-zero top-left corner.

Remember, children of the root view open relative to the appArea. This
means using a <left, top> coordinate of <0, 0> which will not cover the
Button Bar unless it’s on the right or bottom edge of the screen. In this
situation the view’s bounds need to be offset by the appArea’s <left, top>
global coordinates. GetAppParms now returns this information in the
appAreaGlobalLeft and appAreaGlobalTop slots.

Depending on the reason for covering the entire screen, there are
different approaches to use.

If the goal is simply to maximize the visible area of the base view, then the
Button Bar should be obscured only if it’s located on the LCD screen as it is
on the MessagePad 2000. On a MessagePad 130, the root view encompasses a
larger area than the LCD screen – the tablet. Obviously, drawing is limited to
the screen, so applications don’t increase their visible area by covering the
Button Bar on a MessagePad 130.

continued from page 1

Behind Bars

kPortrait
0

kLandscape
1

kPortraitFlip
2

kLandscapeFlip
3

March 1997 Newton Technology Journal

4

Below is some sample code you can add to a base view’s
viewSetupFormScript to maximize visible area.

local params := GetAppParams();
if GetRoot().Buttons.soft then

self.viewBounds :=
OffsetRect(UnionRect(params.appAreaBounds,

params.buttonBarBounds),
-params.appAreaGlobalLeft,
-params.appAreaGlobalTop)

else
self.viewBounds := params.appAreaBounds;

If the goal is to prevent users from accessing the buttons, then the Button
Bar should be obscured regardless of whether or not it is on the LCD screen.

On units like the MessagePad 130, remember to take into account the fact
that part of the base view will be off-screen. For example, it’s important to
ensure that the close box is visible. A simple way to accomplish this is by
having a child view whose bounds are the appArea, and locate the rest of the
application within that child.

Below is some sample code you can add to the base view’s
viewSetupFormScript to cover the entire tablet.

local params := GetAppParams();
self.viewBounds := GetRoot():LocalBox();
if params.appAreaGlobalLeft then

self.viewBounds :=
OffsetRect(self.viewBounds,

-params.appAreaGlobalLeft,
-params.appAreaGlobalTop)

Compatibility Notes
• On some units (e.g. the eMate 300), the buttons are not

located in a view at all. Therefore, covering the entire tablet
does not prevent the user from accessing the buttons (e.g.
opening up the Extras Drawer).

• appAreaGlobalLeft and appAreaGlobalTop
are new slots in GetAppParams. Check them before using
if your code has to run on older devices.

CLOSING THE BUTTON BAR

Applications that wish to replace the Button Bar need to use
KillStdButtonBar to close it. Closing the Button Bar view directly
will leave a hole – the appArea will not be readjusted to include the
unused Button Bar area.
KillStdButtonBar is intended to accommodate Button Bar

replacements. If your application simply wants to cover the entire screen
KillStdButtonBar is not the correct way to accomplish this.
Instead, open a full screen view as previously described.

After closing the Button Bar, it is assumed that your application will
provide the user with a replacement (e.g. a floater) that will provide a
way to do the following:

• scroll up and down
• overview
• open the Extras Drawer (from which the user can access

former Button Bar icons)

Replacing the Button Bar does not mean you should replace the
contents of the buttons root view slot with a reference to your view.
It is important that you do not do this. The system relies on the
buttons slot containing the Button Bar – whether it’s open or closed.
In fact, there is no need at all for the root view to have a slot referencing

your view – you can create an open your view using BuildContext.
Your replacement view is private, the system will not send it a

message. It does not need to provide any of the Button Bar APIs
described in this article. In order to be notified of changes (e.g. card
yanking, package loading) you should register for changes on the
“Packages” soup. This is an undocumented soup and you should
definitely not rely on the format of its entries. When you are notified of a
change, of any type, simply rebuild your list of icons.

To close the Button Bar you can use code like the following:

KillStdButtonBar(Array(4, ‘{buttonBarPosition: none}));

To restore the Button Bar use the following code:

KillStdButtonBar(nil);

It is also possible to reserve an edge of the screen for your
replacement Button Bar so it can sit outside the appArea – like the
standard Button Bar does. This would be useful if, for example, you create
a replacement Button Bar that is thinner than the standard Button Bar.

The following code reserves the bottom twenty pixels in all four
screen orientations.

KillStdButtonBar(Array(4, ‘{buttonBarPosition: bottom,
buttonBarThickness: 20}));

You can vary the position, and or thickness of the reserved area in each
orientation by varying the position and thickness of the corresponding
element of the array passed to KillStdButtonBar.
KillStdButtonBarmakes no attempt to arbitrate conflicts

between applications. If two applications try to use
KillStdButtonBar there is no way for one application to quit and
restore the previous state of the Button Bar. All you can do is put back the
standard Button Bar.

It is assumed that conflicts will be rare. It seems unlikely (undesirable) for
users to have two different Button Bar replacements installed at once.
Nevertheless, program defensively. Check if the Button Bar is open (call
kViewIsOpenFunc with(GetRoot().buttons)). If it’s
not open, inform the user that there is a conflict and do not call
KillStdButtonBar.

Compatibility Notes
• Only use KillStdButtonBar if you’re replacing the

Button Bar, not if you want to cover it.
• KillStdButtonBar is a new API. Check for its existence

using GlobalFnExists if your code needs to run on
earlier ROMs.

• Configuring the Button Bar area so that the appArea becomes
less than 320 high means that views without a
ReOrientToScreen method will be unable to open –
à la the behavior of MessagePad 120 and 130 units in
landscape orientation.

• Stick to the APIs (GetPartCursor,
GetPartEntryData, GetPartEntries) rather
than accessing the entries in the “Packages” soup directly.

CONFIGURING THE BUTTON BAR

We recommend letting users control what’s in the Button Bar. It’s simple
for users to drag icons in and out of the Button Bar themselves. Changing the
Button Bar behind user’s backs can confuse them. For example, an application
that automatically installs itself in the Button Bar will have to push some other
icon off causing the user to wonder where that icon went.

The mechanism by which icons are marked and being located in the
Button Bar is simply filing – specifically, being filed in the _ButtonBar
folder. This is accomplished by changing an icon’s labels slot using the
Extras Drawer method, SetExtrasInfo. However, using
SetExtrasInfo to move an icon to the Button Bar provides no
control over its placement in the Button Bar.

There are two Button Bar methods that give you more control,
GetPartEntries and ReConfigure. GetPartEntries
takes no arguments and returns a frame with two slots, fixed and
mobile. These slots contain arrays of part entries – à la the Extras Drawer
method, GetPartCursor.

The fixed entries are “fixed” because they cannot be moved by dragging.
By default, only the Extras Drawer icon is fixed. It’s important that the Extras
Drawer icon be fixed. Users should not be able to drag the Extras Drawer
icon into the Extras Drawer. The mobile entries are “mobile” because they
can be dragged in and out of the Extras Drawer by the user.

As was previously stated, users should be in control of the contents of the
Button Bar. We do not recommend making your application’s icon fixed.
Fixed icons are intended for use by licensees and VARs creating Newtons that
are only used for specific purposes.

The ordering of the entries in the fixed and mobile arrays corresponds to
the order of the icons in the Button Bar. The icons for the fixed entries are
first, followed by the icons for the mobile entries.

As mentioned before, the elements of the fixed and mobile arrays are part
entries. You should not examine them directly – just as you should not
directly examine the entries returned by GetPartCursor. There is an
Extras Drawer method, GetPartEntryData, that returns a frame of
information about the entry (icon, text, appSymbol, …).

The Button Bar’s ReConfiguremethod takes one argument, a
frame of fixed and mobile entries, and reconfigures the Button Bar. The order
of the entries in the arrays controls the order of the icons in the Button Bar.
For convenience, ReConfigure, also accepts appSymbols instead of
part entries. This allows an icon to be added or removed from the Button Bar
without having to lookup its actual part entry.

A related Button Bar method that you may want to use in conjunction with
ReConfigure is IconCapacity. IconCapacity takes no
argument and returns the number of icons (fixed plus mobile) the Button Bar
can currently hold. This number varies depending on the orientation and
location of the Button Bar. It will be zero if the Button Bar is closed.

Compatibility Notes
• Make sure there is a soft Button Bar (if

GetRoot().Buttons.soft …) before using
these methods.

• Make sure the Extras Drawer Icon is fixed – to prevent it from
being dragged into the Extras Drawer.

• Remember that whether or not the Extras Drawer is the backdrop
application affects whether or not it shows up in the Button Bar.

• Use IconCapacity to prevent overfilling (and those
annoying notifications).

• Stick to the APIs (GetPartCursor,
GetPartEntryData, GetPartEntries) rather
than accessing the entries in the “Packages” soup directly.

CHANGING THE SPACING AND FONT OF ICONS

There are hooks in the system to allow changing the font and spacing
of the icons in the Extras Drawer and the Button Bar. They are all
controlled by userConfig values.

buttonBarIconSpacingH
buttonBarIconSpacingV

These two userConfig values control the spacing of the icons in the
Button Bar. They are integers specifying the spacing in pixels. They both
default to 40 in the MessagePad 2000. The vertical spacing
(buttonBarIconSpacingV) is only used when the Button Bar
is laid out vertically – along the right or left edge of the screen. The
horizontal spacing (buttonBarIconSpacingH) is only used
when the Button Bar is laid out horizontally – across the top or bottom
edge of the screen. To restore either of these settings to their default
value set their userConfig value to nil.

extrasIconSpacingH
extrasIconSpacingV

These two userConfig values control the vertical and horizontal spacing of
icons in the Extras Drawer. They are integers specifying the spacing in pixels.
They default to 64 horizontally and 52 vertically in the MessagePad 2000. They
have no effect when the Extras Drawer is in overview mode. To restore either
of these settings to their default value, set their userConfig value to nil.

extraFont
This userConfig value controls the font used for the icon labels in both

the Extras Drawer and the Button.Bar. You should stick to the integer font
specifications (e.g. (userFont9 + tsPlain) or
(simpleFont9 + tsBold)). Using the integer representation in
this instance accomplishes two things; it reduces NS Heap usage (non-
default userConfig values occupy NS heap space) and it restricts you to
the set of built-in fonts. Using a font that is not in ROM is an extremely
bad idea because the font could be removed. This information is stored in
a soup. A user may be forced to do a cold-boot in order to remove a
bogus font specification.

Compatibility Notes
• Stick to using built-in fonts for extraFont and specifying

them in integer form.
• Remember to accommodate icons with two line titles when

changing the Extras Drawer spacing.
• Make sure there is a soft Button Bar (if

GetRoot().Buttons.soft …) before setting
buttonBarIconSpacingH and
extrasIconSpacingV.

• Setting extraFont and extrasIconSpacingX has
no effect on earlier ROMs.

5

Newton Technology Journal March 1997

REFERENCES AND SUGGESTED READING

Dublin, Louis I., “Water Fluoridation: Facts, not Myths.” , Public Affairs
Pamphlet Number 251B, New York, The Public Affairs Committee. 2nd
edition, 1967.

“In many American cities, a technical debate – whether to raise the
fluoride content of public drinking water as a dental health measure–
is attracting nearly as much attention as juvenile delinquency, education,
automobile accidents, or the hydrogen bomb.”

Sharp, Maurice, Extra Extra: Extras Drawer Features in Newton 2.0. Newton
Technology Journal, February 1996, pp. 1,17-89

This article discuses using part entries in the extras drawer. These are the
same entities that are used in the Button Bar.

March 1997 Newton Technology Journal

6

continued from page 1

Binary Communications

In this article we will discuss how to send and receive binary data using the
Newton’s communication architecture. We will also discuss some of the
stumbling blocks to watch for as you write your endpoint code. This article
assumes that you are familiar with the basics of setting up an endpoint, sending
data, and using input specifications. For more information on any of these,
check out the Newton Programmer’s Guide chapter titled “Endpoint Interface”.

SENDING BINARY DATA

After you have setup and connected an endpoint, you send data by using
the endpoint’s Output method. The Output method takes three arguments:

• The data to output. For our purposes, this data will be your binary
object. Your binary object can either be allocated from the heap using
the global function MakeBinary, or it can be allocated from a store using
either the NewVBO or NewCompressedVBO store method. If you are
outputting data that ranges in size from 1 byte to 2 KB, you are better off
allocating the binary object from the NewtonScript heap. If you are
outputting data that ranges from 2 KB on up, you should use a VBO. For
more information about using VBOs, check out the Newton
Programmer’s Guide chapter titled “Data Storage and Retrieval”.

• An array of output options. This argument is currently only used by the
Newton Internet Enabler transport. If you are using UDP, you would
specify the address and port of the machine to send the packet.

• An output specification. An output specification is a frame that
encapsulates information about how to send the data. The output
specification tells the endpoint what type of data you are sending and
whether you want to send asynchronously or synchronously. For sending
binary data, you also specify a target slot. The target slot holds a frame
with an offset and a length slot. The offset slot specifies the offset into the
binary object at which to start sending data. The length slot specifies how
many bytes to send from the offset. If you are outputting packetized data,
you will need to specify packet flags using the sendFlags slot.

There are two different ways you might choose to output your data. You
might send the entire binary object with one Output call, or you may choose
to send the data using consecutive Output calls.

Sending all of the binary data at once is very straight-forward. You pass the
binary object as the first parameter to the endpoint’s Output method, then
setup the target slot of the output specification so that the offset is zero and
the length is the length of the binary data. Note that you do not need a target
slot if you want to send all the binary data. If you output data synchronously,

NTJ

NTJ

NEWTON TOOLKIT VERSION 1.6 FOR WINDOWS SHIPS

Beginning March 17, Newton Toolkit for Windows is available for
purchase through the Apple Developer Catalog and selected retail outlets.
WinNTK provides the same rich object-oriented environment and
NewtonScript language as MacNTK. WinNTKrequires a 486DX (or better)
processor, CD-ROM, Windows 3.1 (with Win32s), Windows 95 or Windows
NT. Memory requirements are 8MB RAM for Windows 3.1 users and 16MB
RAM for Windows 95 and Windows NY users.

To order call:
U.S. 800/282-2732
International 716/871-6555

Online orders:
<http://www.devcatalog.com>
or e-mail:
<adc.orders@apple.com> .

Newton Technology Journal March 1997

7

the output call will return when the entire binary object has been sent. If you
output asynchronously, the output specification’s CompletionScript will be
called when the entire binary object has been sent. If you do output
asynchronously, be sure that you do not modify the binary object until the
CompletionScript has been called. Also, note that the calling context of the
CompletionScript is the output specification itself, not the endpoint. This can
make accessing your application’s methods and data structures a little more
difficult. For some tips on making this easier, see the “Tidbits” section below.

A drawback of sending the entire binary object at once is that you cannot
use a deterministic progress indicator to let the user know how much of the
data has been sent. You can, however, use a non-deterministic indicator — a
barber pole for instance — to let the user know that some action is taking
place. Note that you will not be able to use a barber pole if you output
synchronously. It is highly recommended that you use the asynchronous
form of all endpoint methods. It is much easier on the Newton OS, and will
increase the performance of your data transfer. Below is a code example
showing how to send all the binary data at once.

local myData := MakeBinary(1024, ‘binary);
local theCompletionScript := func(ep, options, result)

begin
// Handle completion here...

end;

// A synchronous output example
fEndpoint:Output(myData, nil, {async: nil,

form: ‘binary});

// An asynchronous output example
fEndpoint:Output(myData, nil,

{async: true,
form: ‘binary,
CompletionScript: theCompletionScript});

The second way to output data is to use consecutive Output calls. We
call this “chunking” the data. If you are chunking the data, you will set a
different offset in the target slot of the output specification with each call
to Output. Depending on your data, you may also set a different length in
the target slot. An advantage of outputting your data in chunks is that you
can use a deterministic progress indicator to let the user know exactly
how much of the data has been sent. Note that you should limit the size
of each chunk to under 2 KB.

Outputting data in chunks is a place where you can potentially run into
problems using synchronous outputs. Each time you call Output
synchronously, the Newt task (the task that all NewtonScript runs in) will be
forked. Each fork will require more system memory. If you output data in
chunks synchronously inside of a loop, you run a risk of running out of
system memory with repeated calls to Output. Forks are not “cleaned up”
until execution returns to the main NewtonScript event loop. Below are some
code examples showing the difference between outputting chunks
synchronously and asynchronously.

// A code example showing synchronous output
local myData := GetDefaultStore():NewVBO(‘binary, 40960);
// 40 KB
// Output in 1 KB chunks.
for i := 0 to 40960 -1024 by 1024 do

begin
fEndpoint:Output(myData, nil, {async: nil,

form: ‘binary,
target: {offset: i, length: 1024} });

// Update progress indicator here...
end;

At first glance, the above code example looks very simple, however the
Newton will very likely reset halfway through the data transfer. There is just
not enough system memory to fork the Newt task 40 times. Here is an
example using asynchronous outputs.

// A code example showing asynchronous output.
fEndpoint.data := GetDefaultStore():NewVBO(‘binary, 4096);
// 4 KB

// The offset slot is used in the output specification’s CompletionScript
fEndpoint.offset := 0;

// The amountSent slot is only necessary for updating a progress bar
fEndpoint.amountSent := 0;

fEndpoint.completionFunc := func(ep, options, result)
begin

if NOT result then
begin

// Update the amount of data that has been sent
ep.amountSent := ep.amountSent + 1024;

// Update the progress bar here...

// Make sure we have not sent all the data before
// trying to send another chunk
if ep.offset + 1024 < Length(ep.data) then

begin
ep.offset := ep.offset + 1024;

ep:Output(ep.data, nil,
{async: true,
completionScript: ep.completionFunc,
form: ‘binary,
target: {length: 1024, offset:

ep.offset}});
end;

end;
end;

// Setup a progress bar here

fEndpoint:Output(fEndpoint.data, nil, {async: true,
form: ‘binary,
completionScript: fEndpoint.completionFunc,
target: {length: 1024, offset: fEndpoint.offset}

});

This code is definitely more complex than the synchronous case. To
output asynchronously, we must keep a few different variables around so that
we know how much we have output, what our current offset is, what the data
is, and what the completion function is. Notice that almost all of the work
now takes place inside of the output specification’s CompletionScript
method. We first check to make sure that the result parameter of the
CompletionScript was nil. If it was non-nil, then there was an error outputting
data so we should probably abort the output and notify the user. Next, we
update the amount sent variable. The amount sent variable is only used for
updating a progress bar. We then check to make sure that we have not yet
sent all the data. This code example is assuming that we are outputting in
multiples of the length of the binary data. Finally, we output the next chunk
of data. All of this adds a little more code over the synchronous case, however
its is well worth it.

When do you want to send data in chunks versus sending it all at once? It
depends on the size of the data. If you are outputting a small amount of data
that requires one or two seconds to transmit, I would recommend sending all
the data at once. If your data would require more than a couple of seconds to
send, I would recommend sending it in chunks. That way you will be able to
let the user know exactly how much of the data has been sent. Users are
much happier when they have an idea of how long the data transfer will take.

RECEIVING BINARY DATA

You must first post an input specification to receive any type of data
through an endpoint. An input specification is a frame that describes the
characteristics of the data that you want to receive. An input specification tells
the endpoint what kind of data you want to receive, and what the
terminating conditions are for the data. Input specifications are, by definition,
asynchronous. If necessary, you can emulate synchronous input by opening a
modal view, handling input inside of that view, then closing the view. Doing
this is cumbersome and not recommended, and suffers from the same
forking issues as synchronous communications.

When you post an input specification, you provide a callback routine called
the InputScript. The InputScript is called when a terminating condition of the
input specification has been met. Terminating conditions can include:

• Byte counts. A byte count tells the endpoint how much data you want to
receive for this particular input specification.

• End sequences. This is typically used when receiving strings. Examples
include characters such as unicodeCR, $., etc. You can also specify a
string such as “Login:” or “Password:”.

• End of packet. This is used for packetized transports such as ADSP and
Sharp IR.

When receiving binary data, the only two terminating conditions you may
use are byte count and end of packet. However, you may not even need
these. When you post an input specification to receive binary data, you must
add a target slot to that specification. The target slot is a frame with two slots:
data and offset. Unlike any other input form, you must preallocate the binary
object you want incoming data munged into. This means that you have to
know the length of data you will be receiving ahead of time. The data slot in
the target frame holds the binary object to write the incoming data to. The
offset slot in the target frame tells the endpoint where to start placing data.
For instance, if you have an offset of 10, all incoming data will be added to
the binary object starting at byte 10.

A binary input specification is normally terminated when the target binary
object is filled up. So normally, you don’t need to specify any type of
terminating conditions. You can, however, specify a byte count if you want
the input specification to terminate before the target binary object is filled.

As with outputting data, there are two different ways to input your data: You
may receive an entire binary object with one input specification or you may
choose to receive a “chunk” of the binary data with one input specification.

Receiving all of the binary data at once is very straight-forward. You will
post an input specification with a target binary object and no byte count.
When enough binary data has been received to fill up the target binary
object, the InputScript of the input specification will be called, and will be
passed the target binary object as its second parameter. As with outputting
the entire binary object, you cannot use a deterministic progress indicator
when receiving all of the data at once. Below is a code example of how to
specify an input specification to receive a large binary object.

// Prepare the binary object to receive data into
local myData := GetDefaultStore():NewVBO(‘binary, 4096);
// 4 KB

// Setup the input specification
local inputSpec := {

form: ‘binary,
target: {data: myData, offset: 0},
InputScript: func(ep, data, terminator, options)

begin
// Process the binary data here...

end,
CompletionScript: func(ep, options, result)

begin
// Handle errors here

end,
};

// Finally, post the input specification
fEndpoint:SetInputSpec(inputSpec);

When 4 kilobytes of data have been received, the input specification’s
InputScript will be called. A common mistake is to assume that the calling
context of the InputScript is within your application’s view hierarchy. The
calling context of an InputScript is the input specification frame. See the
“Tidbits” section below for information on how to access your application’s
methods and data structures from within the InputScript .

Receiving the data in chunks requires re-posting an input specification
with a different offset in the target slot. You will use the byte count
terminator to determine the size of the chunk. Here is an example of what
your input specification might look like:

// Prepare the binary object to receive data into
local myData := GetDefaultStore():NewVBO(‘binary, 4096);
// 4 KB

// Setup the input specification
fEndpoint.offset := 0;
fEndpoint.amountReceived := 0;
fEndpoint.inputSpec :={

form: ‘binary,
termination: {byteCount: 1024},
InputScript: func(ep, data, terminator, options)

begin
ep.amountReceived := ep.amountReceived + 1024;

// Update progress indicator here...

if ep.offset + 1024 < Length(data) then
begin

ep.offset := ep.offset + 1024;
ep:SetInputSpec({_proto: ep.inputSpec,

target: {data: data, offset: ep.offset} });
end;

end,
CompletionScript: func(ep, options, result)

begin
// Handle errors here

end,
};

fEndpoint:SetInputSpec({_proto: fEndpoint.inputSpec,
target: {data: myData, offset: fEndpoint.offset} });

The InputScript will be called after 1024 bytes of data has been
received. There are a couple of important things to point out in the above
code example. First, we are explicitly setting the target slot of the next
input specification inside of the InputScript. A common misconception is
that you only need to post one input specification, and that the offset slot
gets updated automatically for you as each chunk of data is received. In
reality, you must update the offset slot, then re-post the input
specification each time you want to receive a chunk of data. You will
notice that I use proto inheritance for each input specification. This is

March 1997 Newton Technology Journal

8

Newton Technology Journal March 1997

9

done to reduce the RAM footprint of the code. The third important thing
to notice is that in the InputScript, I am setting up the next input
specification using the data parameter of the InputScript. The data
parameter is simply a reference to the original binary object. Instead of
storing a reference to the data as we did in the output case, we can just
use that parameter when we post the next input specification.

Again, the same rules apply towards receiving the data in chunks and
towards receiving all the data at once.

TIDBITS

The calling context of the Output method’s CompletionScript is the
output specification, and the calling context of the input specification’s
InputScript is the input specification. Because of this, accessing your
application’s methods and data structures requires a little more work.

Here are three possible ways to accomplish this:

• Create your endpoint as a child of your application by adding an
_parent slot to the endpoint frame which refers to the application
base view or some other view within your application. You will then be
able to access your application through the first argument to the
InputScript or the CompletionScript.

• Add an _ parent slot to your input or output specification frame
which refers to the application base view or some other view
within your application.

• Reference your application’s base view directly by using
GetRoot().(kAppSymbol).

BINARILY CHALLENGED

There are two bugs in binary communications that could cause you some
trouble. The first deals with switching input forms.

There are two major forms of input types; stream-based which include the
binary form and frame form, and byte-based which include the forms of
bytes, string, and numbers. The difference between these forms is in how
incoming data is buffered. The stream-based form writes directly into a
destination object, whereas the byte-based form writes data into an
intermediate NewtonScript buffer for endSequence and filter processing.

Buffered data can be lost when you switch between the two types: The
data is not correctly copied between the different buffers.

The work around to this problem is to turn your communications
protocol into a request-respond protocol. Do not send data to the Newton
device until it signals it is ready to receive new data.

The second bug deals with allocating a binary object.
When you allocate your binary object, a temptation is to allocate it inline.

By inline, I mean that you call MakeBinary, NewVBO or NewCompressedVBO
inside of the target slot of the input specification. Here is an example:

local inputSpec := {
form: 'binary,
target: {data: MakeBinary(1024, 'binary), offset: 0},
InputScript: func(ep, data, terminator, options)

begin
// Handle input here

end,
CompletionScript: func(ep, options, result)

begin
// Handle errors here

end,
};

Because of a bug in the Newton OS, if you allocate a binary object inline,
the unit will reset when it receives the first byte of data. To work around this
bug, allocate the binary object as a local variable, then use that variable in the
data slot of the target frame.

VIRTUALLY YOURS

Virtual binary objects (VBOs) can be very useful, although there are some
important memory issues to keep in mind. A nice feature of VBOs is that you
do not have to allocate the entire object before you start adding data to it. As
you add data via BinaryMunger or StrMunger, the virtual binary object will
grow, if necessary, to accommodate the data. Note that you do have to
preallocate the entire object if you are using it in an input specification.

There is a downside to the flexibility of VBOs. Resizing a VBO can add a
performance hit to your code. If possible, try to allocate the entire binary
object ahead of time.

IN CONCLUSION

Here are some important things to remember:
• It is recommended that you use the asynchronous form of all the

endpoint methods.
• If you receive data in chunks, the offset slot of the input specification’s

target frame is not updated automatically. You must update this slot
yourself before you post another input specification.

• If you send or receive more than 2 KB of data, you should send it in
chunks in order to give the user a better indication of the progress, and
to reduce memory overhead.
Sending and receiving binary data on a Newton device can seem complex.

Once you understand the quirks you will also realize the flexibility that is
offered in the Newton’s communication architecture. And always remember
that the facts, although interesting, are irrelevant.

Ryan Robertson would like to thank Jim Schram for his help with this article.

NTJ

If you have an idea for an article
you’d like to write

for Newton Technology Journal,
send it via Internet to:

NEWTONDEV@apple.com

In the bright fluorescent light of a portable classroom, thirty sixth-
graders huddle in small groups behind ten translucent green eMates. The
lively chatter of their voices, and the steady hum of the air conditioning,
create a noisy roar. For Rodney Palmer, social studies teacher and
technology coordinator, the sound is music to his ears.

“This is great!” he says, beaming. “This is the sound of kids who are
engaged in what they’re doing!” Palmer had agreed to be part of an early
seeding of eMate prototypes and was amazed by the reception they were
getting. “In all my years of teaching, I’ve never seen a group of students
get into a lesson so quickly.” The seeding was one of several conducted
last summer to get early feedback on the eMate. The reactions from
educators and students were then plowed back into the design effort.

The eMate concept was born out of requests from educators for an
affordable, portable, computing tool geared toward education, that
would address the equity and access issues most schools face. They
wanted a computer that provided a core set of functionality to
complement the multimedia machines that they had, or perhaps didn’t
have, in their schools.

Between July and December 1996, NSG’s User Experience group
placed ten Apple eMate 300 prototypes into elementary, middle, and high
school classrooms in a variety of subject areas. Teachers incorporated the
eMates into their existing curriculum while a team of researchers
observed, videotaped, and interviewed everyone involved. Now, after
more than a year of development, the first EVT units were in the hands of
their toughest critics—students. “It’s so cool!” exclaimed one fifth-grader
as she opened the lid of the eMate for the first time. “I gotta have one,”
said another. “Please make it cheap!”

Students from all grade levels reacted enthusiastically to the eMate’s
futuristic look, its translucency and clamshell design. Thomas Meyerhoffer,
eMate’s industrial designer, worked to create a product that “ventures into
an emotional space.” In addition to providing solutions to ergonomic
challenges (the handle, armrests, pen holders, sloping keyboard, and
rugged backpack-friendly shape), the eMate design has a rare emotional
appeal that attracts both children and adults. Said one East Coast teacher:
“When I think of a laptop, I think of a box...but that’s not a box. Is it a
laptop? (She opens the lid.) Oooooh. I think I just fell in love.”

The personal connection students make with the eMate translates into
real learning advantages. Students who previously exhibited motivation
problems have shown measurable improvements in productivity. Palmer
points out that one assignment, a unit on note-taking, usually takes days
to accomplish. With the eMates, the students did it in one day. “The
eMates gave them a way to focus their attention.” The combination of the
easy-to-use interface, the direct manipulation of the pen, and the novelty
of the eMate, fuel a sense of excitement and empowerment. The students
master the eMate quickly, feel good about this accomplishment, and
transfer those feelings onto their work.

In many ways the Newton OS is ideally suited to students. The “instant
on” feature appeals to young people with limited attention spans (and to
teachers who struggle to engage them.) Students prefer the pen to the
mouse for drawing and manipulating objects. The graphical interface,
icons, and casual font have a simplicity that seems almost childlike. The
sound effects and animation provide a sense of play without encroaching
on the learning process.

Many teachers prefer the eMate’s simplicity, even its gray-scale
display, because it’s less distracting to students than conventional
computers. “I see a lot of the kids, particularly the elementary students,
they have color and all of that, and all they want to do is play games with
it,” says one elementary school teacher. In contrast, the eMate emphasis
is on organizing and communicating ideas in written form. And when a
teacher needs to get students’ attention, he or she can simply ask them
to “close your eMates.”

The eMate’s long battery life quickly grabs teachers’ attention. With
twenty-four hours per charge, and one-hour recharge time, there’s a
better chance that the eMate will be available when students need it. In
a third grade class using both eMates and AlphaSmart keyboards, a
teacher gave the class a writing assignment. After a few minutes one of
the students returned wearing a hapless expression. “All the
AlphaSmarts are dead.”

The eMate’s portability is also viewed as a major asset by teachers.

March 1997 Newton Technology Journal

10

eMate 300 in the Classroom
by Garth Lewis, Manager, User Experience, Newton Systems Group

Newton Technology in Education

Newton Technology Journal March 1997

11

experience two or three times a week which makes a huge difference.”
The core application, Newton Works, allows students to do the vast

majority of daily computing tasks on the eMates. With only one
Macintosh in her classroom, “there’s always a huge traffic jam at the
computer” says Amy Bloom, a seventh grade teacher. Educators are
frustrated that students are using $2000 multimedia machines to do basic
word-processing. June Schiller, an elementary school principal, sees the
eMate as a way out of that quandary. “The thing that takes the most
time... is the writing. I don’t see this as taking the place of doing that
other stuff, of CD-ROM and the other, but I see it as a cheap way of doing
a lot of the work that takes the most time in a classroom setting.”

The eMate’s back-to-basics approach makes it simple for teachers to
incorporate it into existing curriculum. For example, an elementary
school teacher gave her students the assignment to write a poem. A
third of the students used the ten available eMates while the remaining
twenty students used pen and paper. At the end of class, the ten
students using eMates printed out their poems and turned them in
along with the twenty handwritten ones. No modification of the
teacher’s lesson plan was needed. The only practical difference was the
poems written on the eMates had been word-processed, spell-checked,
and could be easily read by the teacher.

The concept of sharing took on a whole new meaning when using the
eMate. In a high school class, students from two classes used the eMates
during consecutive 45-minute periods. The teacher used the multiple user
setting to allow the students’ data to be stored separately within the
device. The students were able to work the entire class period without
taking time out to copy their data to the desktop computer. Another
teacher used the multi-user classroom mode to allow groups of students
within one class to share an eMate while maintaining discrete workspaces.

In classrooms where teachers used the eMate Classroom Connection
software to copy and retrieve data to a desktop, students easily navigated
the software. The “Dock” button on the keyboard was a useful shortcut
for students. The simplified interface made the direction of data flow
immediately clear. The single document transfer lasted just a few seconds,
making the total interaction quick and efficient. With the option to “move”
data to the desktop, the eMates can be “wiped clean” for students to use
in the next class period.

Collaboration was an important element in each of the classrooms we
visited. The sharing of work via infrared transmission was fun for
students (“it’s like magic!”) and opened up new opportunities for
collaborative work. One teacher had groups of students work on separate
pieces of a project on different eMates and then beam them to one
machine for assembly into a whole. In another class, students wrote one
sentence of a story, beamed it to their neighbor who added another
sentence, and they beamed it to another student, and so on. By the end
of the exercise, there were ten communally-written stories of ten
sentences, and a group of very excited children.

A consensus of teachers agree that the possibilities presented by
eMates in the classroom are endless. Teacher requests for sample activities
to serve as a “jumping-off point” led to an Apple-supplied Teacher’s
Guide. After a few weeks, they predict, there will be as many different
ideas and approaches as there are teachers who use them. If the initial
feedback from students and teachers is any indication, the reaction to
eMates in the classroom will be enthusiastic indeed.

“Now technology can follow the students around, instead of the students
following the technology,” said one teacher, enthusiastically. Assignments
begun in the classroom can be finished on the eMate as homework. This is
especially important for students who don’t have computers at home.

In a fifth-grade social studies class, the teacher had groups of 3-4
students, each armed with an eMate, move between ten stations within
the classroom. At each station, the groups analyzed a political cartoon,
recorded their interpretation in the word processor, and found modern
corollaries. By the end of the exercise, they were able to beam their work
to each other. “Students need to be able to move and be hands-on,”
explained one educator. “It’s a great way to learn.”

In another exercise, students used the drawing program to design
personalized stationery. They quickly learned to flatten the screen to
facilitate drawing and to drag out shapes using the pen. They used
stamps, sometimes resizing them, to create borders and backgrounds.
Finally, they printed their work. In the course of one class period, every
student in the class had mastered the drawing program and printing,
and completed their assignment.

It is this benefit, the ability to put more computers in the hands of
more students, that educators see as significant. Pam Fox, an elementary
school principal, says, “If they have to wait for a turn on the big machine
with all the bells and whistles, they may not get a turn. But with this small
machine which is less expensive, they might get some hands-on

NTJ

“Teachers’ eMate Wish List”
Teachers who participated in the early seeding of eMates offered their

ideas for future applications and enhancements. Here are a few examples:

database software

foreign language modules (using text to speech)

customized stamps

journal application

utility to allow teachers to manage student information

assessment and grading programs

simultaneous broadcasting of assignments to multiple eMates

Ethernet support

curriculum modules

literacy programs

reference materials

textbook supplements

Hyperstudio equivalent

wireless connection to desktops and printers

diffuse infrared

If you are interested in registering your application, send e-mail to Joe
Bishop at <bishop@apple.com> .

INTRODUCTION

This series of articles focuses on information useful to those who have
mastered the basics of the Newton data storage APIs. It assumes the
reader is already familiar with NewtonScript and the Newton data storage
concepts in the Newton Programmer’s Guide (NPG) and has some
experience writing Newton applications.

In part 1 of this series we talked about how soups index their entries,
and how to create efficient searches. There we asserted that reading in
entries was slow. This article gives the details behind what happens when
entries are read and written. Knowing how this works can help you write
the most efficient applications.

Correction
In part 1 of the series, the first paragraph in the first section, “Under the

Hood,” showed incorrect calls to soup:AddXmit and
soup:AddToDefaultStoreXmit. Both calls were missing a second
argument, which is the change symbol for the notification.

Caveat Coder
Warning: This article contains undocumented, unsupported details

regarding how the current release of the Newton OS caches data storage
objects. The information is presented because I believe that understanding
what’s going on helps. Knowledge like this makes it easier to design efficient
code, easier to debug problem code, and may give you ideas for your own
designs. This information is not presented so that you can write code that
relies on the current design. Do not do this.

At least one developer made this mistake, creating a 1.x application that
used an undocumented slot in a cursor. That application subsequently failed
because of changes made for the 2.0 release of the OS. What was worse was
that the operation in question could have easily been done in a supported way.

There is almost always a supported way to do what you want.
Look for it!

Entries
As explained in part 1, entry data isn’t kept in the user store in a form

that is directly accessible to NewtonScript. There isn’t anything like a frame
on the user store. Instead, strings are written one place, the rest of the
frame is serialized and written to another place, and tagged and indexed
slots are stored still elsewhere for efficient searching.

When you call the Entry method of a cursor, you get a frame built
up from the data on the user store. We generally blur the distinction
between the data on the store and the frame that temporarily exists in
memory, calling both things an entry. When a distinction needs to be
made, the frame in the NewtonScript heap is called the cached entry
frame or simply cached entry.

At some point the OS must read data from the store and create the
cached entry frame. Obviously, this must be done before any data in the
entry can be accessed. However, it’s often the case that an entry needs to
be referenced but no data from that entry is needed. When you move a
cursor using a method like Next, Prev, Move, or Reset the
cursor “points at” an entry, but at this point nothing may need data from
the entry. It would be a waste of time and memory to do the work of
creating the cached entry frame as soon as a cursor pointed to an entry.

Entries are Fault Blocks
A soup entry is really a special object called a fault block, which is a

special class of object composed of two parts. One part is a simple
NewtonScript frame often called the cached frame. The other part is a
handler which knows how to create and save the cached frame.

Most of the OS treats a fault block as if it were a simple frame. When a slot
is accessed the OS checks to see if the cached frame exists, and if so the slot
is simply looked up in that frame. When a slot is added or changed it works
the same way, if the cached frame exists the slot is set in that frame.

When the cached frame doesn’t exist, a fault occurs and a message is sent to the
handler, which creates or faults in the cached frame. Once this is complete and the
cached frame exists, slot access continues as described above.

In the case of soup entries, the cached frame is the cached entry frame.
It’s what the rest of your code reads and modifies when you work with soup
entries. When a cursor accesses a new entry, a fault block gets created with a
handler that knows how to retrieve the data, but the cached frame does not
yet exist. It’s not until the first time some code looks at the slots in the entry
that the cached entry frame gets created. This explains why validTests are
potentially slow. The validTest function typically looks at slots in the
soup entry, which reads in the entry data from the user store (deserializing
the entry’s elements) and creates the cached frame (allocating space from
the NewtonScript heap.)

The overhead of reading in the soup entry is incurred the very first
time a slot in the entry is touched.

There are functions which work with a entry that do not cause the
entry to be faulted in. Most of the global functions that work with
entries, such as EntryUniqueID, EntryModTime, or
EntryRemoveFromSoupXmit don’t cause the cached entry
frame to be created.

You can read more about entry caching in the Newton Programmer’s
Guide section on data storage. Fault blocks (and how to create your own
versions) are covered in the section on Mock Entries.

It’s now easy to understand how some of the other entry management
functions work. It is the cached entry frame that holds all modifications made

March 1997 Newton Technology Journal

12

Data Structures, part 2 of 3
by Bob Ebert, Newton Developer Advocate, ebert@newton.apple.com

Advanced Techniques

Newton Technology Journal March 1997

13

to a soup entry. These modifications don’t become permanent until
EntryChangeXmit is called. EntryChangeXmit causes the
fault block’s handler to write the data in the cached frame to the user store.
IsSoupEntry checks to see if the object passed is a fault block for
soups, rather than a regular frame.
EntryUndoChangesworks by throwing away the cached entry frame.

The next time someone needs to access data in the entry, the entry handler faults
again, creating a new cached frame from the (unmodified) data on the user store.
AddXmit and the other entry adding methods are an unusual case.

When you call an add method, you pass a regular NewtonScript frame that
will be turned into a soup entry. The add method does the necessary work to
write the data in the frame to the user store, but it then has to somehow turn
that frame into a fault block, so that any references to that frame now refer to
the soup entry (the fault block.)

These add methods are very unusual functions which effectively modify
one of their arguments. Note the distinction: lots of functions modify the
contents of a passed frame, array, string, or other binary object, but all function
calls in NewtonScript are call-by-value, so actually modifying an argument isn’t
otherwise possible. ReplaceObject is what actually accomplishes this
trick. The add methods uses ReplaceObject to change any and all
references to the passed frame into references to the fault block.

Entry Management
With the 2.0 release of the Newton OS, some new functions were added

to allow you to more closely manage the entry’s cached frame.
AddFlushedXmit does exactly the same thing that AddXmit

does with respect to creating the fault block, writing the data to the store,
updating indexes, etc. The difference is the fault block that’s created will
not have its cached frame set. There are also flushed versions of the add
methods for union soups.

As part of adding a soup entry with AddXmit, the OS does two important
things. It walks the frame being added, writing the data to the store, and it uses
EnsureInternal to create the cached frame, so that the requirement that
data in soup entries is safe from card ejection is met. This
EnsureInternal step can be expensive. Since AddFlushedXmit
doesn’t create the cached frame, it can skip the EnsureInternal step.
The process of reading in an entry from the user store (faulting it in) guarantees
the cached frame will be safe from card ejection.
AddFlushedXmit saves both time and memory, and can be a real

win if you know that nothing is going to cause the entry to be faulted in right
away. On the other hand, if things are set up so that an entry is used or
modified right after it’s created, AddFlushedXmit doesn’t help, since
the first access will cause the cached frame to be created. You should
experiment with AddXmit and AddFlushedXmit when creating
entries. If you’re building up a soup from static data, AddFlushedXmit
may be a lot faster. If you’re creating entries one at a time as the user enters
data, the difference may not be as noticeable.
EntryFlushXmit and EntryChangeXmit are similar in the

same way. EntryChangeXmit does an EnsureInternal on the
cached frame, then writes the data to the soup. EntryFlushXmit skips
the EnsureInternal step, writes the data to the soup, then discards the
cached frame so that the entry must be read in again next time it’s needed.

Use EntryFlushXmit if you need to keep a reference to the entry
around for some reason, but have no plans to touch data in the entry for a
while. The big win comes from avoiding EnsureInternal. Keep in
mind that EntryFlushXmit doesn’t actually reclaim the NewtonScript

heap space used by the cached entry frame, it just removes the only reference
to it. The garbage collector still has to do cleanup, the same cleanup that it
would normally do if you no longer referenced the entry itself (that is, the fault
block.) Making sure you don’t keep references to unneeded entries or cursors
may pay off more than trying to be tricky with EntryFlushXmit.

Other Caches
You may have noticed that each time you call GetStores, you get

an array containing the same objects, one per store. That is, the OS doesn’t
create new store objects each time you make this call, but rather appears to
return an existing object. This is hardly surprising; there are a lot of objects
that exist even when your application isn’t using them, like global variables,
other applications, or the root view.

However, you may not have noticed that each time you call
store:GetSoup or GetUnionSoup to get a particular soup, you
also get the same object. Once again, the OS appears to return an existing
object rather than create one each time you call the function. This also isn’t
very surprising, because clearly there is only one instance of a soup on a
given store, and naturally you expect to get that one each time.

When you perform a Query, you get a cursor object. In this case, if you
call the Querymethod a second time with the same arguments, you don’t
get the same object, but rather a new different cursor. Again, this makes
perfect sense, each cursor needs to have its own “pointer” into the soup, and
if you always got the same cursor for the same query, there would be no way
to have them reference different entries.

When you call cursor:Entry, you get a soup entry. If you
navigate some other cursor to the same place in the soup, and call
cursor2:Entry, you get the identical entry object—the same fault
block. This makes sense too, since clearly there’s only one copy of the
entry on the store. The OS gives the illusion that there is some entry
object in memory, just waiting for someone to ask for it, and which will be
given to anyone who asks.

As an aside, this is occasionally a problem for programming. If one
application modifies an entry’s cached frame, any other application that
happens to be using that entry is suddenly working with a modified object,
even though EntryChangeXmit or EntryFlushXmit wasn’t
called and no notification has yet been sent. The OS designers had to make a
tradeoff between living with this behavior and the alternative, which would be
to give each application a separate version of the entry and add a more
complex database-like locking scheme to prevent multiple applications from
modifying the same entry at the same time.

In a handheld single user device, it’s unlikely that two applications will
need to be modifying the same data at the same time, and so you can adopt a
programming technique to avoid the problem. The technique is to make sure
your application calls EntryChangeXmit or EntryFlushXmit
relatively soon after modifying an entry. This is a good idea anyway, since a
reset between when you change an entry and when you save it back to the
soup would cause data loss. Built-in applications and applications based on
the NewtApp framework typically save changes within a few seconds of
modifying an entry’s cached frame and when closing an editor.

Back to the mystery of identical objects. Clearly there isn’t enough
memory in the NewtonScript heap for the OS to really keep all the stores,
soups, cursors, and entries around just waiting for someone to need them.
Something special is going on behind the curtain to maintain this illusion.

The OS maintains independent lists of stores, union soups, soups,
cursors, and entries that are in use. When someone asks for one of these

March 1997 Newton Technology Journal

14

objects, the OS first looks in its list to see if the needed object is present, and
if it is, it returns that object. If the needed object isn’t there, a new object of
the proper type is created, tucked away in the list, and returned. These lists,
or caches, are NewtonScript arrays.

The caches are more than just standard arrays, however. If they were
normal arrays, then the references to the objects in the array would be
enough to keep the objects themselves from being garbage collected. The OS
would have to know when no other application needed the soup, store,
cursor, or whatever and explicitly remove the reference from the cache.

The caches are implemented using a special NewtonScript object called a
weak array. Weak arrays are just like normal arrays in most respects, with
one important distinction. During garbage collection, if the only references to
an object are in weak arrays, then that object is disposed of and the
corresponding elements of the weak arrays are set to NIL.Weak arrays are
documented in the Newton Programmer’s Reference, and can be created
using the global function NewWeakArray.

Here’s a quick demonstration, from the NTK inspector. Note the contents
of the array weenie change after garbage collection. The otherwise
unreferenced string “Atlas” disappears, but the location string remains.

weenie := NewWeakArray(2);

weenie[0] := “Atlas”;
weenie[1] := GetUserConfig(‘location).name;
weenie
#4418B25 [_weakarray: “Atlas”, “Cupertino”]
GC();
weenie
#44146D1 [_weakarray: NIL, “Cupertino”]

Where the OS Caches Objects
Stores are not cached in a weak array, there is a real array of store

objects maintained by the OS. The GetStores function simply returns
this array. When a memory card is inserted a new store object is created
and stored in the array. When the card is removed the stores in
unmounted and the object removed from the array.

Inside each store object is a slot called ‘soups which contains a
weak array of soups in use on that store. When the OS needs to use a
soup on the store, a soup object is created and stored in this weak array
in an empty position, or in a newly created element if there are no
empty positions. Since it’s a weak array, there is no worrying about when
the soup is no longer needed, garbage collection takes care of the
cleanup. The store methods GetSoupNames and GetSoup
should be used to access soups in a supported way.

The OS maintains a separate weak array of union soup objects. There
is no direct access available to this weak array from scripting. Again,
garbage collection takes care of the cleanup.

Each union soup maintains a list of member soups in a slot called
‘soupList. This is not a weak array, since the member soups are a
finite set and will be needed for as long as the union soup is needed. Note
that this list may not contain a soup for each store, since member soups are
not created until needed. The union soup method GetSoupList
should be used to access this array in a supported way.

Each soup or unionSoup maintains a weak array of cursors that use that
soup in a slot called ‘cursors. This cache isn’t necessary for
implementing the Querymethod, but it’s part of how the OS manages to
keep cursors up to date when the soup contents change. Again, since the
cursors are kept in a weak array, garbage collection takes care of the cleanup.

The soup method Query should be used to get a cursor in a supported way.
Soups maintain a reference to the store which contains them, in a slot

called ‘storeObj, for use in various soup methods such as
RemoveFromStore. The supported way to get at this is the soup
method GetStore.

Each soup (but not union soup) also maintains a weak array of entry
frames from that soup that are currently in use, in a slot called ‘cache.
This cache is used to ensure that different cursors or different applications all
read and write to the same cached entry frame. The only supported way to
get a soup entry is via a cursor.

It’s harder to tell what’s in a cursor, since the implementation is all done
in a C++ class and NewtonScript slots aren’t used, but each cursor holds a
reference to the soup or union soup which it’s searching.

It’s also harder to tell what’s in an entry fault block, since that’s also
implemented in a C++ class and doesn’t use NewtonScript structures,.
However, each fault block also maintains a reference to the soup object that
the entry is contained in. That soup together with indexing information
about the entry is sufficient to allow the cursor to locate the real data when
an entry needs to be faulted in. That same data allows the EntrySoup
and EntryStore functions to be easily implemented.

Don’t write production code that uses undocumented slots in stores,
soup, union soup, or cursor objects.

As you can see, there is a lot of cross-referencing going on with the data
storage model. All this cross referencing means that lots of data can be kept
in memory by just a single reference. By forgetting to clean up a single
reference to a single entry or cursor, you can force the soup and unionSoup
objects to remain in memory.

If you’ve ever used TrueSize to try to get the space used by a given
entry’s frame, you’d have been surprised. It typically returns results that are
much larger than expected. A quick test I did showed my card in the
“Names” soup takes over 110K! Clearly that’s not right. All this cross-
referencing explains why.

e := GetUnionSoup(“Names”):Query(
{indexpath: ‘sorton,
startKey: “Ebert Bob”}

):Entry();
TrueSize(e, nil);
objects 431 121254
...

TrueSize follows references and knows how to look inside some
kinds of C++ objects, like entry fault blocks and cursors, for contained
references. This means that calling TrueSize on a soup entry actually
counts the size of everything soup or store related that’s currently in
memory! The links are followed from the entry fault block to the soup, to the
store to other soups on the store and from there to cursors and entries for
those otherwise unrelated soups. If you want to know how big a cached
entry frame is for a particular entry, just clone it before passing it to
TrueSize. Note that the size of the cached frame in the NewtonScript
heap is different from the size of the entry on the store. The global function
EntrySize will tell you how much store space an entry requires.

TrueSize(Clone(e), nil);
objects 26 1002
...
EntrySize(e);
#6B4 429

Newton Technology Journal March 1997

15

even experienced programmers can have wrong thoughts. Forcing a GC
wouldn’t clear out the reference in the cache weak array, because the
global variable has a “strong” reference to the entry. To really get rid of it,
I’d clear out the global variable first, then force a garbage collect. Once
that’s done, there’s no way to verify that the entry is really gone using
only TrueSize, since there’s no longer anything to pass to that
function! To verify that nothing else is holding a reference I’d have to go
poke around in those undocumented lists in the stores and soups, or
carefully check free memory with GC and Stats.

Conclusion
Entries in NewtonScript are special objects and there is significant

overhead involved in both reading and writing them from the user store.
Careful thought while designing your applications will pay off by minimizing
the NewtonScript heap space used and the time needed to access your data.
You have control over when an entry’s cached frame is or is not faulted in,
and you can take advantage of this to improve performance.

Knowing how stores, soups, union soups, cursors, and entries relate to
each other helps when creating efficient applications, and helps even more
when tracking down performance or space problems. If you’re ever unsure
about how to optimize your application, experiment with different alternatives,
measure the space and speed differences, and choose accordingly.

You can make use of the various cross-reference lists to help track down
unneeded references. By forcing a garbage collection then looking in the
various lists you can easily tell if something in your application is
referencing a soup, cursor, or entry that it shouldn’t, because the item will
appear in a list where you don’t expect it to.

To easily track down where an unneeded reference exists, you can use
the other feature of TrueSize, which is searching (nearly)
everywhere for an object. If I wanted to find out what was hanging on to
my names soup entry, for example:

TrueSize(nil, e);
...
person undo[0][0].receiver._proto

.realData.faultSoup.storeObj

.soups[4].cache[2]
person vars.e

This tells me that there’s two places holding a reference to this entry, one
is in a global variable e, which I expect since I created it. The other is in some
weird place that I’ve never heard of before, but appears to be in one of the
caches (in this case a weak array) in a soup that’s reference by a store that
happens to be referenced from some other soup needed for some undo
action. (See, those cross-references are pervasive!)

My first thought on seeing this was that I should have forced a garbage
collection first to get rid of the reference in the cache, which shows that NTJ

Why Newton Beats WinCE
by Don Davis, Apple computer

Marketing Strategy

It remains to be seen whether Windows CE will displace or validate
Newton appliances. Our view is that the vertical business needs bursts of
infrastructure and the horizontal business needs definition and focus. We
welcome the stimulation and energy that only someone like Microsoft
can provide to these areas. As a result of their entrance to the
marketplace, we see new opportunities for hand-helds in retail, corporate
horizontal and vertical markets.

Our expectation is that all of these market slices will pick up and that CE
will serve as a stimulus for all devices across several hand-held categories. We
also believe that if we include the MessagePad 2000 and CE devices in a
unified category (HPC, for lack of a better term), we may all stand to make it
onto some corporate buying lists in the sub-laptop space, providing basic
functionality at a much lower price point.

We have the strongest device. The industry media want to populate the
HPC (handheld personal computers) category with only CE devices -
seemingly because any machine made by Apple cannot be a “PC”. But is a
Windows CE device, really a PC? We think not. The MessagePad 2000 is at
least an HPC in functionality and is only distantly related to the PDA category
populated by PIM devices such as the US Robotics Pilot device. At a certain
point these categories lose all meaning and something different like a “laptop
replacement” or “companion device” delineation will likely evolve. But, with
dual com slots, 162 MHz processing power, 24 hour battery life, 16 gray scale

screen, TCP/IP, speaker and microphone, 8MB of ROM and 5MB of RAM, it
doesn’t matter what hand-held category we are in - we rule it.

So is CE better than Newton in other ways? Well, they do have better
connectivity to the Windows desktop and they do have a shorter learning
curve for Windows users. But what else? Easier to write drivers and software
to Windows APIs? Yes, and we agree, so we are working toward that in
Newton. But better back office connectivity? Don’t jump to Microsoft Back
Office yet, we think they will have trouble powering up LAN cards. Better
Web browsing? How fast can it be? Black and white screens, little keyboard,
one com slot . . . different vendors, different problems. Do they print yet?

With the MessagePad 2000 you can store and communicate at the same
time. You can have a peripheral piece of hardware - like a laser scanner - in
while you are sending data back to a wireless access point. You can receive
pages and respond right back to them...on and on. We are giving you
opportunities to truly enhance the capabilities of your applications not just
offer them “in Windows”. And they will be faster. Way.

Microsoft needs your help now, but when they get horizontal, that
means bundled applications - Microsoft ones. They do like their licensing
money. That is their thing you know. The vertical dollars are not big
enough for them in the long run.

Microsoft is betting that people need a scaled back version of Word,
Excel, Schedule Plus and Explorer for the road. If they can get the power

March 1997 Newton Technology Journal

16

management issue licked, they will probably do ethernet to push their
network advantages. They want to stretch the desktop. That is where they
have market share. If they placed the right bet they can sell large
quantities into the channels of the hardware vendors and get on some of
those corporate buy lists through resellers and major accounts managers
with vendors like Compaq. This will lead, they believe, to a game that they
know very well - stimulating market demand to expand the OS in order to
drive hardware manufacturers to upgrades. Resell the market over and
over again with expanded product offerings.

But does this model work for hand-helds? We wonder. Aren’t people used
to more from Windows than less? How much can you deliver to seasoned
Win 95 laptop users with 25 - 40MHz and 2/4MB of RAM? That’s a pretty little
4 gray scale screen and keyboard they have there. And there is another
problem. The CE OS is already ahead of the hardware. This is the tradeoff for
that magic $500 price point and it means there already needs to be a rev of
the hardware just to get it up to the current CE capabilities.

We believe the early sales numbers from CE will dictate which
hardware vendors stay in the game. If the horizontal market doesn’t show
up, hardware vendors will be far less inclined to reinvest in further
hardware changes. To add more com slots, handwriting recognition,
better power management, better screens and higher processing speeds
will cost a lot of money. Some have probably not yet recovered their
startup costs let alone one or two more revs of the hardware. Will the
market run rate be high enough to get them all into the game? If it isn’t
where does that leave you?

To bridge the gap and provide interim wins, Microsoft will be
encouraging you to partner with them on vertical CE activity. They know,
after trying this with Windows for Pen Computing, that the market can
fragment into vertical market niches with the lack of large corporate or
consumer buys. Example, Pen Tablets.

Maybe you think this is a little of the pot calling the kettle black. After
all we partner with you on vertical opportunities and are trying to bridge
the gap to horizontal ourselves. And hey, we did some bundling of our
own on the MP2000 and there is a price list we put together for the eMate
release into education. So what gives?

Just one thing: those bundled applications and co-marketed solutions on
Newton appliances are yours, not ours. And if you weren’t one of the
bundled applications for the MessagePad 2000 release or the eMate 300 price
list, chances are we are trying to find you other opportunities to take
advantage of. When horizontal takes off, you are part of the solution - - not
just a means to an end. All of our future plans depend on you.

It is a hard time and simultaneously a great time for Newton
development. This article was written to those of you who feel you must
decide on supporting either Newton or Windows CE. If you are making that
decision, we understand, but want to leave you with one final thought... We
don’t see you as our bridge over troubled waters. We see you as the
land on either side.

Don Davis, Solutions Marketing Manager
Newton Systems Group NTJ

Speech Recognition for the MessagePad 2000
by Stephen Breit and Bent Schmidt-Nielsen, Dragon Systems, Inc. 320 Nevada St., Newton, MA 02160

New Product Technology

INTRODUCTION

The MessagePad 2000 has two key ingredients which make Newton, for
the first time, a viable platform for portable speech recognition. One is the
powerful 160 MHz StrongARM microprocessor, and the other is high quality,
16-bit audio input. With the MessagePad 2000 as an enabler, the potential
benefits of providing speech recognition on Newton devices are clear. First, in
mobile situations, a speech user interface (SUI) can free one or both hands
for other uses, such as handling material or operating equipment. Second,
navigating a complex application can be much faster with speech than with a
pen because speech input need not be constrained by the tree-like structure
of a GUI. And third, as an input modality, speech is much faster than
handwriting. The use of speech input on small devices is particularly
compelling because they may either lack keyboards, or have keyboards that
are too small to use efficiently. Or putting it more succinctly “Computers
keep getting smaller, but our fingers stay the same size”.

By now you are conjuring up visions of holding a Newton device and
having it recognize and understand whatever you say. Providing such a
capability is, of course, our ultimate aim, but we can safely say that this is at

least a few years away. In the mean time, we can offer constrained speech
recognition capabilities which will be a valuable addition to many
applications. Users will be able to say phrases and sentences in a natural way,
i.e. without pausing between words, but the vocabulary and word order will
be constrained to a pre-defined grammar. For example, for an inventory
application, the user will be able to say “Part number one five three seven”,
or, more generally, “<qualifier><digit_string>“, where <qualifier>
might be “Quantity”, “Part number”, “UPC”, etc. and <digit_string> is a
series of 1 to 12 digits. Examples of other applications which might benefit
from this type of speech recognition capability include medical record
keeping, insurance appraisal, meter reading, rental car returns, sports data
acquisition, and law enforcement. And there will be many others.

In this article, we describe our efforts to port one of Dragon’s speech
recognition engines to the Newton platform, and the capabilities which we
expect to offer to Newton platform software developers. Since this is the first
time that anyone has done speech recognition on the Newton, and speech
recognition will undoubtedly be new to many readers, we begin with an
overview of a typical speech recognition system. This provides a basis for

Newton Technology Journal March 1997

17

understanding the capabilities of the speech recognition system that we have
ported to the Newton. Next, we describe some of the challenges to doing the
port, and how we have overcome them. Then, we describe a grammar for an
inventory application. And finally, we provide some code snippets which
illustrate how you include speech recognition in an application.

OVERVIEW OF A SPEECH RECOGNITION SYSTEM

The majority of commercially available speech recognition systems rely
on Hidden Markov Models (HMMs) and have the key components shown
in Figure 1. To explain how this system works, we begin at the lower left
with the microphone. The analog signal from a microphone is converted
to a digitized wave form by the audio system hardware. This audio input
is processed by the software audio analysis module which converts it to a
form suitable for speech recognition. To do this, the audio analysis
module applies a series of transforms, starting with an FFT, and outputs a
frame of parameters every 20 ms. Typically, each frame contains 12 to 36
parameters. The audio analysis module also may apply a the speech
detection algorithm to detect transitions from silence to speech, and from
speech to silence. A collection of consecutive frames which begins and
ends with silence is known as an utterance.

Figure 1. The components of a typical speech recognition system.

Before describing what the recognizer does with the utterance, we
must describe the other key inputs. The acoustic models are built by
collecting a set of utterances of similar sounds and assembling them into
what amounts to a prototypical utterance for each sound. The individual
sounds can be either elemental sounds called phones (hence phonetic
modeling) or entire words (hence whole-word modeling). The accuracy
of a speech recognition system is largely dependent on the quality of the
acoustic models. Models that are intended for use by speakers who have
not trained the recognizer are said to be speaker independent. Models
that are intended for a specific speaker, and have generally been trained
by that speaker, are said to be speaker dependent. Both types of models
can be further adapted to a particular speaker, and this generally
improves recognition accuracy.

If phonetic models are used, the dictionary provides a translation
between word spellings and their pronunciations in terms of phones. If
whole-word models are used, the dictionary simply provides a mapping
between a word and its acoustic model. The dictionary and acoustic
models are usually supplied with the speech recognition system, but it is
up to the application developer to supply the grammar. The grammar

defines the sequences of words that can be recognized. Some examples of
grammars are given later in this article.

Simply put, the recognizer processes each utterance and returns the
sequence of words that was most likely to have produced the utterance.
Going into a bit more detail, the application specifies an active grammar,
either from a predefined data structure, or by building it “on the fly”. Then
the application tells the audio analysis module to begin processing audio
input. When the audio analysis module detects the start of an utterance, the
recognizer begins its job. To start with, the recognizer hypothesizes all words
that could have started the utterance based on the active grammar. It then
scores each frame in the utterance against these hypotheses, and the score
decreases with each successive frame. The score is the log probability that the
acoustic model could have produced the observed utterance; thus, the
hypothesis with the highest score had the highest probability of producing
the observed audio input. As the recognizer scores successive frames against
all active hypotheses, it prunes hypotheses whose scores are much lower
than the best-scoring hypothesis in order to save computations.

The Speech API provides a well defined interface by which the application
interacts with the recognition engine. The complexity of the Speech API
depends on the recognition capabilities being offered. It may have as few as
20 entry points for simple command and control capabilities, or more than
200 calls to support dictation.

SPEECH RECOGNITION CAPABILITIES FOR NEWTON

With some background information in hand, we can now describe the
capabilities of the speech recognition engine that we have ported to the
Newton platform. Dragon has a number of recognition engines in its stable;
we chose one that is known internally at Dragon as C-REC. C-REC was
originally developed to run on a digital signal processor (DSP), so it has a
small memory footprint, and the code is relatively small and portable.

C-REC can recognize phrases and sentences that are spoken continuously,
i.e. in a natural way without pausing between words. Though C-REC imposes
no restrictions on the size of the vocabulary or the grammar, it is best suited
to “small-vocabulary” recognition tasks with simple context-free grammars.
The vocabulary and grammar can be context sensitive. “Small vocabulary” in
this case means that the grammar perplexity, or average branching factor,
should be approximately 50 or lower in order to achieve real-time
performance. The actual vocabulary size may be quite large (thousands of
words). Higher perplexity grammars can be used if a response time of a
second or more is acceptable.

C-REC works with either whole-word or phonetic models. To build
speaker-independent whole-word models, we need one sample of each
word from many (100 or more) different male and female speakers. This
is a significant disadvantage relative to phonetic models where, once the
models are built, any word for which we have a phonetic pronunciation
can be recognized. On the other hand, experiments with C-REC on
limited vocabularies have shown that whole-word models are more
accurate than phonetic models. And whole-word models require less
computation, at least when the active vocabulary is relatively small. Due
to these considerations, plus some additional factors which are discussed
in the next section, we chose speaker-independent, whole-word models
for the initial port of C-REC to the Newton platform. We envision offering
a software developer’s kit which includes whole-word, speaker-
independent models for a “standard” vocabulary. With a judicious choice
of words, this standard vocabulary should be sufficient for a number of
applications. If a particular application requires words that are not in the

standard vocabulary, we will record samples of the additional words and
build a set of custom acoustic models for that application.

We are inevitably asked about recognition accuracy. The answer to this
question depends on many factors, including the size of the active
vocabulary, the grammar, the quality of the microphone, the amount of
background noise, and the quality of the acoustic models. Just to give
some idea, we have estimated from test results that, in quiet conditions at
least, continuously spoken strings of 5 digits should be recognized
completely correctly 98% of the time.

IMPLEMENTATION ON THE MESSAGEPAD 2000
Next, we describe some details of how we ported C-REC to the

MessagePad 2000. Our first step was to measure the quality of the audio
system, since we have found a wide variation in the quality of the audio
hardware on notebook computers. As we expected, the signal from the
built-in microphone is not of sufficient quality to do accurate speech
recognition. But we were pleased to discover that we got a high quality
audio signal when we connected a head-mounted, noise-canceling
microphone to the MessagePad via a small, custom-built amplifier and the
line-in pins on the Newton connector.

C-REC is written in C, so we have been using a beta version of the Newton
C/C++ Toolkit to port it to the Newton. The Newton C/C++ Toolkit does
not allow any global or static variables. Therefore, we had to remove all such
variables from C-REC, and store pointers to persistent data in a binary object.
This proved to be a laborious process because the Newton C/C++ compiler
only indicates that there are global symbols, but does not give their names.

Before porting the audio analysis module, we had to convert from
floating-point to fixed-point operations because the StrongARM does not
have floating-point instructions. We verified that there was no loss in
recognition accuracy from this change. When we ran the fixed-point audio
analysis on the Newton device, we found that it required only 6% of the CPU
cycles. This was very encouraging because the audio analysis module must
run continuously whenever the microphone is “turned on”, whereas the
recognizer runs only when there is speech input to be processed.

In order to port the recognizer itself, we had to find a way to store and
load the acoustic models. One approach is to store the models in a binary
object, and pass this binary object to the recognizer. Due to the
NewtonScript garbage collection, the binary object would periodically
move around in the memory system. This would require patching up
pointers to data in the binary object each time the recognizer is called. An
alternative approach, which was expedient and gave better performance,
was to compile the acoustic models into the code. The disadvantages of
this approach are that it takes a lot of memory to do the compilation, and
that the code must be recompiled each time we change the acoustic
models. As of this writing, we are compiling the models into the code. The
memory required for the code alone is approximately 100 kB. For most
applications, the additional memory required for the acoustic models will
be between 250 kB and 1MB. During recognition, the recognizer requires
an additional 250 kB of dynamically allocated memory.

A SPEECH INTERFACE FOR AN INVENTORY APPLICATION

Suppose you want to develop a speech-enabled application for taking
inventory in a store or warehouse. Let’s assume that four pieces of
information are needed to inventory an item: 1) its location in the warehouse,
expressed as a row number and a section number, 2) its 6-digit number, 3) its
color, and 4) the quantity of identical items. You design a view which has fields

for entering this information. You would like the user to be able to open a new
inventory view by voice and enter data in the fields in any order.

To illustrate the design of the speech interface, we need to introduce a
pseudo code for expressing a grammar. The grammar has three basic entities:
words, rules, and groups. A word may be either a single word or a phrase
consisting of two or more words. We denote a word simply be spelling out
the word. We denote a phrase by putting underscores between the
component words. If we want the recognizer to return text that is different
than the spelling of the word, we enclose the return text in parentheses
following the word. For example, “two(2)” indicates that the recognizer
should return the character “2” when it hears a word that sounds like “two”.

A group is a collection of words or rules. We denote a group by a comma-
separated list of words or rules enclosed in curly brackets. We denote the
name of a group by text enclosed in angle brackets. For example,

<global> = {next_item, previous_item, go_back, start_over,
enter_data};

defines a group named “global” in which any of the phrases listed on the
right-hand side can be recognized. Each phrase counts as one word. We
purposely called this rule “global” because these words will always be active
in the inventory application. For example, the user will always be able to
return to the previous field on the view by saying “go back”.

To enter numbers between 1 and 99, it is useful define the following
groups (we use ellipses to fill out an obvious sequence of words):

<one2nine> = { one(1), two(2), three(3),..., nine(9)};
<digit> = { zero(0), oh(0), <one2nine>};
<ten2nineteen> = {ten(10), eleven(11),
twelve(12),...,nineteen(19)};
<twenty2ninety> = {twenty(20), thirty(30),
forty(40),...,ninety(90)};

Now we need to introduce rules. A rule is a sequence of words and/or
states. We denote the name of a rule by text enclosed in square brackets. For
example, the rule

[twentyone2ninetynine] = <twenty2ninety><one2nine>;

allows users to say numbers between “twenty-one” and “ninety-nine”,
excluding multiples of 10. Finally, the group

<number> = {<one2nine>, <ten2nineteen>, <twenty2ninety>,
<twentyone2ninetynine>};

allows users to say, in a natural way, any number between one and 99. Note
that the <number> group is defined in terms of previously defined groups.

For the inventory application, it will also be useful to define the group

<color> = {black, white, red, blue, green, yellow, orange,
purple}

and the following rules:

[location] = row <number> section <number>;
[part_number] = part_number
<digit><digit><digit><digit><digit><digit>;
[color] = color <color_name>;
[quantity] = quantity <number>;

Finally, we define a group which encompasses all of the rules for the
inventory application:

<inventory_view> = {[location], [part_number],
[color], [quantity], <global>};

March 1997 Newton Technology Journal

18

Newton Technology Journal March 1997

19

You start the recognizer:

SpeechRecog:startRecog(resultView, resultCallBack,
grammarGroup);

Once started, the recognizer starts recognizing whenever a new utterance
is available and does a callback when it is finished recognizing the utterance.
You must stop the recognizer when you want to change the grammar or as
the first step in the process of shutting down the speech recognition system:

SpeechRecog:stopRecog();

Stopping the audio analysis module
After shutting down the recognizer, you shut down the audio

analysis module:

SpeechRecog:stopAudio();

Shutting down the speech recognition system
Finally, unlike an ordinary NewtonScript program, you must free

the resources used by the recognition system before assigning nil to
the Recog variable:

SpeechRecog:shutDown();
SpeechRecog := nil;

CONCLUSIONS

As a result of work by Bent Schmidt-Nielsen, Maha Kadirkamanathan,
and Shaun Keller, a small-vocabulary, continuous-speech recognizer is
now running on the Newton platform. As of this writing (early February
’97), it recognizes strings of continuously spoken digits and returns a
text transcription within one-half second after the user has finished
speaking. It is very exciting to get this responsiveness from a computer
that is powered by a few AA cells! In the immediate future, we plan to
supplement the digits vocabulary with a set of standard words and
phrases such as those listed in the inventory application example.
Further down the road, we will consider adding other features such as
phonetic models, and the ability to adapt the speaker-independent
models to an individual speaker.

Judging from the enthusiastic response we have already received
from Newton developers who have heard about our efforts, there is a
lot of pent-up demand for speech recognition on the Newton. We are
planning to offer a tool kit which will enable Newton developers to
speech enable their applications. The tool kit will include an AutoPart,
a user “proto”, documentation of the NewtonScript API, a
microphone, and a preamplifier. Built into the AutoPart will be
acoustic models for a standard vocabulary. If the standard vocabulary
does not meet the needs of a particular application, we are prepared
to develop custom acoustic models for that application. Beyond the
inventory application that is suggested in this article, we believe that
the type of capability we have described will be useful for many other
applications. We look forward to hearing your requirements for
speech recognition on the Newton platform.

When this rule is active, the user may enter data in any field on the
form at any time, return to the preceding field if there is an error in it, clear
the entire form, return to the previous item, or move on to the next item.

This example gives some idea of how you define a grammar. There are a
total of 47 words in this example (each phrase counts as one word). We
expect that all of these words will be part of our standard vocabulary.

PROGRAMMING EXAMPLE

This example shows how you incorporate speech recognition in
an application:

Initializing the speech recognition system
The first step is to instantiate the speech recognition system.

SpeechRecog := {
// put additional variables or overrides here
_proto: protoDragonSpeechRecognizer;

}
local theView := self;
SpeechRecog:setUp(theView, inputSource, errorCallBack);

The inputSource argument determines whether the system takes audio
input from the built-in microphone, or line-input. You must provide a
function for error callbacks. It is desirable to execute this code when your
application starts up, otherwise the user may experience a brief delay while
the systems allocates memory for the audio input buffers.

Defining the grammar
At this point, you need to define the grammar from which you want

to recognize. We have not implemented the calls for defining a grammar
in NewtonScript yet, so we cannot offer any code fragments here.
Suffice it to say that there will be a set of calls for defining groups and
rules as they are described in the previous section. And there will be
calls for iterating the words in the dictionary, and checking whether a
particular word is in the dictionary.

Starting the audio analysis module
The next step is to start the audio analysis module:

SpeechRecog:startAudio();

This could have been done transparently by setUp(), but there is a
good reason for giving you control over when it starts. Once started, the
audio analysis module must run continuously. This draws power and, more
importantly, overrides the power-down features of the MessagePad 2000. You
need to start the audio analysis module well before you expect speech input,
because it takes almost a second for the MessagePad 2000 to charge up a
capacitor in the audio system hardware.

Starting and stopping the recognizer
You define one or more callback functions for processing the results from

the speech recognizer. For example, you may have a different callback
function for each view or context. The transcription parameter is a text
transcription of what was said (it must be permitted by the grammar, of
course). The grammarInfo parameter is a reference to a NewtonScript frame
which allows you to determine which rule was recognized.

resultCallBack := func(transcription, grammarInfo)
begin;
setValue(resultView, ‘text, transcription);
end;

NTJ

March 1997 Newton Technology Journal

20

convenient. This article discusses those changes and enhancements.
The most recent devices from Apple now have multiple PC card slots. The

support has been in the OS since 2.0, but never before has hardware with
multiple slots been available. This enhancement does not complicate the card
removal process as far as your applications are concerned. The only thing to
note is that removing one card can cause the OS to touch the remaining card,
which isn’t a problem unless you happen to eject both cards at the same
time, in which case the OS itself will give you the grip on one of the cards.

BETTER NOTIFICATION

Figure 2. (I blew it)

In the older versions of the OS, only the slip from Figure 1 would appear,
and this slip still appears when there is no information available about the
package that caused the problem. The slip in Figure 2 is displayed on 2.0
and later units when the OS can determine which package caused the
problem. It’s intended to provide a clue to the user about which package
must be removed to fix the card. Don’t let it be yours!

REMOVABLE/REMOUNTABLE CARDS

In 1.x, if you got the grip you were stuck in a classic “lather, rinse,
repeat” loop. The Newton device would not proceed until you reinserted
the card. On reinsertion, the OS would finish the unmounting process,
then immediately remount the card. Remounting the card reintroduced
the grip. The only way out was to reset the unit. In 2.0, the OS stops
after unmounting the offending card and gives you a chance to remove it
safely, a significant improvement.

Figure 3. (Newton saved you)

Note: This is a follow-up article to”Newton still needs the card you removed”
by Mike Engber, first published in February 1994 in Double-Tap magazine.

INTRODUCTION AND TERMINOLOGY

Figure 1. (you blew it)

If you see this slip, you have encountered the Grip of Death (aka G.O.D.
or the grip). This happened because something has touched the card while
it was being unmounted, causing the unit to require the card back to resolve
some reference. If the reference isn’t caught when the card is unmounted, it
becomes a bad pkg ref which can cause throws at a later time.

Briefly, the grip happens when the OS follows a reference to an array,
frame, binary object, symbol, frame map, VBO, or soup data on a card while
the card is being unmounted.

Grips happen when you touch data on a card while the card is
being unmounted.

That isn’t enough of a description for you to understand the problem or
why it occurs, so read the”Newton still needs the card you removed” article.
(You may want to read it two or three times.) This article assumes the reader
is familiar with the common causes and workarounds for the grip. The
original article is currently available on-line at
<ftp://ftp.apple.com/pub/engber/newt/articles/
NewtonStillNeedsTheCard.rtf>
and on the Newton Developer CDs in Technical Information:Newton 1.x-
related ARCHIVES: ARCHIVE - 1.x Articles:NewtonStillNeeds article.

Since that article was written, we’ve undergone one major and several
minor revisions to the Newton operating system. With the 2.0 (and later)
OS, many of the things that used to be common causes of the grip are
now easily avoided. For example, most of the OS registries now ensure
that the necessary elements of what’s being registered are stored
internally so that the corresponding unregistration can be done without
touching the card or leaving bad references.

There have been many other changes and enhancements added to
making working with PC cards easier. Smarter registries, soup definition
frames, better package handling, atomic store operations, better cleanup, and
debugging hooks make tracking down and avoiding the grip easy and almost

Surviving the Grip
by Bob Ebert, Newton Developer Advocate, ebert@newton.apple.com

Newton Technology

Newton Technology Journal March 1997

21

BAD PACKAGE REFERENCES

After a package is deactivated, the 2.0 OS replaces any references to data
in the package with a special object, called a bad package reference. This is
done by searching the NewtonScript heap, and doesn’t take very long. (It’s
roughly the same as garbage collection.)

This is an important change. In the 1.x OS the invalid reference would
remain unchanged, and could be used later. If the user were lucky, they’d
get a -10401 “Bad package” error when this occurred. If they were
unlucky, some other data would happen to be at that location in memory
and the result would be unpredictable.

On 2.0 and later, using a bad pkg ref typically causes a throw of an
evt.ex.fr exception with the error code -48221: “Reference to
deactivated package.” Depending on what operation is being done with the bad
pkg ref, other errors are possible. For example, trying to find the length of a bad
pkg ref will generate an evt.ex.fr.type;type.ref.frame
exception with error code -48418: “unexpected immediate.” The string <bad
pkg ref>will be displayed in the ‘value slot of the exception frame,
which provides the needed clue that it’s a card problem.

The change makes it much more likely that you’ll notice immediately
when using a bad pkg ref, so it’s now much easier to find out what your
application has done to cause the problem. Typically simply setting
breakOnThrows to TRUE and doing a stack trace when the error
occurs will tell you enough to find and fix the problem.

-48221 errors or any error involving a <bad pkg ref> means you
have a grip related problem where the OS simply didn’t notice the
bad reference until later.

SUPPRESSING PACKAGE ACTIVATION

Occasionally during development you’ll create a package so horrible it resets
or locks up the unit during installation. With 1.x, you’d either have to have had
the foresight to put the package on a card during debugging and then erase the
card by having the prefs application open when it was mounted, or you’d have
to do a hard reset, erasing all data on the internal store.

With 2.0 there’s a way out. Hold down the pen along the left edge of the
mostly-black splash screen during a reset and you’ll get a chance to prevent
packages on the internal store from being installed, or hold the pen there
while inserting a card to mount the card without activating any packages on
that card. Once this is done, you can simply delete the problem package and
preserve the rest of your data.

Figure 4. (phew)

By “along the left edge” we don’t mean all the way against the edge of
tablet, but rather over the display area, within about 1/4 inch from the
edge. Holding down the pen along the top edge of the screen not only
allows you to avoid mounting packages on the internal store, but also
resets the backdrop application to Notes.

Hold down the pen along the left edge of the screen during reset or
card mounting to prevent activation of packages.

Open prefs then insert a card to erase the card without touching
any data on it.

Hold down the power key while resetting to erase the internal store.

LOCKING A PACKAGE

When an application on a card is open or in use, ejecting the card is
guaranteed to cause the grip. During card unmounting, packages on the card
are deactivated. Deactivating a package executes the RemoveScript
for each part in the package, and also closes the base view for any form parts
in the package. If nothing else, the system searches your base view’s
_proto chain for the Closemethod, and this will cause the grip.

This is fairly safe, and users quickly learn to close applications before
ejecting a card. It’s not practical to work around this, so don’t try. Any
workaround would require trying to EnsureInternal enough of
your application so that it could be closed without causing the grip, and this
would be a total waste of precious NewtonScript heap space.

However, this process does mean your application may be closed in
unusual circumstances, even when it’s the backdrop or doesn’t provide a
close box. For certain operations this may be a problem; live connections
may be have to be aborted or gathered data may need to be discarded. To
help avoid this, the 2.0 release of the OS has support for reserving a package,
and the store on which the package exists.

Reserving a package is done by calling MarkPackageBusy, giving
a reference to the package along with some text information to be shown to
the user if necessary. MarkPackageNotBusy cancels the
reservation. When a package is reserved, the user gets an extra warning if
they attempt to delete it, freeze it, or move it to another store. These
functions are documented in the Newton Programmer’s Reference.

Reserving a package effectively reserves the card that contains the
package. Attempting to eject such a card does something new. The “Newton
still needs the card you removed” slip still appears, but with the reserving
application’s name as provided to MarkPackageBusy. Unlike during
normal unmounting, this slip appears immediately when the card is
unlocked, and processing is suspended until the card is reinserted. On
reinsertion, processing picks up right where it left off. The card is not
unmounted, the applications are not closed, and as far as most operations in
NewtonScript are concerned, nothing happened. The card is effectively
“locked” into the unit.

The OS provides a way to lock a store briefly so that it may be used without
fear of being ejected. The store method BusyActionwill execute a call-
back function with the store reserved until the call-back completes. Ejecting the
card while the call-back is executing produces the same “locked” result.

If you are designing robust applications, you might also check out the
store method AtomicAction. This executes all the store-related
operations in a call-back function as an atomic unit, so that if any failure (such
as a store full error) occurs during the call-back the store is left in the same
state it was in before the call-back started.

You may wonder why all apps don’t simply reserve their packages when
they open and unreserve them when they close. When a user ejects a card,
it’s generally their goal to get the card out of the unit. If the card is locked by
your application, the user would reinsert the card, close the offending
application, and then eject the card again.

Since I accepted the position of Director of Marketing for the
Newton Systems Group in the fall of 1996, I have been focused on
rebuilding the marketing organization, putting all of the marketing
mechanisms in place to ensure a successful launch of the Message Pad
2000 and eMate 300, developing a product road map for future Newton
products, and creating program plans to support our partners. My
vision for Newton-based products is to create a family of hardware
products and a single, robust operating system from which licensees
and Apple can build complete customer solutions. One of the key
strategies I am implementing to reach this vision is to understand via
focused customer research, the unique problems that our customers
experience related to mobile computing. With the customer at the
center of our design targets, we will apply the most innovative designs
and state-of-the-art technologies to develop winning products.

A key element in understanding our customers’ needs and experiences is
gathering data on the solutions they want to employ. I believe that our
developers are critical to our products’ success in the market. Without the
availability of top notch applications and solutions, the MessagePad 130, the
MessagePad 2000, the eMate 300 and all future Newton products will not
provide complete solutions to customer problems. For this reason I have
made it a priority in Newton Marketing to create robust developer tools as
well as supportive developer and VAR/SI programs.

With a customer driven product road map coupled with robust solutions,
the last leg of the marketing equation is promotion. To this end we are
designing new advertising campaigns for the MessagePad 2000 and eMate 300
aimed at the mobile business professional and K-12 institutions, respectively.
We’ve had our PR engine working hard since October creating interest in the
marketplace and communicating the key customer benefits of our products
over the competition. PR will continue to be central to our outbound
marketing efforts given the cost effectiveness of this medium. We are
constantly looking for newsworthy items related to customer adoption of the
Newton technology, innovative implementations of our products, new
software applications and solutions, and awards and prizes earned based on
our own engineering efforts as well as those of partners and licensees. We
are also enhancing our web presence and want to develop links between the
Newton web site and sites of our developers, VARs/SIs and licensees. Finally,
we are redesigning our merchandising and collateral materials and
participating in a variety of trade shows around the world to communicate
the messages about our exciting new products.

We look forward to a timely and successful launch of the MessagePad
2000 and eMate 300 into our distribution channels. We plan to maintain
interest and generate demand for our new products by a combination of all
outbound marketing elements. Finally, we plan to add other exciting
Newton products to our portfolio later in 1997 and1998.

March 1997 Newton Technology Journal

22

Not reserving the packages is cleaner. Consider what happens if two
applications are open. Only one produces a grip message when the card is
unlocked. The user reinserts the card, closes that app, ejects the card again,
and then the second application produces a grip message. Repeat as
necessary, and it quickly gets annoying. Not locking the packages means the
user is notified only once. After reinserting the card, package deactivation
continues grip-free for all remaining packages.

A rule of thumb is to mark packages busy for as brief a time as possible,
to minimize the inconvenience to the user. Only lock a package if the
inconvenience caused by removing the package or closing the application
is greater than that caused by having to remount the card and manually
abort some operation.

Mark packages or stores busy only when necessary to avoid
user inconvenience.

TRACKING DOWN THE GRIP

When the grip is encountered while unmounting a store, the 2.0 OS
tucks away a reference to the offending data. With the help of a
debugging package written by Mike Engber, you can get this reference,
and find out exactly what it was that caused the problem.

This debugging package is called FindGOD, and the package is available
on-line at
<ftp://ftp.apple.com/pub/engber/newt/FindG
OD.sit> and on the Newton Developers CD (#12) in Tools:The UN
Files:FindGOD.

Using it is fairly simple: install the FindGOD package on the internal store,
yank the card to reproduce the grip, reinsert and then remount the card,
then call FindGOD() from the NTK inspector. The object that caused the
grip will be displayed, which typically will tell you exactly what you need to fix
to avoid the problem. The README that comes with FindGOD gives more
details, so read it.

Use FindGOD to quickly track down the cause of the grip.

CONCLUSION

The 2.0 OS vastly improves the situation with respect to the grip of death
conditions. You still need to be careful when writing your applications, but at
least now if you encounter the problem, tracking it down is easier.

Read the original “Newton still needs the card you removed” article.

NTJ

Meet Debbie Carlton
Director of Marketing, Newton Systems Group

Newton Systems Group Profiles

NTJ

Newton Technology Journal March 1997

23

NTJ

Newton Developer Training has expanded to offer you new options. In
addition to Newton Essentials, we are offering Newton Communications and
web-based training - and we’re taking our courses on the road. With the
exciting upcoming release of the Apple eMate 300 and the Newton
MessagePad 2000, now is the time to take advantage of the Newton 2.0
Developer Training offered through Apple Developer University, Arroyo
Software, and Calliope Enterprises. This training will cut your learning and
development time while providing you the expertise needed to write useful
and powerful Newton applications. See schedule and registration info below
to sign up! Also, be sure to check out our new free online training courses at
our Newton Developer website:
<http://devworld.apple.com/dev/newton/devservic
es/nsgtraining.html>

NEWTON PROGRAMMING: ESSENTIALS

Learn how to develop applications for Newton devices using the state-of-
the-art development environment, Newton Toolkit for Macintosh and
Windows, in combination with a very powerful, small, robust, object-oriented
language, Newtonscript. The use of Newton Toolkit lets you interactively
develop your applications without having to execute sequential edit, compile
and link cycles. In addition, human interface guidelines for developing on
PDAs are discussed. Duration: 5 days

NEWTON PROGRAMMING: COMMUNICATIONS

Learn the fundamentals of Newton Communications. Using a self-paced
mentored approach, we cover information for Newton programmers who
want to add communications code to their applications. Students will have
access to code, articles, references and labs for use as they desire. An
qualified instructor is available to work one-on-one with anyone having
specific questions or problems. In addition, a module on the Newton
Internet Enabler will be presented. Duration: 5 days

SCHEDULE

Cost/
Class Location Date Student Registration

Comms+Essentials Ann Arbor, MI 4/21/97 $1500 313-439-3828
Comms+Essentials Ann Arbor, MI 5/19/97 $1500 313-439-3828
2.1 Essentials Cupertino, CA 5/12/97 $1500 408-974-4897
2.1 Essentials Cupertino, CA 7/7/97 $1500 408-974-4897
2.1 Essentials Cupertino, CA 9/8/97 $1500 408-974-4897

Arroyo Software and Calliope Enterprises are both long-time providers of
Newton programming training for Apple. Both companies provide instructors
who are experienced Newton programmers as well as expert trainers. Arroyo
Software authored the Newton Communications Course and Calliope
Enterprises authored the Newton Essentials Course, both for Apple

Computer, Inc. Educational and group discounts are available.
Onsite training can be arranged both within the United States and worldwide.

Further information about both companies is available upon request.

Arroyo Software Calliope Enterprises
214 West Main Street 700 East Redlands Boulevard, Suite 154
Milan, MI 48160 Redlands, CA 92373
(313) 439-3828 (909) 793-5995
sobel@arroyosoft.com
nrhodes@pobox.com
http://www.arroyosoft.com/
http://www.pobox.com/~neil/training.html

Developer Training Update

Newton Training

If you have an idea for an article
you’d like to write

for Newton Technology Journal,
send it via Internet to:

NEWTONDEV@applelink.apple.com
or AppleLink: NEWTONDEV

Newton Developer Programs
Apple offers three programs for Newton developers – the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low
cost, self-help development program. The Newton Associates Plus Program provides for developers
who need a limited amount of code-level support and options. The Newton Partners Program is
designed for developers who need ujnlimited expert-level development. All programs provide focused
Newton development information and discounts on development hardware, software, and tools – all
of which can reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-cost,
self-help development resources to Newton developers.
Participants gain access to online technical information
and receive monthly mailings of essential Newton
development information. With the discounts that
participants receive on everything from development
hardware to training, many find that their annual fee is
recouped in the first few months of membership.

Self-Help Technical Support
• Online technical information and developer forums.
• Access to Apple’s technical Q&A reference library.
• Use of Apple’s Third-Party Compatibility Test Lab.

Newton Developer Mailing
• Newton Technology Journal – six issues per year.
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code.
– Newton Q & A’s.
– Newton System Software updates.
– Marketing and business information.

• Apple Directions – The Developer Business Report.
• Newton Platform News & Information.

Savings on Hardware, Tools, and Training
• Discounts on development-related Apple hardware.
• Apple Newton development tool updates.
• Discounted rates on Apple’s online service.
• US $100 Newton development training discount.

Other
• Developer Support Center Services.
• Developer conference invitations.
• Apple Developer University Catalog.
• APDA Tools Catalog.

Annual fees are $250.

Newton Partners
Program
This expert-level development support program helps
developers create products and services compatible
with Newton products. Newton Partners receive all
Newton Associates Program features, as well as
unlimited programming-level development support via
electronic mail, discounts on five additional Newton
development units, and participation in select
marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the Newton
Partners Program, more than ever, can help keep
your projects on the fast track and reduce
development costs.

Unlimited Expert Newton Programming-level Support
• One-to-one technical support via e-mail.

Apple Newton Hardware
• Discounts on five additional Newton development

units.

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton

products.

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities.

All Newton Associates Program Features:
• Developer Support Center Services.
• Self-help technical support.
• Newton Developer mailing.
• Savings on hardware, tools, and training.

Annual fees are $1500.

New: Newton Associates
Plus Program
This new program now offers a new option to
developers who need more than self-help information,
but less than unlimited technical support. Developers
receive all of the same self-help features of the Newton
Associates Program, plus the option of submitting up
to 10 development code-level questions to the Newton
Systems Group DTS team via e-mail.

Newton Associates Plus Program Features:
• All of the features of the Newton Associates

Program.
• Up to 10 code-level questions via e-mail.

Annual fees are $500.

For Information on All
Apple Developer Programs
Call the Developer Support Center for
information or an application. Developers
outside the United States and Canada
should contact their local Apple office for
information about local programs.

Developer Support Center
at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Internet: devsupport@applelink.apple.com

