
Inside This Issue

continued on page 21

Volume II, Number 3 June 1996

gy gy Newton Technolo
J O U R N A L

®

Communications Technology New Technology

Communications Technology
Newton Internet Enabler 1

New Technology
Newton Toolkit Does Windows 1

Communications Technology
Enabler Kits 9

Newton Directions
Communications Strategies
for Newton 2.0 10

NewtonScript Techniques
Using the NewtApp Framework 13

NewtonScript Techniques
Caching for Maximum
View Scrolling Performance 18

Product Development
Creating Quality Newton Applications 22

Newton Toolkit
Does Windows
by Lee Dorsey, Apple Computer, Inc.

In an effort to expand the number of software
developers who can develop for the Newton 2.0
platform, Apple is delivering the first release of
Newton Toolkit for Windows, Version 1.6. This
product provides complete Newton Toolkit
functionality, including the compiler, profiler,
and full support for Newton 2.0. It runs on
Windows 95, Windows NT, and Windows 3.1
with Win32s with a fully native Windows look
and feel.

“Shipping Newton Toolkit for Windows is a
very important step in providing our developer
community with the most flexible, powerful
tools of any PDA platform,” said Rick Fleischman,
Newton Tools Product Line Manager. “As the
Newton platform is maturing, Newton Toolkit for
Windows allows us to reach out and address a
much larger base of software developers who
want to create Newton applications.”

Newton Toolkit for Windows is only one
example of the many improvements that
continue to be made to developer tools for the
Newton platform. In January, Apple shipped
both Newton Toolkit for Mac OS, Version 1.6 and
the Desktop Integration Libraries for Mac OS
and Windows, Version 1.0. Newton Toolkit 1.6 is
optimized for PowerPC, delivers improved
debugging tools, and provides full support for
Newton 2.0. The Desktop Integration Libraries
(DILs) allow desktop application vendors for
both Mac OS and Windows to directly
synchronize data between their applications and
data on a Newton PDA, without the use of any

Newton Internet
Enabler
by Gary Hillerson, Hillysun Enterprises, Inc.

The Newton Internet Enabler makes it easy for
you to develop applications that access the
Internet. With Newton Internet Enabler, you
establish a link to an Internet provider, configure
your link with options, and use communications
endpoint methods to send and receive data. The
Newton Internet Enabler even automates status
display and data conversion for you.

You can establish a link that uses one of two
transport services: either TCP or UDP. Several
applications can share the use of a link, and the
Newton system software keeps the link open
until all applications release the link. Newton
Internet Enabler currently supports the use of
two lower-level link protocols: SLIP and PPP.

Newton Internet Enabler provides an
application programming interface and a setup
application. The setup application, Newton
Internet Setup, allows users to define the
configuration for links to various Internet
providers. For example, a user might set up a
link configuration for Compuserve, another
configuration for a local Internet provider, and a
third configuration for checking email at work.
Each link configuration includes information
about the phone number to dial, the link-level
protocol to use, and the initialization and login
sequences for establishing the link.

The Newton Internet Enabler application
programming interface (API) consists of about
ten global functions that you can call to perform
various net session-related tasks, a number of
options that you can use to control the

June 1996 Newton Technology Journal

2

Same Time,
Same Place,
New Stuff
Many of you will be reading this issue of the
Newton Technology Journal from your seats or
hotel rooms in San Jose, CA during Apple’s
World Wide Developers Conference and some
of you will be looking at it for the very first
time. We hope that most of the Newton
Developer Community has decided to attend
Apple’s annual developer event to learn more
about Apple’s technical directions and spend
time learning about new technologies. As
always, the Newton Systems Group will be on
hand to introduce Macintosh and Windows
developers to Newton technologies and the
potential the platform holds as we grow the
PDA product category and technology base.
We’ll also show attendees how Newton
technology fits into the rest of Apple
technologies and integrates into the company’s
business plan moving forward. And, for the
experienced Newton developer, there will be
new information and demonstrations of some
of the latest Newton platform technologies that
are covered in this issue.

Whether you’re an experienced Newton
programmer, a developer who’s new to the
Newton platform, or just evaluating the
technology, you could not be involved in a
more exciting technology at a more exciting
time. As we have been demonstrating since its
introduction in November, 1995, Newton 2.0 is
a huge step forward in delivering the kind of
functionality that users and developers alike
expect from a PDA platform. This spring, we
are seeing and hearing so much more about
the internet, e-mail and communications. And
Newton PDAs play right into this timely
evolution. This issue of NTJ will run you

through some of the most important aspects
of the evolution: Barney Dewey, Product
Manager for Newton Communications, takes
you through our communications strategy and
Gary Hillerson walks you through the latest
tool you’ve all been waiting for – the Newton
Internet Enabler. Finally, Eileen Tso will
provide you with her take on how and why
these are critical to the continued growth of
the Newton platform and the solutions that
make it cutting edge. On the tools front,
Windows NTK is finally ready to go and
attendees at the Intro to Newton Session will
get first peeks at it. We talked about it last
year, and now it’s here. Same time, same
place, but lots of new stuff.

While sessions at the WWDC are aimed at
educating new and interested developers in
the platform, there is always something
challenging and new for the experienced
developer. And, if you are already a platform
convert, take this opportunity to convince a
friend or two to stop by the Newton sessions
to learn more about the possibilities of
extending Mac applications to mobile Newton
clients and getting involved in the first real
“mobile internet” device on the market. As
Guy Kawasaki says, “let a thousand flowers
bloom”. Each one of you is and can be an
evangelist for this platform. WWDC is a great
opportunity to convince your fellow
developers to deliver their latest great ideas
on this platform. The time is right, the
market opportunities are there, and the tools
are there. Show them what you already know
about the premier PDA platform and the
strides Apple has taken with Newton 2.0.

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, David Fedor,
Ryan Robertson, Jim Schram, Maurice Sharp,
Bruce Thompson

Contributors
Greg Christie, Barney Dewey, Gary Hillerson,
Peter Murray, Jeffrey C. Schlimmer, Eileen Tso

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Matt Neuburg • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1996 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume II, Number 2 June 1996

Letter From the Editor
by Lee DePalma Dorsey

Editor’s Note

Newton Technology Journal June 1996

3

configuration of your links, and a communications tool that you use with
your endpoints to perform communications on the Internet.

Figure 1 shows the relationship of the Newton Internet Enabler
components.

Figure 1 Newton Internet Enabler components

The Newton Internet Enabler application programming interface
provides two kinds of functions: domain name service functions and link
controller functions. You use the domain name service functions to translate
between Internet domain names and their corresponding IP addresses. You
use the link controller functions to establish, release, and find the status of
your Internet links.

The domain name service and link controller functions are global
functions in the Newton system software. These functions provide an
interface between Newton communications endpoints and the Inet tool,
which is the underlying communications tool that performs the actual work
of establishing, maintaining, and communicating over the links.

The Inet communications tool provides a configurable stack of protocols
at and below the TCP/IP level. The Inet tool is a standard Newton
communications tool, which means that it provides all of the endpoint
services that are provided by other built-in communications tools, such as
the built-in modem tool and the built-in serial tool. Like the other
communications tools, you can control the configuration of the Inet tool

with communications options.
The Inet tool can establish physical links using various low-level

communications services. Each communications service is provided by a
Newton communications tool such as the built-in modem tool. The Inet
tool can run various link-level protocols that are provided with the Newton
system software, including PPP and SLIP.

Your application can use several endpoints with the same Newton
Internet Enabler link. Each endpoint, however, requires a significant amount
of memory. The total number (for all applications) of endpoints that can be
active is restricted by a combination of the user’s hardware configuration and
which software is currently in use on the device.

The remainder of this article describes the Newton Internet Enabler
application programming interface. The November, 1995 issue of Newton
Technology Journal (Volume 1, Number 5) provides an overview of Newton
communications technology, including a discussion of endpoints and
communications tools.

NEWTON INTERNET ENABLER AND CALLBACK FUNCTIONS

Many of the Newton Internet Enabler functions require you to provide a
callback function, which is a function that the Inet tool calls during and/or
after the performance of the operation that you requested. The callback
function receives status and error information.

For example, the InetCancelLink function calls the callback
function that you provide after it finishes its operation. Your callback
function for InetCancelLink can determine if an error occurred and
can determine the current status of the link that you wanted canceled.

Some operations call your callback function more than once. For
example, the InetGrabLink function calls the callback function you
provide many times during its operations. You can use your
InetGrabLink callback function to monitor the progress of the grab,
since each call to it provides you with the current status.

When a function requires that you specify a callback function, you do
so by providing a context frame and the symbol of the function defined in
that frame that you want to use as the callback function. For example,
the InetGrabLink function takes three parameters and is declared
as follows:

InetGrabLink(linkID, clientContext, clientCallback);

When you call InetGrabLink , you must specify a frame (or your
application frame) as the value of clientContext , and you must specify a
function defined in the frame as the value of clientCallback .

You might create a callback function for your InetGrabLink calls
that looks like the following:

myApp.GrabLinkCallback := func(linkID, stat, err)
begin
if err=nil and stat.linkStatus <> 'connected then

; // display status
if err then

; //handle the error
// link established, so resolve the address
end;

,

Lower-level Newton comm tool

(e.g. the built-in modem tool)

Link
Controller
requests

SLIPPPP
IP

configuration info

host names,
IP numbers

endpoint
comm scripting
messages

Inet tool
function calls

Inet tool
option requests

physical link requests
comm tool requests, e.g.
connect, get, put

data indata out

Setup
application

NewtonScript
client applications

Link Controller Domain
Name
Server

Inet tool

TCP UDP

serial stub driver

transport services

link-level protocols

communications stack

continued from page 1

Newton Internet Enabler

June 1996 Newton Technology Journal

4

Then, when you call the InetGrabLink function in your application,
you pass it the name (symbol) of your callback function. For example:

myApp.TestGrab := func()
begin
myStatusView := InetStatusDisplay(nil, nil, nil);
InetGrabLink(nil, self, 'GrabLinkCallback);
...
end;

This function first calls the InetStatusDisplay function to
create and display the status view. The call to InetGrabLink uses the
default link ID and specifies self (the application frame) as the value of the
clientContext parameter, and 'GrabLinkCallback (the symbol
for the callback function) as the value of the clientCallback parameter.
The GrabLinkCallback function will be called repeatedly while the
system is attempting to grab the link, until either the status is
'connected or an error occurs.

USING THE LINK CONTROLLER INTERFACE

You can use the Link Controller to create and manage a link between a
Newton device and the Internet. The Link Controller can manage a single
link for multiple applications simultaneously. This means that one
application establishes the link and other applications use the same link.

To establish (grab) a link, you call the InetGrabLink function. The
first grab of a link can be expensive in terms of time: typically, the Inet tool
software dials the Newton modem and negotiates the connection to establish
an Internet session. The Inet tool then performs whatever login and
initialization procedures are required, which the user has configured with the
Internet Setup application. All of this can take a substantial amount of time.

Since it can take so much time to grab a new link, Newton Internet
Enabler makes it easy for another application to grab a link that has already
been established by maintaining a reference count of users for each link.
Whenever an application grabs a link, the link controller increments its count
of users of that link. The physical link is dropped only after all users have
released the link (when the count becomes 0).

Most of the link controller functions operate asynchronously. After the
Inet tool initiates the operation, it returns control to your application. When
the operation is complete, or in some cases while the operation is in
progress, the Inet tool notifies you by calling a callback function that you
have provided. You can use your callback functions to monitor the status of
a link and to determine if an operation was successful or not.

While the grab of a link is in progress, the Inet frequently calls your
callback function, providing it with information about the current status of
the link. You can send this status information along to the
InetStatusDisplay function to provide visual feedback to the user
about the connection process.

The following is an example of a typical flow of operations that occur
during an Internet session using Newton Internet Enabler:
1. An application (My_Application) issues a call to the InetGrabLink

function. The link controller dials the modem and begins an Internet
session with an Internet provider.

2. While the grab operation is in process, the Inet tool periodically calls the
callback function that My_Application has defined for grab operations.
This callback function calls the InetStatusDisplay function to
update the on-screen display of the current status of the link.

3. When the grab operation completes, the callback function removes the

status display from the screen.
4. My_Application instantiates and binds one or more endpoints to use

over that link. Each endpoint can use either the TCP or UDP transport
services, and each endpoint can be bound either to initiate an outgoing
connection (connect) or to listen for an incoming connection (listen).

5. My_Application uses its endpoint(s) to perform communications
operations, calling endpoint methods such as Output and
SetInputSpec .

6. Another application (Your_Application) issues a call to the
InetGrabLink function to use the same service provider as
My_Application. The Inet tool returns the same link that it established
in step 1.

7. Your_Application creates and uses endpoint(s) to perform
communications operations.

8. Your_Application finishes its use of the link and calls the
InetReleaseLink function. The link controller decrements its
count of users of the link.

9. A third application (Their_Application) grabs the link, creates endpoints
to use over the link, and releases the link.

10. My_Application finishes its use of the link and calls the
InetReleaseLink function. The link controller decrements its
count of link users. The count becomes 0, so the link is dropped: the
Internet session ends, the modem is hung up, and any resources used
for the link are released.

Grabbing a Link
To get started, you need to establish (grab) a link. To establish a link, you
need to call the InetGrabLink function. You need to provide
InetGrabLink with a link ID, a callback function, and a callback
context frame:

InetGrabLink(linkID, clientContext, clientCallback)

For the link ID, you can tell InetGrabLink to use the default link by
using ni l or you can use an identifier returned by the
InetAddNewLinkEntry function as the value of this parameter.
When you specify ni l , the system software uses the link ID that has been
established as the default link ID, which is almost always what you want to do.

The InetGrabLink operation can take some time to complete. While
it is in progress, the Inet tool repeatedly calls your callback function to report the
current status of grabbing the link. The Inet tool calls your callback function until
either an error occurs or until the status becomes 'connected .

The status value in your callback is a status frame. This frame contains
the current link status value and (possibly) other information. In your
callback, you can use the InetDisplayStatus function to show the
current status to the user. The next section, “Retrieving and Displaying Link
Status Information,” describes how to display status to the user.

Here is an example of a callback function for the InetGrabLink
function:

myApp.GrabLinkCallback := func(linkID, stat, err)
begin
myLinkID := linkID; // save the link ID

// during grab processing, display status & return
if err = nil and status.linkStatus <> 'connected then

return InetDisplayStatus(linkID, myStatView, stat);

// at this point, either we are connected or we
// got an error, so close the status display

InetDisplayStatus(linkID, myStatView, nil);

Newton Technology Journal June 1996

5

if err then begin
print("link failed"); // handle the error
:endGrabLink(err); // end connect attempt
end

else // status.linkStatus = 'connected, so resolve name
DNSGetAddressFromName(“apple.com”, self, 'DNSCallback);

end;

The first statement, myLinkID:=linkID , saves the ID of the link
that InetGrabLink is in the process of grabbing in one of your
variables. You might want to store the link ID for use in other portions of
your application.

If grabbing of the link is progressing without errors, your callback
function gets called to report the progress. You can call the
InetDisplayStatus function, as shown in the above example. The
myStatView view used in the this example was created before the
grab of the link was initiated.

The grab of the link terminates when the connection is made or when an
error occurs. In either case, you can remove the status display view at that
point. To do so, call the InetDisplayStatus function with nil as
the value of the status parameter.

If InetGrabLink encounters an error, the error code will be a non-
zero value and your application has to do something with that error. In the
example function, a message is displayed and the connection attempt is
terminated.

If InetGrabLink succeeds, the callback receives 'connected
as the value of linkStatus . At that point, you can perform any
operations that are appropriate. The example function takes this
opportunity to convert its remote echo host name into an IP address, which
is saved in a local variable by the DNSCallback function.

Retrieving and Displaying Link Status Information
Many applications want to display status to the user while a net

connection is being established. Newton Internet Enabler makes this easy
for you with the InetDisplayStatus function, which displays link
status information on the Newton screen. Here is the declaration of the
function:

statusView InetDisplayStatus(linkID, statusView, status)

You can use the InetDisplayStatus function in three ways, as
follows:
• to create a new status view, pass nil as the value of each parameter:

myStatusView := InetDisplayStatus(nil, nil, nil);

• to display status for a link in an existing status view, pass in the link ID,
the status view, and the status frame that was sent to your callback
function:

InetDisplayStatus(myLinkID, myStatusView, myStatus);

• to remove and dispose of the status view, pass nil as the value of the
status frame:

InetDisplayStatus(myLinkID, myStatusView, nil);

The InetStatusDisplay function creates and uses a view that is
based on protoStatusTemplate . For information about this
proto, see the chapter “Additional System Services” in Newton
Programmer’s Guide.

To initiate the status display, you need to open the status view. The most
convenient place to do this is just before your call to the
InetGrabLink function. For example, the following function creates
the status view, stores it in myStatView for subsequent use, and then
calls the InetGrabLink function:

DoGrabLink := func()
begin
myStatView := InetDisplayStatus(nil, nil, nil);
InetGrabLink(nil, self, 'GrabLinkCallback);
end;

While the grab operation is in progress, you can update the status display
whenever your callback function gets called. For example, the following
code segment from a grab link callback function updates the status display if
no errors have occurred and if the link status has not yet become
'connected :

if err = nil and status.linkStatus <> 'connected then
InetDisplayStatus(linkID, myStatView, stat);

When the grab operation is done, you can remove the status display.
The following code segment from a grab link callback function removes the
status display when the link status becomes 'connected :

if err = nil and status.linkStatus = 'connected then
InetDisplayStatus(linkID, myStatView, nil);

The view displayed by the InetDisplayStatus function contains
a button that the user can tap to call the InetCancelLink function,
which cancels the grab operation that is currently in progress.

Configuring Newton Internet Enabler for Your Endpoint
After grabbing your Newton Internet Enabler link, you need to instantiate

your endpoint. You send the Instantiate message to your endpoint
with the options required to configure Newton Internet Enabler for your
application.

You must set three options in your Instantiate message:
• The 'inet service identifier option, which tells the Newton system

software to use Newton Internet Enabler with your endpoint.
• The Inet tool physical link (' i l id') option, which tells Newton Internet

Enabler which link ID to use for your endpoint. Use the link ID that was
returned by the InetGrabLink function.

• The Inet tool transport service type ('itsv') option, which tells Newton
Internet Enabler which transport type (for example, UDP or TCP) to use
for your endpoint.

Binding Your Endpoint with Newton Internet Enabler
After you instantiate your endpoint, you need to bind it to an address.

You either bind your endpoint to connect (initiate an outgoing connection),
or to listen for an incoming connection. If you are binding an endpoint that
is going to listen, you always need to pass the Inet local port (' i lpt') option
when you send the Bind message to your endpoint. If you are binding an
endpoint that is going to connect, you need to pass the Inet local port
option for UDP links, but not for TCP links.

The Inet local port option has two data slots that you specify: a short
value, InetPortNumber , and a Boolean value,
useDefaultPort . The useDefaultPort value only applies
when you are binding an endpoint to connect over a UDP link. Assign the

June 1996 Newton Technology Journal

6

InetPortNumber a value as shown in Table 1-1 when sending the local
port option with a Bind request:

Table 1-1: Local port numbers for binding with Newton Internet Enabler

Bind type Transport service type Local port number
For connect TCP The system always selects the local port number, so

don’t set this option. You can, however, send a get
(opGetCurrent) of this option with your
Bind to retrieve the port number that the system
assigned.

For connect UDP If you specify true for useDefaultPort ,
Newton Internet Enabler will select the local port to
use and will return its value in the option.
If you specify nil for useDefaultPort , you
must supply a port number that is not in use or the
Bind will fail.

For listen TCP Specify a port number to listen on as defined by the
IETF RFC 1700: Assigned Numbers (October, 1994)
document.

For listen UDP Specify a port number to listen on as defined by the
IETF RFC 1700: Assigned Numbers document.

Connecting Your Endpoint with Newton Internet Enabler

After instantiating and binding your endpoint, you need to connect it. If
you are using a TCP link, you need to pass the TCP remote socket (' i trs')
option when you send the Connect message to your endpoint. This
option sets the host address with which TCP connects. You can use the
domain name server to get this address.

If you are using a UDP link, you do not need to pass any options in your
Connect message.

If you are using your endpoint to listen for an incoming connection, you
do not need to send any options with the Listen message.

Sending Data
You use Newton Internet Enabler to send data just as you would with any

Newton communications tool. You can set up an output specification frame
and send the Output message to your endpoint after you have
established a connection.

For UDP connections, you need to include the Inet UDP destination
socket ('iuds') option to establish the destination of the UDP datagram.
Your UDP output specification must include two flags in the sendFlags
slot: the kPacket and kEOPflags. For example, the following code
segment sends the string “Hello World!” out over a UDP link.

local myUDPstreamOutputSpec := {
form: 'string,
sendFlags: 'kPacket+'kEOP,

}

local myUDPOptions :=
[{

label: "iuds",
type: 'option,
opCode: opSetCurrent,
result: nil,
form: 'template,
data:
{

arglist:
[

130, // byte 1 of host address
43, // byte 2 of host address
2, // byte 3 of host address

2, // byte 4 of host address
7, // destination port number

],
typelist:
[

'struct,
'byte,
'byte,
'byte,
'byte,
'short

]
}

}];

try
ep:Output("Hello World!", myUDPOptions,

myUDPstreamOutputSpec);
onexception |evt.ex.comm| do

return :DoDisconnect();

For TCP links, you do not need to include any options in your Output
message, nor do you need to specify any sendFlags values in the
output specification frame. For example, the following code segment sends
the string “Hello World!” out over a TCP link.

local myTCPstreamOutputSpec := {
form: 'string,

}

try
ep:Output("Hello World!", nil, myTCPstreamOutputSpec);

onexception |evt.ex.comm| do
return :DoDisconnect();

The above example calls the application’s DoDisconnect function
if any communication exception occurs while sending the data.

You can also send expedited data over a TCP link. Expedited data is a
single byte of data that gets sent immediately. The data byte gets inserted in
front of any data on the remote end that has been received but not yet
processed. For example, you might need to send out a break character in
the middle of transmitting a large amount of data. To do so, you use the Inet
expedited data option with your Output message.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about output specification frames and the Output method.

Receiving Data
You use Newton Internet Enabler to receive data just as you would with

any Newton communications tool. Typically, this means that you set up an
input specification frame and send the SetInputSpec message to
your endpoint.

For UDP links, your input specification frame must include the
kPacket receive flag and must include useEOP:true in the
termination slot. In addition, you can include two options in the
rcvOptions slot if you want to: include the UDP source socket option
to retrieve the address of the datagram sender, and include the UDP
destination socket option if you want to retrieve the exact address to which
the packet you received was sent. The destination address might be other
than your local address if the packet was sent to a broadcast address.

The following code segment receives a datagram packet over a UDP link.

local streamInputSpec := {
form: 'string,
termination: {useEOP: true},
discardAfter: 256,
rcvFlags: kPacket,
rcvOptions: {

label: "iuss",

Newton Technology Journal June 1996

7

type: 'option,
opCode: opGetCurrent,
result: nil,
form: 'template,
data: {

arglist:
[

0, // host addr - byte 1
0, // host addr - byte 2
0, // host addr - byte 3
0, // host addr - byte 4
0, // host port number

],
typelist: kPortAddrStruct,
[

'struct,
'byte,
'byte,
'byte,
'byte,
'short

]
}

},

inputScript: func(ep, data, terminator, options)
begin
// do something with data
end,

completionScript: func(ep, options, result)
begin

// skip error handling for canceled requests
if result <> kCommAbortErr then

begin
print("Error: " && result);
ep:DoDisconnect();
end;

end,
}

try
ep:SetInputSpec(streamInputSpec);

onexception |evt.ex.comm| do
return :DoDisconnect();

The example input specification frame above tells Newton Internet
Enabler to receive a packet of data from the UDP link and provides two
scripts: the inputScript function to process normal completion of data
reception and the completionScript function to process
unexpected termination of data reception. In addition, this input spec
includes a “get” of the UDP source socket address, which will be filled in
with the IP address of the host that sent the datagram to your application.

For TCP links, you do not need to include any options or specify any
receive flags in your input specification frame. For example, the following code
segment receives a carriage return-terminated string from a TCP connection.

local streamInputSpec := {
form: 'string,
termination: {endSequence: UnicodeCR},
discardAfter: 256,

inputScript: func(ep, data, terminator, options)
begin
// do something with data
end,

completionScript: func(ep, options, result)
begin

// skip error handling for canceled requests
if result <> kCommAbortErr then

begin
print("Error: " && result);
ep:DoDisconnect();
end;

end,
}

try

ep:SetInputSpec(streamInputSpec);
onexception |evt.ex.comm| do

return :DoDisconnect();

The example input specification frame above tells Newton Internet
Enabler to terminate input upon receiving a Unicode carriage return character
and provides two scripts: the inputScript function to process normal
completion of data reception and the completionScript function to
process unexpected termination of data reception.

You can also receive expedited data over a TCP link. When expedited
data arrives, your application is immediately notified: the link controller
sends an application event frame. The eventCode slot of this event
frame has the value kEventToolSpecific and the data slot is the
byte that was received.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about input specifications, the SetInputSpec
method, handling communications events, and other styles of receiving data
with an endpoint.

Disconnecting Your Endpoint
When you have finished using your endpoint, you need to disconnect,
unbind, and dispose of it. The following function shows you an example of
finishing your use of an endpoint.

MyApp.DoDisconnect := func()
begin
if ep then begin // ignore all disconnect errors

try
ep:Disconnect(true, nil);

onexception |evt.ex.comm| do
nil;

try
ep:UnBind(nil)

onexception |evt.ex.comm| do
nil;

try
ep:Dispose()

onexception |evt.ex.comm| do
nil;

end;
end;

Releasing Your Link
After your application is completely done with the link, or whenever you will
not be using the link for a long period of time (approximately 15 minutes or
longer), you need to release it by calling the InetReleaseLink
function. If no other applications are using the link, the Newton system
software shuts it down.

You need to provide InetReleaseLink with a link ID, a callback
function, and a callback context frame:

InetReleaseLink(linkID, clientContext, clientCallback)

USING THE DOMAIN NAME SERVICE INTERFACE

You can use the Newton Internet Enabler domain name service functions to
translate between host name and Internet address representations. Newton
Internet Enabler provides the following domain name service global functions:
• the DNSCancelRequests function cancels any pending DNS

requests.
• the DNSGetAddressFromName function translates a

domain name into its corresponding Internet address.
• the DNSGetMailAddress function translates a domain name

into the Internet address for a mail server that serves that domain.

June 1996 Newton Technology Journal

8

• the DNSGetMailServerNameFromDomainName
function translates a domain name into the domain name for a mail
server that serves that domain.

• the DNSGetNameFromAddress function translates an
Internet address into its corresponding domain name.

You must supply a clientContext and clientCallback parameter to
each of the DNS functions, just as you do for the link controller functions.
However, the DNS callback functions are called with different parameters
than are the link controller functions.

The callback function for DNSCancelRequests receives no
parameters.

The callback function for all of the other DNS functions receives two
parameters: an array of DNS results frames and a result code. Each results
frame contains a number of slots that describe the DNS operation that was
performed. For example, the DNSGetAddressFromName
function is declared as follows:

DNSGetAddressFromName(addr, clientContext, clientCallback)

An example of a callback for this function is shown here:

myApp.DNSGetAddrcallback := func(results, error)
begin
if error or length(results) < 1 then

begin
print("DNS error: " && error);
// do something with the error
return;
end;

// save the resolved address
myRemoteIpAddr := results[0].resultIPAddress;
end;

Each results frame contains a type slot and at least one result slot. Most
results frames contain the targetDomainName slot; however, this is not
guaranteed. Table 1-2 shows which slot is guaranteed to be valid for each
DNS operation.

Table 1-2: Result slots for each DNS operation

DNS operation Results frame slot

DNSGetAddressFromName resultIPAddress

DNSGetNameFromAddress resultDomainName

DNSGetMailServerNameFromDomainName

resultDomainName

DNSGetMailAddressFromName resultIPAddress

For example, the DNSGetAddressFromName function
returns a results array that looks something like this:

[{
type: kDNSAddressType,
targetDomainName: "newton.apple.com.",
resultIPAddress: [155,227,54,3]
}]

In contrast, the DNSGetNameFromAddress function
returns a results array that looks something like this

[{
type: kDNSDomainNameType,
targetDomainName: "newton.apple.com.",
resultIPAddress: [155,227,54,3]

}]

Some DNS operations return a results array that contains more than one
results frame. For example, a mail exchange operation can generate
multiple mail exchange results frames.

USING THE NEWTON INTERNET ENABLER OPTIONS

You configure the Newton Internet Enabler links with communications
options. Send these options down with your endpoint method calls, as
you do for other communications tools. Table 1-3 describes the Newton
Internet Enabler options, including which options to send with which
endpoint methods.

Table 1-3: Newton Internet Enabler options

Option name Description When to use

Expedited data For expedited Set this option with an

transfer ('iexp') transmission of data Output call to
over a TCP link. transfer data on a TCP

endpoint.

Physical link To identify the link ID to use. Set this option at endpoint

identifier (' i l id') instantiation time.
Local port To set the local port number Set this option if you are

('ilpt') for TCP binds. binding to do a Listen

(at endpoint instantiation
or bind time). You don’t
need to set this option for

a Connect .

To set the local port number Set this option at endpoint
for UDP binds. instantiation or bind time.

To retrieve the local port Retrieve the value of this
number used for TCP option when you are
or UDP. connecting, sending, or

receiving data.

TCP remote socket To set the socket to which Set the value of this option

('itrs') TCP connects. at before using the
connection (at endpoint
instantiation, bind, or
connect time).

To retrieve the sender Get the value of this option
address for data received when listening for data on
over a TCP link. a TCP connection.

Transport service To set the transport Set this option at endpoint

type ('itsv') service type (TCP or UDP). instantiation time.

UDP destination To set the destination Set this option when

socket ('iuds') address for data being sending data with a UDP
sent over a UDP link. connection.

To retrieve the destination Get this option when
address for data received listening for data on a UDP

over a UDP link. connection.

UDP source socket To retrieve the source Get the value of this option

('iuss') address for data received when listening for data on

over a UDP link. a UDP connection.

NEWTON INTERNET ENABLER: PROVIDING CONVENIENT CONNECTIVITY

To summarize, the Newton Internet Enabler makes it easy for you to
provide Internet connectivity in your NewtonScript applications. If you

Newton Technology Journal June 1996

9

know how to use Newton communications endpoints to send and receive
data, then you already know how to use the Inet tool to send and receive
data over the Internet.

The only additional concept that you need to understand to use the

Newton Internet Enabler is that of links. You establish a link to establish an
Internet session with a certain Internet services provider. Each link is
configured to work with a certain transport service (TCP or UDP) and to use
a certain link-level protocol (PPP or SLIP). Although only one link can be

With the introduction of the Newton 2.0 OS, communications capabilities
are more important than ever. The Newton Systems Group relies on
support and feedback from developers to make sure that effective
communications applications are created for the Newton platform.
“Communications Strategies for Newton 2.0” alludes to a number of tools
and “kits” which we are in the process of putting together. Developers
can use these aids to help us carry out the vision we’re planning for the
platform and associated solutions.

EMAIL ENABLER

The first of these kits is the Newton eMail Enabler. As most of you are
aware, a significant accomplishment of Newton 2.0 OS was that it made
e-mail choices and related complications transparent to users by
implementing transports and a Universal In/Out Box. However, with our
built-in eWorld solution on MessagePads, we perhaps made it too easy for
developers to simply take that as “sample code” and replicate the client
for other e-mail solutions (for example, Internet POP/SMTP, LAN-based e-
mail access, dial-in services, and so on). Now that eWorld no longer
exists and that client is essentially unnecessary, it becomes apparent that
the eMail Enabler is what we should have provided originally, with or
without eWorld.

As mentioned in the Communications Strategies article, the eMail
Enabler includes an NTK streams file, elements of an e-mail transport,
stationery, views, and so on. Some of you may recall a query made by
DTS last year asking how many of you within our existing developer base
would be in need of such a tool. The response was a resounding plea for
an alternative to the eWorld code. Stay tuned: this summer should bring
your e-mail solution to completion, without the need for the built-in
client or “sample code.”

MESSAGING ENABLER

The second kit described in the article is the NewtonMessaging Enabler.
Those of you who have heard rumors or snippets from previous
conversations may know this tool as the “Paging Enabler.” Early on, we

realized there was a need to transport data more seamlessly with page
cards and similar devices. Now that the industry is starting to cross
barriers, with pagers functioning more like messaging devices and packet
radio proliferating, what started as the Paging Enabler has become a
much stronger and more useful tool as the Messaging Enabler. As with
the eMail enabler, not all developers will require the Messaging Enabler.
It isn’t a magical black box/middleware combination of code which will
allow you to take an existing application and get it to send pages. But,
not far from that scenario, it will allow you to speak to those messaging
devices if you so choose. From there, the 2.0 transport would take over,
and then your application.

INTERNET ENABLER

The last enabler described in the Communications Strategies article –
and also discussed at length in Gary Hillerson’s accompanying article – is
the Newton Internet Enabler. Briefly, the NIE is Newton TCP/IP. Like the
other enablers, NIE will not be a necessity for every communications
developer. But also like the other pieces, it will be made freely available
to developers this summer.

If you’d like to obtain more information on any of these enablers,
including detailed schedules, timelines, or functionality, please send your
inquiries to NewtonDev@AppleLink.apple.com, and your message will
be forwarded accordingly. As you can imagine, these three efforts are
being managed from distinct subgroups within our organization, and
although DRG and your respective evangelists are always here to provide
you with information, sending an e-mail message to NewtonDev will get
your issues, questions, and comments directly into the hands of those
managing the enablers.

Once again, we are extremely appreciative of your continued support
and your contributions to our platform. And, as always, we look forward
to seeing the results of our work together.

Communications Technology

Enabler Kits
by Eileen Tso, Apple Computer, Inc.

NTJ

NTJ

June 1996 Newton Technology Journal

10

Today, the definition of “work environment” is rapidly changing. People are
roaming farther and farther from their base of operations, whether that base
is a corporate desk or a home office. Job-related information now resides
not just on a local hard drive, but on servers maintained by in-house MIS
staff or remote information service providers. Although it’s easier than ever
to work where you want to, keeping in touch and getting to the information
you need can still be complicated, involving multiple communications
methods with different protocols, interfaces, and software.

Newton 2.0 OS supports a broad range of communications technologies.
Whether mobile users require wired or wireless means to exchange
information, Newton 2.0 OS supports numerous communications protocols
and standards for each. The Newton 2.0 OS architecture supports the
following communications technologies:
• Fax send and receive (built-in)
• E-mail (built-in and third-party)
• One- and two-way paging and messaging
• Networking (built-in AppleTalk)
• Internet protocols (TCP/IP, UDP, PPP)
• Packet radio networks (ARDIS, CDPD, RAM)
• Cellular fax and data (AMPS, digital, GSM)
• PCS fax and data (CDMA, PCS-1900, TDMA)
• Wireless LAN support

NEWTON PLATFORM COMMUNICATIONS STRATEGY

The basic communications strategy for the Newton platform is threefold:
core communications, wireless communications, and Internet connectivity.
Newton Systems Group has a number of initiatives to fulfill this strategy.
They are:
• Build in the most essential capabilities (e.g., serial connection, fax)
• Encourage developers to enhance the built-in capabilities and to provide

new capabilities
• Assist developers by providing communications APIs and enablers

(enablers are described below)

The Newton 2.0 OS has a full set of communications APIs such as
Transport, Routing, In/Out Box, and communications scripting. Because
most types of communications applications have one or more common
functions, we believe that providing a higher-level program interface will
simplify the development of many communications applications. The
developer functions that provide this higher level of interface are called
enablers. The first enabler we provided was the Modem Enabler. In this
article we will introduce you to three new enablers: Newton eMail Enabler,
Newton Messaging Enabler, and Newton Internet Enabler.

Some enablers – like the eMail Enabler and the Messaging Enabler –
provide higher-level APIs and code that developers can use to streamline the

development process. Others – like the Internet enabler – provide new
functionality. (For more information on these enablers, see “Enabler Kits.”)

We have five groups in Newton Systems Group working on
communications: Developer Relations, Developer Technical Support,
Communications OS Engineering, Communications Solutions Engineering,
and Product Marketing. Two of the groups – Developer Relations and
Developer Technical Support – are entirely devoted to supporting third-
party developers, who continue to be the most important part of our
communications strategy. The Enabler Kits discussed here are one method
of taking key enabling technology developed by our Communications OS
Engineering and Communications Solutions Engineering groups and making
it available to developers.

CORE COMMUNICATIONS

Our first strategic goal is to have the best core communications of any PDA.
When we talk about core communications, we mean much more than basic
communications; core communications includes all of communications
capabilities one expects on a laptop or desktop computer. Today, Newton
PDAs include more built-in communications capabilities than many laptops
and desktop machines. We intend to expand this leadership in future
Newton PDAs.

Let’s review the core communications elements, as well as a new e-mail
initiative.

Universal In/Out Box. This capability provides common access and
control for most communications, including e-mail, faxing (send and
receive), infrared transmission, wireless messaging, and printing.

Modem support. Newton 2.0 OS allows Newton PDA users to connect a
modem via the serial port or through a PCMCIA-standard PC Card slot.
Newton 2.0 technology supports data transfer over a modem at up to 28.8K
bps and beyond. Our Modem Enabler allows developers and device
manufacturers to easily write scripts (we call them “setups”) for most
modems to operate with the Newton 2.0 platform.

Network Connectivity. One of Apple’s strategic directions for the
Newton platform is to provide network connectivity to the most popular PC
networks. Newton 2.0 OS uses AppleTalk for this purpose. AppleTalk
support provides connectivity to most Macintosh and Windows NT
networks. Future versions of the Newton Internet Enabler (see “Enabler
Kits”) will allow TCP/IP over Ethernet networks.

Access to corporate LANs. Newton 2.0 OS provides an extended
AppleTalk stack, so users can access a local AppleTalk network from any node
just by connecting to that node’s AppleTalk connector. AppleTalk is also
supported as a standard network (AppleTalk ADSP) by Windows NT, which
allows connectivity to most Windows networks.

Access to the Ethernet LANs. Our strategy for network access is to expand
from AppleTalk to support TCP/IP over Ethernet. We expect this capability to
be available through future Apple enabler capabilities and the use of third-

Communications Strategies for Newton 2.0
by Barney Dewey, Apple Computer, Inc.

Newton Directions

party Ethernet drivers and Ethernet access cards within the next year.
Fax send and receive. Full fax support is part of our strategy to provide

more core communications capabilities in the Newton platform. Newton 2.0
OS not only provides the capability to send faxes, but the capability to
receive faxes, with the option to annotate them before forwarding them to
someone else. As a part of our strategy to continually update
communications capabilities, we are adding Class 2 fax support, especially
important in markets outside of North America.

The Name and Fax Number information stored in the Name files is
closely integrated with the sending fax feature in Newton 2.0 OS. Newton
2.0 OS supports complex dialing codes and multiple phone numbers.

Printing. The Newton PDA strategy is to support printing via networks
and serial-connected printers. Printing over AppleTalk is available. Printer
drivers are built in for most Apple printers; support for many other popular
printers is available with the Newton Print Pack. We plan to support printing
over TCP/IP Ethernet networks over the next year.

E-mail. Apple’s e-mail strategy for the MessagePad continues to be one
of providing an architecture and development environment to support a
wide variety of e-mail, including an online e-mail client for services like
CompuServe and America Online; LAN e-mail, such as Lotus cc:Mail, CE
QuickMail, and Microsoft Mail, through remote-access mail clients; wireless
e-mail from RadioMail and WyndMail; and Internet mail access through
applications like Qualcomm’s Eudora.

To support this strategic direction, we are developing the Newton eMail
Enabler. The eMail Enabler consists of the following elements:
• A documented and preferred user interface for eMail and messaging

clients for the Newton platform
• Documented APIs
• An NTK streams file that provides the common elements of an e-mail

application. Example elements are: routing slip, connection slips, In/Out
Box headers, eMail stationery, and configuration slips.

You can make inquires concerning the eMail Enabler at
NewtonDev@applelink.apple.com. Put “eMail Enabler” in the subject line
of the message.

WIRELESS COMMUNICATIONS

Having the best wireless communications is important to the future of the
Newton platform. As workers depend more on electronic services (e.g., e-
mail, corporate database access, and Internet access) and tend to spend
more time away from their desks, wireless access will become essential for a
number of industries and occupations.

We are working closely with licensees to provide integrated wireless
solutions. We are also providing expansion paths in Apple products
(including the MessagePad), such as PC Card Type II support for various
wireless networks.

Discussed below are key wireless capabilities in the Newton platform and
a new initiative for one- and two-way paging and messaging.

Cellular support. We will continue to provide connectivity for popular
cellular phones with cellular/fax modems. The Newton Modem Enabler
provides a facility to support most cellular modems. The need for
professionals to access dial-up services (e.g., corporate LAN e-mail or the
Internet) continues to grow. Many customers like to leverage their cellular
phone by using it with the Newton platform.

We are currently watching the development of CDPD (Cellular Digital

Data Packet). This cellular technology allows data transmission over cellular
voice networks, and will allow high throughput of wireless data. So far,
CDPD has been adopted mainly for vertical applications, and does not look
like it will become a nationwide standard.

GSM. GSM is a popular digitally-based cellular standard outside North
America. GSM could also become popular in North America if it is widely
adopted as PCS-1900 in the PCS band. The Newton platform strategy for
GSM continues to include built-in data adapter support for most phone
brands and Modem Enabler and device driver support for other devices.

PCS (Personal Communication Services). Newton 2.0 has the
communications architecture to support the future PCS-1900, TDMA, and
CDMA data systems. Some of these technologies will be implemented in
North America over the next few years. They promise to bring lower-cost
wireless communications and advanced services like personal telephone
numbers (telephone numbers that are not tied to a specific device but follow
a person around) and high-speed data transmission (64 kbs or more).

Wireless LANs. Some customers need to stay connected to a local-area
network – such as in a warehouse or on a large campus – even though they
must roam the area continually. Newton 2.0 lets such mobile users stay
connected to their LAN through wireless means using their Newton PDA,
while maintaining a very high data transmission rate. We support “wireless
Ethernet”-type capability that provides true mobility for many vertical
customers with our device driver kit. Both 2.4 GHz and infrared solutions
are shipping from third-party device providers.

Packet radio. Today, PC Card solutions exist that allow Newton 2.0 PDA
users to access ARDIS and RAM two-way packet radio services. These
services provide nationwide wireless data transmission in the U.S. In
Europe, Mobitex networks (Ericsson) and the DataTAC networks (Motorola)
are widely available. Our strategy is to work closely with developers and
device manufacturers to develop support for these networks and devices, as
well as future networks and devices.

Infrared (IR). Newton 2.0 has built-in infrared technology, so Newton
PDAs can exchange information with one another by “beaming” Newton
data, such as notes, name and address cards, and call records. Our strategy
for IR is to support standardized IR transports as they become widely used.
We plan on supporting IrDA in future products within the year. There are
many opportunities for developers to provide driver and connectivity
applications for the Newton platform to transfer data via IrDA to desktop
applications and other devices (e.g., printers and specialized devices).

One- and two-way paging and messaging. Through the Newton 2.0
communications architecture, mobile professionals can use a Newton PDA to
send and receive wireless pages (both alphanumeric and two-way pages).
Newton 2.0 OS supports multiple paging cards, and all messages are received
into the Universal In/Out Box for centralized, efficient messaging. Through
broader paging technology support and developer applications, the Newton
platform can support non-messaging uses such as automatic wireless updates
to databases, trading of stocks and bonds, and monitoring of remote systems.

To support this strategic direction in paging and messaging, we are developing
the Newton Messaging Enabler. The Messaging Enabler is both a developers’ tool
and an end-user application. It consists of the following elements:
• A documented API to allow easy integration with developer applications

through the “routing slip” and “Put away” functions
• A simple end-user application for reading and sending text and data (this

application can be expanded by developers through the documented API)
• Device drivers for one-way pagers (the Socket PageCard and the

Newton Technology Journal June 1996

11

June 1996 Newton Technology Journal

12

Motorola NewsCard) and two-way pagers (the Motorola Tango). Device
developers can write additional drivers for new paging devices as they
become available.

You can make inquires concerning the Messaging Enabler at
NewtonDev@applelink.apple.com. Put “Messaging Enabler” in the subject
line of the message.

INTERNET COMMUNICATIONS

Internet technologies are essential to the Newton communications strategy.
They will provide better networking capabilities when coupled with Ethernet
and AppleTalk networks. Perhaps the most exciting part of the Internet is
the trend for Internet technologies (e.g., PPP, TCP/IP, HTML, GIF, POP/SMTP)
to replace proprietary clients.

An example of this trend is Lotus cc:Mail For the World Wide Web,
Release 1.0. It allows full cc:Mail support without cc:Mail client software.
Another example is the use of Lotus InterNotes or Oracle WebServer to
provide access to corporate processes and databases without using Lotus
Notes or Oracle SQL database client software on the Newton platform.

The advantages to corporations of using Internet technologies for mobile
platforms are:

• No change is required to the corporate database

• The mobile platform, free from the restrictions of proprietary
applications and protocols, becomes a “universal client” that offers
complete access to corporate data without providing mobile software

To bring Internet technologies to the Newton platform, we have four
strategic initiatives underway: third-party Internet applications development,
improved hardware capabilities, enabling software, and Apple-branded
solutions.

Internet applications development. We are relying on and working
closely with developers to provide key Internet applications such as HTML,
e-mail, newsgroups, Telnet, and FTP. There are many opportunities for
developers in these areas, as well as in other Internet areas.

New hardware capabilities. To enhance the Newton platform for
Internet technologies, we are making changes in three hardware areas over
the next year:

• Memory. The trade-off for memory is always cost. We are providing
more system memory in Apple products (e.g., the MessagePad 130) to
fill the needs of running TCP/IP communications and Internet
applications at the same time. We are also looking at ways of providing
memory in a modular fashion.

• Graphics. Graphics are fast becoming an important part of the
Internet experience. We are evaluating ways to provide improved
screen capabilities so the Newton platform will have a graphics display.

• Speed. The need to support graphics, run multiple applications
simultaneously, and offer TCP/IP communications push the need for
better platform performance. We are evaluating the use of the
StrongARM technology for use with the Newton platform.

Enabling technologies. A set of common Internet technologies like TCP,
UDP, IP DNR, PPP, and SLIP are required to run Internet applications.
Therefore, we are developing the Newton Internet Enabler (NIE). Version 1.0
of the NIE will provide a complete kit for developers, including the protocols
mentioned above plus a scripting engine for establishing connections to ISPs.
Future versions of NIE will build on this set of Internet technologies.

(The NIE is a strictly a developers’ tool, and will be provided to
developers to include in their applications. It will be licensed and handled in
a manner similar to DILs. NIE 1.0 will be available this summer.)

Apple-branded solutions. To make it easier for customers to obtain the
necessary elements for an Internet solution on the Newton platform, we are
considering developing an Apple-branded product, like the Apple Internet
Connection Kit, for the Newton. As the rest of the pieces discussed here
come together, we will evaluate this opportunity for both Apple and our
developers.

IN CONCLUSION

Advanced communications capabilities are extremely important for the
Newton platform, and the members of the Newton Systems Group are
excited about the Newton platform communications strategy. The
combination of built-in capabilities (e.g., serial connection and faxing) and
development aids such as enablers will help Newton developers add new
communications capabilities to their products, keeping Newton the
premiere PDA platform.

NTJ

To request information on
or an application for

Apple’s Newton developer programs,
contact Apple’s Developer Support Center at

408-974-4897
or Applelink: DEVSUPPORT

or Internet:
DEVSUPPORT@applelink.apple.com

Newton Technology Journal June 1996

13

The NewtApp framework is a collection of system-supplied protos which
can be combined to form a complete application. In the past, creating an
application for Newton PDAs usually required assembling many protos to
form a complete application. What sets NewtApp apart is the amount of
functionality built into the NewtApp framework. Support for the basic
system services – filing, finding, routing, overview management, stationery,
and so on, is provided in the NewtApp protos. The process of creating an
application with NewtApp consists primarily of describing your application’s
data and how to view it. It is then a rather simple task of assembling a shell
of an application around your data. You can use DTS sample code as the
basis for that shell, or you can create your own shell. Either way, once
you’ve created your first NewtApp, it is easy to reuse that NewtApp to
contain other types of data for other applications. A future DTS sample may
contain a pre-built, reusable application shell to further accelerate
development of your own applications.

Not all types of application lend themselves to the NewtApp treatment. A
successful NewtApp is typically an application which deals with a single soup
entry at a time and whose entries all come from the same soup. When used
with the stationery mechanism, you can provide many different views of an
entry. In addition to providing multiple views of a single type of data,
stationery can be used to extend your application to use different types of
data. For example, the single application Notes can handle lined notes,
checklists and outlines. The same soup can contain items created by
different stationery, and a NewtApp can display them all.

An application can be built with NewtApp whether it uses stationery or
not. Since routing in Newton 2.0 OS is handled through stationery, and it is
often very desirable to have multiple views of individual data items,
stationery can be very useful. However, the choice is yours. If you do not
need to print or fax items, provide multiple views, or extend your
application, you can still use NewtApp. The DTS “Checkbook” sample
demonstrates the use of the NewtApp framework without stationery. In
addition, stationery can be used in an application which does not use
NewtApp. This article, however, only covers the use of NewtApp. It can
serve as a guide to both stationery- and non-stationery-based NewtApps.

The current NewtApp design has two chief limitations. First, a NewtApp
can only be used with soup-based data. Secondly, a NewtApp can only work
with entries from a single soup at a time. Therefore, it would not be
appropriate for an application like a calculator or general utility. In addition,
an application which must deal with data from several soups simultaneously,
like the built-in Calendar, would be a bad candidate for NewtApp. However,
if your application is like most Newton applications, or if you want to quickly
prototype an idea for an application, then NewtApp is a good way to go.

WHY NEWTAPP?
When NewtApp was designed it was intended as a way for the Newton

Systems Group to create the applications in the ROM as well as being a
supported framework for third-party applications. The Names, Notes, Calls
and In&Out Box applications were all built using NewtApp. As the built-in
applications for Newton 2.0 evolved, the NewtApp framework evolved along
with it. Once the framework could be used, a codification of the procedures
needed to implement an application was documented. These procedures
for using the application framework are detailed and documented
completely in the Newton Programmer’s Guide and are demonstrated in
the DTS sample code.

It is important to note that although you may be able to get different
combinations of the NewtApp protos to function as an application, alternate
construction techniques and arrangements are not supported, and may
break in the future as the NewtApp framework evolves.

There were many design goals for NewtApp. Among these were:
• Increase speed and ease of deploying common Newton applications.
• Eliminate common code in Newton applications.
• Provide system services for “free.”
• Encourage visual commonality amongst Newton applications.
• Provide an easy container for stationery.
• Allow third party applications to “Upgrade” along with the system.

Aside from the soup-based limitations, the NewtApp framework meets
these goals and is a good way to start if you’re new to Newton programming.
It is also straightforward to convert your 1.x application to 2.0 using
NewtApp. I mention the steps needed for this at the end of this article.

USING NEWTAPP

Using NewtApp to create an application may be a little different than what
you’re used to. The framework has several layers, and it may be confusing at
first to decide what should go at each layer. This section first discusses the
general technique of creating a NewtApp application, and then discusses
each of the layers. Since stationery can figure heavily in the use of NewtApp
and is a powerful mechanism for extending an application, this discussion
will also cover stationery-specific features. Chapter 5 of the Newton
Programmer’s Guide covers the use of stationery in NewtApp in detail. For
a demonstration of a complete, stationery-based NewtApp, see the DTS
Sample code called “Who-Owes-Whom.”

BEFORE YOU START

Three main flavors of Newton applications are supported by NewtApp.
These three are card, page and roll. A card application, like Names, shows
one entry at a time, and all entries are the same height as each other. A page
application is one where only one entry is shown at a time, but the entries
are of arbitrary height. The Calls application is an example of this flavor of
application. The roll flavor is one which, like the Notes application, can
show an arbitrary number of entries of arbitrary height. By supporting all
three flavors, NewtApp gives you the flexibility to experiment with different

Using the NewtApp Framework
by Greg Christie, Apple Computer, Inc.

NewtonScript Techniques

June 1996 Newton Technology Journal

14

styles for your application.
Another step before you begin is to sketch out your data structure and

how you want that data to be represented visually. If using stationery, plan it
carefully, and try to encapsulate the data-specific code into your stationery.
Avoid presuming what data your application is displaying, and when
designing stationery, remember that the stationery may be used outside of
your container application. Don’t hard-code references between your
application and your stationery. Instead, use framework-supplied slots and
inheritance to reference one layer from another.

The final thing to remember before building your NewtApp is that most of the
work consists of assembling the protos and setting values in slots. The
framework does the rest. This frees you to create a solid data design which is
represented visually in an easy-to-use manner. To get this functionality, be sure to
call inherited methods in the system-supplied protos when you write your own.

As a final note, be sure to include the required statements in your install
and remove scripts. These magic incantations ensure that your application
will register its stationery and itself for all needed system services.

LAYERS

The NewtApp framework is a collection of layers. From the top down, they
are Application, Layout, Entry, and Slot. If using stationery, it is an additional
layer between Entry and Slot. The Application layer is topmost and is where
the various pieces are plugged together. The Layout layer provides the
overview and default view of your data. The Entry layer is where your
individual soup entries are displayed. The slot views allow the user to view
and edit individual slots in your soup entry. When using stationery, the
stationery layer contains the viewDefs for your data, and these
viewDefs will contain your slot views.

THE APPLICATION LAYER

The NewtApplication proto serves as the base view of your NewtApp. If you
want filing in your application, add a folder tab proto – either
newtFolderTab or newtClockFolderTab . You can also put the
status bar for your application in this base view. The newtStatusBar
proto contains two slots – menuLeftButtons and
menuRightButtons – where you put the buttons for your status bar.
The buttons will automatically be laid out for you at runtime. If you want
different buttons to be displayed for your overview versus your default view,
NewtApp can handle this too. Create a slot called statusBarSlot in your
base view, and in that slot put the declared name of your
newtStatusBar . In each of your layouts (see Layouts, below) put
menuLeftButtons and menuRightButtons slots. As your
application switches layouts, the appropriate buttons will appear on the
status bar.

Many of the buttons you see in NewtApps are supplied by the system.
With stationery there is a New button which is a
newtNewStationeryButton , and a Show button which is a
newtShowStationeryButton . For any NewtApp application, routing
and filing are provided by the newtActionButton and the
newtFilingButton . All of the required behavior is built into these
buttons; you only have to include them in the menuLeftButtons and
menuRightButtons slots where appropriate.

In the newtApplication proto, you set a few slots which determine
the application’s behavior for scrolling, finding, and filing. In addition, the
application layer also contains a few key slots to make your application

function. These are allSoups , allLayouts , allDataDefs and
allViewDefs . Use these slots to customize your NewtApp for the
presentation of your application-specific data.

The allSoups Slot
The allSoups slot in the application layer is a frame of frames which

defines the application soup. Each subframe of allSoups protos off of the
system’s newtSoup proto, and specifies a soup you want to work with in
your application. A simple allSoups slot would look like this:

{ appSoup:{_proto: newtSoup,
...}}

When your application is opened, these subframes contain the actual
soups for your application. The required slots of a newtSoup are listed in
the Newton Programmer’s Guide, but a few advanced ideas are worth
discussing here.

If you want to provide different soups for your application to work with,
they can be specified here. At runtime (see Layout Level, below) you can
determine which soup you are viewing. You can also use this same
technique to provide different query specifications or sort orders for your
application’s soup. Just put each different one in its own subframe of
allSoups. You should also place any methods which work on your soup in
these frames. If your application requires other soups, for the values in
pickers, or other related information, specify each soup here. These
secondary soups will be created, registered and maintained whenever the
application is open.

Finally, be aware that at runtime these frames are soups and you can add
or remove entries, as well as perform any other soup-related task directly
from these frames. Don’t forget that the application base view cannot be
inherited by methods defined in the allSoups frame. Though these slots
are located in the base view, they proto to newtSoup , and they are not
children of the base view. If you need to reference the base view from a
method in a newtSoup , use GetRoot().(kAppSymbol) to get back to
the application base view.

The allLayouts Slot
The two layouts for the application are set up in the allLayouts frame.

They are built and instantiated as child views of the base view at runtime.
This is a little different than building an application for Newton 1.x. In some
applications, the basic view of the data and the overview were two different
child views of the application base view, and you would show and hide each
one as needed. Since overview management is a service handled entirely by
NewtApp, you don’t actually declare these layouts to the base view. Just
create a frame with two slots – default and overview – and use
GetLayout (filename) to specify the NTK layout file to use for each.
Everything else is done for you.

The allDataDefs Slot
If your application uses stationery, this slot is where you specify the

dataDefs for your application, as well as any other dataDefs you may be
registering with the system. These dataDefs are installed and registered at
package install time, and are unregistered and removed at package removal
time. This is accomplished through the required call to
NewtInstallScript in your package’s InstallScript . As with allLayouts,
this is a frame of frames. The slot name for each dataDef should match the

Newton Technology Journal June 1996

15

symbol slot in that dataDef . See the Newton Programmer’s Guide for
more information on the required slots for dataDefs . The allDataDefs
frame can explicitly list a set of frames and/or it can reference NTK layouts
using the GetLayout(filename) function.

The allViewDefs Slot
The allViewDefs slot is where the viewDefs are linked to the

dataDefs in your application. This includes any print or other routing
formats you wish to use. The structure of this frame parallels the
allDataDefs slot. For each dataDef slot in allDataDefs you need a
frame which contains the viewDefs for that dataDef . Aside from the
stationery requirement that one of the viewDefs must be named default,
you are free to associate as many viewDefs with a single dataDef as you
like. For example, if an allDataDefs slot contains:

{ dataDef1: GetLayout(“dataDef1”),
dataDef2: GetLayout(“dataDef2”)},

then a matching allViewDefs slot might look like:

{ dataDef1:{default:GetLayout(“dd1DefaultViewDef”),
notes: GetLayout(“notesViewDef”),
frameFormat: protoFrameFormat},

dataDef2:{default: GetLayout(“dd2DefaultViewDef”),
frameFormat: protoFrameFormat}}

Note that for beaming and mailing, you can use the system-supplied
protoFrameFormat which provides routing for free. Also, notice that
you don’t have to specify the same number of viewDefs for each
dataDef . Even if the application is currently displaying an item with a
viewDef , but that viewDef isn’t available for another item, the NewtApp
framework will switch to the default viewDef when needed. In addition,
the newtShowStationeryButton will only list the viewDefs
available for the currently displayed item.

THE LAYOUT LEVEL

When we refer to layouts in NewtApp, we don’t mean layouts in the NTK
sense. Yes, the layouts in a NewtApp are NTK layout files, but so are the
other levels of a NewtApp. In NewtApp the layout layer controls the general
appearance of your application, so it may help to think of them as the “visual
layout” of the application. NewtApp supports two layouts in an application.
These are the layouts enumerated in the allLayouts slot of the application
layer, and are called default and overview. The default layout is used to show
the individual entries in your application soup, and the overview layout
provides the familiar Newton overview of your soup. Currently there are
three protos for the default layout, and two protos for the overview layout.
Which protos are used depends on the flavor of application you are building
– card, page or roll.

The most important slot to set in the layout proto is the
masterSoupSlot . This slot contains the name of one of the slots from
the allSoups frame in the application base view. In the example from in
the allSoups section, the layouts would have a masterSoupSlot of
‘appSoup . In addition, if you use the statusBarSlot mechanism of the
application base layer, then you can create menuLeftButtons and
menuRightButtons at this level to replace the status bar buttons. Other
key slots and methods are outlined in the Newton Programmer’s Guide and
demonstrated in the DTS sample code. One handy method to remember is
DoRetarget() . This method will update the layout from the soup data.

So, if you need to advance to a particular entry, you can go to the entry in
soup referenced by a layout’s masterSoupSlot and call DoRetarget()
to update the views.

June 1996 Newton Technology Journal

16

The Default Layout

For the default layout in the application, use newtLayout ,
newtPageLayout or newtRollLayout . For card-flavor applications,
use newtLayout . Page and roll applications should use
newtPageLayout and newtRollLayout respectively. This layout
level is where the user will view and edit soup entries. Therefore, the views
which will contain your soup entries will be added to the default layout. For
a newtLayout proto, use NTK to draw a newtEntryView (see Entry
Views, below) as a child view of this template. For newtPageLayout or
newtRollLayout use a GetLayout(filename)-style reference to
an entry view in the layout-level protoChild slot, and the system will create
the entry views as needed. If you want some fancy graphics as backdrop for
your entries, or some controls which operate on a soup-wide basis, the
layout layer is an appropriate place for them.

The Overview Layout
There are two different layouts which can be used as overviews:

newtOverLayout is meant for card-flavor applications, and
newtRollOverLayout is used for page- or roll-flavor applications. These
overview protos give you a lot for your money. They provide the standard
Newton 2.0 OS overview for the application, complete with scrolling, check
boxes, icons based on dataDefs , and the one- or two-line summary of
each entry. In addition, tapping on an item displays the corresponding entry
in the default layout. You can suppress the check boxes, change the
summary, or modify the behavior when an item is tapped. The details of the
newtOverLayout and newtRollOverLayout protos are in the
Newton Programmer’s Guide. But to get standard overview behavior, just
set the masterSoupSlot and go.

THE ENTRY LAYER

The entry layer is where an actual soup entry will be represented and
displayed in your application. This is where you can work with individual
soup entries, and display controls which correspond to slots found in all
soup entries for your application. This level and below is where you do most
of the programming needed to customize a NewtApp for different
applications. There are three different entryview protos. For a card-flavor
application use newtEntryView , and for page or roll applications, use
newtRollEntryView . The third type is the newtFalseEntryView ,
which is used for stationery or slot views in a non-NewtApp-based
application. Although not discussed further here, use of the
newtFalseEntryView is an important topic, and is detailed in the
Newton Programmer’s Guide.

Since the entryView has a one-to-one correspondence with the soup
entry, it is responsible for updating the view from changed soup data and
updating the soup entry. Every entry view has a slot called target which
contains the current soup entry. Anytime you need to write data or get data
from the entry, you can use target to do this. Like the layout level, an entry
view also has a DoRetarget() method. You can use this method to
update the entry view if you’ve changed the target.

In addition to updating the view from the target, the entry layer is
responsible for writing view changes back to the target soup entry. Actually,
the changes themselves are made by the individual slot views (see below),
but the changed entry is not written back to the store immediately. Instead,
a call is made to the entry level method StartFlush() , which starts an idle
timer. After a few seconds, or whenever you scroll entries, change layouts or

close the application, the changed entry is written back to the store. If you
ever modify an entry directly, and outside of your slot views, be sure to call
StartFlush() .

There are other entry-level slots besides target which give you a handle
on your current context at runtime. They include currentDataDef and
currentViewDef , which contain the current stationery components
being used in conjunction with the target. The viewDef and dataDef in
these slots are the templates supplied in your package. At runtime, the
current viewDef is instantiated into a “live” view. To get at the actual
runtime views in your viewDef , there is a slot called currentStatView
which contains your instantiated viewDef .

You may wish to have a header in your entry view, like the one in the
built-in Notes application. There are two versions of this proto. To include
action and filing buttons on the header, use newtEntryRollHeader . For
a simple title and icon header, use newtEntryPageHeader . For page-
and roll-style applications, you can control the header by drag-resizing of
entries through the resizable slot in these header protos. In addition to the
headers and any general entry level controls you add to this level, an entry
view can hold individual slot views and the stationery container.

THE STATIONERY LEVEL

Although “stationery” is a term used to collectively describe viewDefs and
dataDefs , in the layers of NewtApp we are concerned with only
viewDefs . The use of viewDefs in NewtApp is very straightforward.
You merely place a newtStationeryView inside your entry-level proto.
You do not directly lay out viewDefs in your entryView . The system
will match up the currently chosen viewDef for the dataDef which
corresponds to the current soup entry, or target. Designing the viewDef
itself is much more work than actually using it. If your entryView
corresponds to a single soup entry with controls that pertain to your soup
entries in general, then a viewDef is like a subentry view, displaying the
data from that soup entry which pertains to its dataDef class.

If you want to provide multiple views of your data, for example an info
view and a notes view, then all you have to do is create two viewDefs which
show the different slots of your entry. So long as you have included a
newtShowStationeryButton in your application, your users can
easily switch back and forth between the different views. Any viewDefs
you add to this application via supplemental packages will also be displayed
in the Show picker. Although you can display the contents of any slot in an
entry in any viewDef , it is better design to allow viewDefs to display
only slots which are created by the viewDef ’s corresponding dataDef .
To display and edit the individual slots in a soup entry, viewDefs contain
slot views. For more detailed information on viewDefs , see the Newton
Programmer’s Guide.

THE SLOT LEVEL

There are many protos in the NewtApp framework which are used to display
and edit single slots of a soup entry. These are collectively known as slot views,
and share many similarities. There are three basic classes of slot views: plain,
labeled, and miscellaneous. The plain slot views are ones like
newtTextView or newtRONumberView which simply display and
update the value in a soup entry slot. Examples of the labeled slot views include
newtLabelInputLine , newtSmartNameView and
newtLabelPhoneInputLine . These slots are related to the
protoLabelInputLine . In addition to the capabilities of the plain slot views,

these slot views include a label and can pop-up lists of potential values. The
miscellaneous slot views include the newtEditView and the
newtCheckBox .

Slot views are implemented for many types of common data. Text,
integers, real numbers, symbols, and entire notes can be displayed and
edited by using the appropriate slot views. The names of the slot view
protos, while typically long and sometimes cumbersome, are good cues to
indicate where to use each one. For instance, it’s easier to know when to
use a newtLabelPhoneInputLine than to type it. In addition to the
data type being in the name, if the proto name contains the letters “RO” (as
in newtRONumberView), this tells you that the proto is read-only and
can be used only to display data.

Despite their varying formats and capabilities, all slot views have a
common interface. All slot views use a path slot, which contains the path
reference to that slot view’s corresponding slot in the soup entry. This path
reference can be a simple symbol, like ‘myDataSlot , or a path expression,
like [pathExpr: ‘myClassFrame, ‘myDataSlot] . They all
implement the ReTarget method, which forces a slot view to update its
view’s value from the value in the specified path. When any of the slot views
change, they all trigger the flush timer in the entry level. Most slot views

also implement a JamFromEntry method which is controlled by the
jamSlot .

JAMMING

Jamming is the technique used by the slot views to incorporate data from
other soups’ entries in their own entry. Certain label-style slot views can
query another soup for the contents of their popup, or display a picker of
soup entries for the user to choose from. The most useful of these is
newtSmartNameView . To use data from the built-in names soup in
your application, simply provide a newtSmartNameView . When the
user taps this slot view, the standard Names list picker appears. When the
user chooses a name from the picker, the current entry view in your
application is “jammed” with the chosen names entry. The
JamFromEntry(otherEntry) method in each of your slot views is then
called. JamFromEntry checks to see if you’ve set the jamSlot for that
view. If jamSlot is not nil, it is used as a path expression in the foreign
entry. The contents of the slot view’s path are then replaced by the
contents of the foreign entry’s jamSlot . For example, if I wanted to
include the name and title of a customer in my application’s entry, I would
use a newtSmartNameView with a path of ‘customerName . In

Newton Technology Journal June 1996

17

NTJ

If you have an idea
for an article

you’d like to write
for Newton Technology Journal,

send it via Internet to:
NEWTONDEV@applelink.apple.com

or AppleLink: NEWTONDEV

To request information on
or an application for

Apple’s Newton developer programs,
contact Apple’s Developer Support Center at

408-974-4897
or Applelink: NEWTONDEV

or Internet: NEWTONDEV@applelink.apple.com

June 1996 Newton Technology Journal

18

Techniques for writing faster code are always of interest to NewtonScript
developers. Faster implementations open new avenues of functionality for
applications – what was once unthinkably slow can become marketably fast.
Some speed techniques capitalize on details of the execution environment.
For example, in the NewtonScript interpreter, it is quicker to iterate through
the elements of an array with foreach than it is with an explicit for loop
[McKeehan & Rhodes, 1995]. Careful attention to these details can lead to
significant performance improvements. Other speed techniques are
applicable to any execution environment. For example, it is faster to move
invariant statements outside of loops to avoid repeating them unnecessarily.
This article explores a combination of techniques like these to speed view
scrolling by a factor of four.

SCROLLING

A common task in a Newton application is to present a scrollable list of items
to the user for their inspection and/or selection. Figure 1 depicts the sample
application used to demonstrate the ideas in this article. On a Newton
MessagePad 120, the application shows 14 of 100 items. It scrolls by one
item when the user taps the Up or Down arrow. (The current Newton User
Interface Guidelines recommend scrolling by one screenful minus one item.
This policy may reflect assumptions about scrolling speed.) Each item
includes a check box, an icon formatted to look like a button, two text
elements, and a gauge. Hypothetically, when the user taps a single item, the
application would respond in some way, perhaps by toggling the checkbox
or switching to a layout to display the item in more detail. The sample
application assumes that data for the items are in an array. If an application
keeps its data in soup entries, slightly different techniques are needed. The
Newton DTS sample code “True Grid” demonstrates similar ideas in the
context of soups.

Figure 1. Sample Application with Scrolling Views

USING AN AGGREGATE PROTO AND setOrigin

A simple and robust implementation for scrolling a list of items is to
construct a proto that depicts a single item. The proto includes five
children: a checkbox, a picture view, two static texts, and a gauge. These
children initialize themselves using a viewSetupFormScript . In this
script they inherit a slot value from the proto’s item and set up their display
accordingly. Construct a parent view (call it P) with one child for each item
to be displayed (say there are N of them, for example, 100). P has its
clipping flag set and is sized large enough to show one screenful of items
(say there are S of them, for example, 14). The base application view
responds to viewScrollUpScript and viewScrollDownScript
messages by sending setOrigin to P. This changes P’s vertical offset by the
amount corresponding to the height of one child. Newton’s view system
automatically shows a different subset of the items depending on where the
user has scrolled to.

To test how fast this implementation is, the application was sent a series
of commands from the Newton Toolkit Inspector window: open ,
viewScrollDownScript 10 times, viewScrollUpScript 10 times, and
close . Each message was followed by a call to RefreshViews to force
Newton’s view system to update. This sequence of commands was
highlighted and evaluated all at once. Times reported here are measured by
profiling and are rounded to the nearest tenth of a second.

To its credit, this affords fast scrolling. In a test using data similar to that
shown in Figure 1, it took only 9.8 seconds to scroll down by 10 items and
back up by 10 items. The N views corresponding to each item were
constructed when P was opened, and the view system can rapidly move the
child views into and out of the clipping region of P. This implementation is
also easy to implement correctly; P can set up all N of the children at one
time in its viewSetupChildrenScript by assigning each of them one
item to display. Each child proto only has to initialize itself with a
viewSetupFormScript . The price for this performance is the overhead
associated with creating all N of the child views when P is opened. This
creation takes time and heap space: 3.6 seconds to open and 32K of heap (as
measured by GC and Stat, rounded to the nearest K). Along both of these
dimensions this implementation is the worst of those considered here.

USING AN AGGREGATE PROTO AND syncChildren
Another alternative is to build a parent view P with only S child views (that is,
only as many as can be displayed at one time). As before, P is large enough
to show one screenful but need not clip. The base view forwards the
viewScrollUpScript and viewScrollDownScript messages to P. In
turn P sends itself the syncChildren message. In response to this,
Newton’s view system sends P the viewSetupChildrenScript message

Parent view P

S children views

visible at one

time

Caching for Maximum View Scrolling Performance
by Jeffrey C. Schlimmer, Washington State University

NewtonScript Techniques

and synchronizes the children views of P to match the stepChildren
array. Specifically, any child view whose template is no longer in the
stepChildren array is closed, a child view is constructed for any new
template in stepChildren , and remaining views are redrawn if their
template viewBounds have changed. Conceptually, to make P scroll
down by one item, P only has to remove the template for the first item from
the stepChildren array and add a new template to the end of
stepChildren for the new item to be displayed. The view system will
close the unneeded child view, shift remaining children up, and open a new
view at the bottom.

In practice, this method works well for scrolling down. P’s
viewSetupChildrenScript uses a single call to ArrayMunger to
splice all but the first element of the stepChildren array into the
beginning of a new array containing only the new template. Newton’s view
system closes the top-most view, redraws remaining views just above their
previous position, and opens the new view at the bottom of the display.
However, scrolling up does not work as expected. Following the pattern
used for scrolling down, P removes the last template from its
stepChildren array with a call to SetLength and adds a new template
to the beginning using ArrayMunger . Surprisingly, the view system
closes the obsolete view at the bottom and draws the new view in its place
without shifting the remaining views downward. To make this work, P can
recreate the entire stepChildren array when scrolling up. This forces the
view system to close and reopen each child view.

This approach alleviates both the worst properties of the first
implementation. P opens much more quickly (only 1.1 seconds) and requires
much less heap (only 5K). The drawback is that it scrolls very slowly taking
32.4 seconds to scroll up and down by 10 items. This time is unevenly
divided between the fast down scrolling (when one view is closed and one
opened) and the slow up scrolling (when S views are closed and opened).

USING AN AGGREGATE PROTO AND AN UPDATE MESSAGE

An obvious third alternative is to avoid closing and reopening any children
views. Using a parent view P with S children as before, when P receives the
viewScrollUpScript and viewScrollDownScript messages it sends
an update message to each of its S children views passing an index for a new
item to display. To scroll the display up by one, each child view is sent an
index one larger than it had before. To scroll down, an index one smaller.

Implementing this is slightly more complex than the first approach using
setOrigin . P must keep track of the index of the first item currently
displayed. The proto for the children must respond also to an update
message and suitably initialize its components (the checkbox, picture view,
static texts, and gauge). The proto could do this by sending itself a
redoChildren message leaving the components to initialize themselves
with their viewSetupFormScripts . A slightly faster alternative is for
each component to have an update method that resets its part of the display,
probably by calling SetValue . If the user is going to be allowed to scroll
until the last item is at the top of the display (and the remainder of the
display is blank), then the proto must also be able to handle the case where
there is no item to be displayed at all.

This complexity yields an implementation that is almost as fast opening
as the one using syncChildren and uses less heap (4K versus 5K).
However, it scrolls more slowly. Even if we pre-compute the length of the
array of items and cache childViewFrames in P’s
viewSetupDoneScript , it still takes 36.5 seconds to scroll down by 10

and back up by 10 items. The reduction in scrolling speed is a direct result
of the extra messages sent to the S children views and to their grandchildren
views, including the SetValue calls.

These approaches represent extremes. The approach using setOrigin
exhibits aggressive computation; it computes all results at the first opportunity
and then relies on a cache of these results. The cache takes time to construct
and uses space but is fast in subsequent use. In contrast, the approaches
using syncChildren and an update message exhibit lazy computation; they
do a minimum of computation initially and compute only what is needed
later. They pay no penalty for a cache but enjoy no benefit either.

To get better scrolling performance out of the update message approach,
we need to avoid the recomputation entailed in each round of update
messages. When the user scrolls, only one new item is displayed, and all but
one of the previous items are re-displayed. In our example 14 items are
displayed at one time. Each time the user scrolls, 13 old items are re-
displayed. Nearly 93% of the computation is repeated!

USING A SIMPLE PROTO AND A viewDrawScript
We can speed up scrolling with a lazy computation involving simpler views.
Instead of building a proto with multiple child views, we’ll use a
drawShape message within a viewDrawScript to draw a comparable
visual representation . What was once a child check box view is now one of
two bit maps: either a checked or an unchecked bit map. The icon becomes
a bit map, and its border a MakeRoundRect shape. The static texts
become MakeText shapes. The gauge becomes a pair of MakeRect
shapes.

We can optimize this slightly by taking advantage of the fact that the
drawShape message is sufficiently flexible to draw an array of shapes at
once. So the proto will send drawShape once to image all seven of its
shapes to save on the overhead of repeated message sends. To further
minimize drawing, the checked and unchecked bit maps can be combined
with a bit map that looks like a round rectangle eliminating the need for a
separate call to MakeRoundRect . The gray rectangle underlying the
gauge could also be combined if the application was a fixed width and the
distance between the gauge and checkbox were known at compile time.

The base view must still pass the viewScrollDownScript and
viewScrollUpScript messages along to the parent view P. As before, P
must pass along an update message to each of the S children. The update
message includes the index of the item a specific child is to display. The
proto just sends itself the “dirty” message instead of passing the update
message to its components. The “dirty” message in turn triggers the proto’s
viewDrawScript .

This approach opens the application very quickly (1.3 seconds) but is still
about twice as slow at scrolling as the setOrigin implementation (21.9
versus 9.8 seconds). However, it is quite a bit faster than the update method
with aggregate protos. Newton’s view system is able to execute drawing
commands faster than it is able to update a comparable number of views.
That the aggregate proto is slower should not be too surprising since the
view system is doing quite a bit of work for each child of the proto sending
viewSetupFormScript , viewSetupChildrenScript ,
viewSetupDoneScript , and other messages. Another advantage of a
simple proto with a viewDrawScript is that it uses very little heap
because there are very few views active. In our example shown in Figure 1,
at least 5x14 = 70 views are used with aggregate protos but only 14 with
simple protos. This estimate of a 5-fold savings in heap is comparable to the

Newton Technology Journal June 1996

19

June 1996 Newton Technology Journal

20

actual difference of 4K versus 1K.

USING A SIMPLE PROTO AND A viewDrawScript WITH CACHING

Though faster, the simple proto with a viewDrawScript is still repeating
much work. Each of the shape creation calls, like MakeText , are repeated
for the same item as the user scrolls up and down. To compensate for this,
we could save the shapes for each item in a cache and reuse them. To
construct the cache itself, P will allocate an array with N entries, one for each
item. We could cache each individual shape created, indexed by an item’s
index, but the Newton OS provides a better function called MakePICT.
This function accepts the same array of shapes and styles that drawShape
does, but it constructs a PICT picture that can be stored and passed to
drawShape as needed. This allows us to cache all of the drawing
commands for an item as a single picture.

To use the cache, the proto’s viewDrawScript will first check the
array for a cached picture. If there isn’t one, it calls MakePICT with shapes
and styles, caching the result. Then the viewDrawScript sends
drawShape message with the cached picture.

We don’t expect the use of a cache to slow down the application as it
opens, but it does slightly: 1.8 versus 1.3 seconds. There is some time
penalty for constructing the pictures and then imaging them. Storing items
in the cache takes very little time. Because the cache is an array indexed by
the item’s index, it also takes very little time to retrieve stored shapes. As a
result, scrolling is a bit faster, down from 21.6 seconds to 14.7 seconds.
Apparently only some of the overhead is due to shape creation.

The biggest difference is in the increase in heap used, up from 1K to 12K.
The cache takes space; about 0.4K per item’s picture. If we explore what
happens if the user scrolls to the bottom of the list of 100 items and back up
again, the cache grows to the point where the application uses more than 44K
of heap! A simple and efficient solution to this is to uncache one picture each
time the user scrolls (by setting the appropriate element of the array back to
NIL.) Recall that each scroll brings one new item into view and removes one
from view. The viewDrawScript can ensure that the new item’s picture is
cached, and the viewScrollUpScript and viewScrollDownScript
can uncache the hidden item’s picture. Making these changes slows scrolling
by 0.5 seconds but limits the application’s heap usage to 8K.

To save even more space, the cache can be made to hold exactly S
pictures, just enough for the S child views. Using modulo arithmetic, each
child view’s index can be mapped into a unique location in the cache; for
example, the sixteenth item has an index of 15. Taking this modulo S (=
14) yields an index of 1 in the cache. This position is also shared by the
second item (with an index of 1), but it’s easy to show that the second and
sixteenth items are not displayed at the same time. This saves N – S empty
array elements and could be significant for large numbers of items N.

The above approaches illustrate the general tradeoff between the time
and space a computation requires. By caching pictures we can save 6.4
seconds of scrolling time at the expense of 7K of heap. The setOrigin
implementation saves a further 5.6 seconds of scrolling time for an additional
24K of heap. A specific application’s requirements usually help decide which
point in this tradeoff is the most preferable though often it amounts to
choosing between several unattractive alternatives.

USING A SIMPLE PROTO AND BIT MAP CACHING

Newton 2.0 OS provides a useful capability that gives us another alternative
in the time-space tradeoff for our scrolling application. Using the simple

proto and a viewDrawScript we will cache the whole bit map for an
item’s visual representation. In the previous implementation we cached a
picture, so that is a series of drawing instructions had to be executed by the
Newton view system to image the view. Now we’ll cache a bit map that
specifies each pixel’s value and can be imaged more quickly.

When the item is first drawn, it uses drawShape and shape creation
functions as before, but the resulting image is then converted into a bit map
by sending the viewIntoBitmap message. The resulting bit map is then
cached in an array indexed by the item’s index. When the item is to be re-
displayed, the bit map is drawn instead of the various shapes.

Making this work efficiently requires a viewDrawScript with three
separate conditions. The first condition checks to see if the cache contains a
bit map for this particular item. If the array implementing the cache is non-
NIL for this item’s index, there is a bit map, and the viewDrawScript
calls drawShape with it. The second condition is triggered if there is no
cached bit map. It will create an empty bit map, send itself
viewIntoBitmap , and drawShape and cache the result. The
viewIntoBitmap message calls the viewDrawScript of the view, so
the second condition sets and checks a flag to prevent an infinite loop. The
third condition executes when the flag has been set and images the view in
response to the viewIntoBitmap message. This is where the shapes are
drawn as they would be in a non-caching viewDrawScript . For
reference, a viewDrawScript that caches bit maps for the simple proto
in our example is listed in Table 1. (Recall that in this code, the rounded
rectangle shape is created as part of the checkbox bit maps rather than as a
separate call to MakeRoundRect .)

Table 1. viewDrawScript for Simple Proto that Caches Bit Map Images.

func() begin
if index then begin

local B := madeBitmaps[index];
// Draw the cached bitmap if there is one.
if B then begin

:drawShape(B,nil);
end;
// Otherwise, trigger viewIntoBitmap and cache result.
else if NOT cachingInProcess then begin

cachingInProcess := true;
B := MakeBitmap(itemWidth,viewBounds.bottom,nil);
:viewIntoBitmap(nil,nil,B);
madeBitmaps[index] := B;
:drawShape(B,nil);
cachingInProcess := nil;

end;
// Called by viewIntoBitmap to image bitmap.
else begin

local Item := kItemArray[index];
:copyBits(if Item.check then kCheckIcon else

kUncheckIcon,0,1,modeCopy);
:copyBits(Item.icon,19,5,modeCopy);
:drawShape(

MakeText(Item.text1,36,1,text1R,12),
kTextStyle);

:drawShape(
MakeText(Item.text2,text2L,1,text2R,12),
kTextStyle);

:drawShape(
MakeRect(sliderL,6,itemWidth,12),
kBarBackgroundStyle);

:drawShape(
MakeRect(sliderL,6,

itemWidth-RIntToL(36-Item.value*36/100),
12),

kBarForegroundStyle);
end;

end;
end

Newton Technology Journal June 1996

21

As with picture caching, using a bit map cache does not slow down the
application much as it opens. This implementation opens in 1.5 seconds,
about as fast as all of the implementations so far except the one using
setOrigin . Our real target was to speed up scrolling. Caching bit maps
yields the fastest performance of all the implementations: 8.5 seconds to
scroll down by 10 and back up by 10 items. This is faster than even the
setOrigin implementation and more than four times faster than the
update method implementation. By uncaching bit maps for items scrolled
off screen, heap requirements are limited to 12K, which is half that of the
setOrigin implementation but about 50% more than the simple proto
implementation that caches pictures. Each bit map takes about 0.6K.

The improvement in speed and the loss of heap echo the difference
between commands to draw a picture and an image of that picture. The
commands take less space to store but must be executed each time the picture
is drawn (for example, cached shapes). An image of the picture takes more
space to store but can be quickly displayed (for example, cached bit maps).

USING NO PROTOS AND A viewDrawScript
For logical completeness, consider an approach that doesn’t use any children
views. A view P could respond to viewScrollUpScript and
viewScrollDownScript messages by changing a stored index and
sending itself the “dirty” message. P’s viewDrawScript could image all
visible items without any children views.

This approach opens in 1.0 seconds (the fastest by a small margin). It
uses very little heap (less than 1/2 K). But because it doesn’t cache any of its
shapes or drawShape results, it’s scrolling performance is about half as
fast as others. Adding caching would be relatively simple because the
drawShape method will image nested arrays of shapes and style frames.
Shapes for the item just scrolled on screen could be cached in the
appropriate location, and shapes for the item just scrolled off could be
uncached. The entire cache could be passed to drawShape . Taking this
idea a step further, an implementation could send drawShape with the
cached PICTs discussed previously. Or, an implementation could send
drawShape with the cached bit maps also discussed previously. These
variations should show the same scrolling speed improvement relative to
their non-caching variants as those discussed previously. The heap
advantage of eliminating children views would be negligible compared to the
size of the cache.

The only major drawback to approaches using no children views arises if
we want to allow the user to tap on single items to indicate some action. In
this case, the view P would have to use the hitShape method to determine
which item the user tapped, and P would have to implement the correct
visual and auditory feedback for the tap, that is, highlighting and clicking.
The added complexity of implementing this functionality from scratch rather
than using Newton’s view system may not be worth the incremental
improvement in scrolling speed and heap space.

SUMMARY

Table 2 summarizes the main results. Using aggregate protos either slow
the application when it opens or when it scrolls. They can impose a very
high or very low heap penalty. Using simple protos with a
viewDrawScript can be fast both when the application opens and when
it scrolls, but a cache must be used. The cache must be carefully maintained
in order to avoid consuming too much heap.

Table 2: Speed, heap, and application size for alternative
scrolling implementations.

Time (seconds) I Size (K) I Lines

Open/Close Scroll I Heap Package I Source Code

Aggregate Proto & setOrigin 3.6 9.8 32 10 157

Aggregate Proto & syncChildren 1.1 32.4 5 10 202

Aggregate Proto & update method 1.6 36.5 4 11 206

Simple Proto & viewDrawScript 1.3 21.9 1 10 152

Simple Proto & Cache PICTs 1.8 14.7 12 11 169

Simple Proto & Uncache PICTs 1.8 15.2 8 11 173

Simple Proto & Cache Bitmaps 1.5 8.5 18 11 194

Simple Proto & Uncache bitmaps 1.5 8.9 12 11 197

No Proto 1.0 17.0 0.4 11 155

This analysis might imply that a proto constructed with a number of child
views would never be appropriate for a scrolling application. To help balance
this impression, consider two rules of thumb for deciding between an
aggregate approach and one using a viewDrawScript :
• An application should use an aggregate proto when datum components

are to display differently and react differently to user input.
• An application should use a viewDrawScript when datum

separate utility applications.
In addition to Newton Toolkit for Windows, Apple will also soon be

providing Newton C++ Tools for Mac OS, which will allow Newton
developers to link certain compiled C++ routines directly into Newton
applications without porting into NewtonScript. All of these products
demonstrate Apple’s commitment to delivering a comprehensive set of tools

to meet the needs of Newton software developers.
Newton Toolkit for Windows is shipped on CD-ROM, and includes

complete sample code and on-line documentation. A beta version is
available right now on the WWW at http://www.dev.info.apple.com/newton,
and the final version will ship through the Apple Developer Catalog
(formerly APDA) and selected retail locations this summer.

continued from page 1

Newton Toolkit Does Windows

NTJ

NTJ

June 1996 Newton Technology Journal

22

INTRODUCTION

Quality does makes a difference. It makes a difference to your customers and
ultimately to your bottom line. But quality assurance goes beyond just making
sure you find and fix bugs – that’s a given. However, you can’t test quality into
your application. Quality consists of meeting or exceeding customer
expectations in all facets of the user experience. Aspects such as the simplicity,
robustness, and utility of your application are critical to your success.

Whether you’re a large or small developer, a strong quality assurance
program can add a lot of value to your product. Besides giving you the
confidence to ship a well-tested product, Software Quality Assurance (SQA)
can act as the focal point for customer feedback upon which to build
increasingly customer-driven products.

Qualifying software on the Newton is not much different from doing so
on other platforms. There are three basic building blocks which comprise a
good Newton SQA program:
• an understanding of software development
• a foundation of general SQA practices
• knowing the specifics of testing on the Newton platform

SOFT WARE DEVELOPMENT

Your product development should be planned before you begin
implementation and you should execute to that plan. Marketing should
define the target customers and gather and relate their requirements.
Engineering should respond with a description of how those requirements
will be met by the software, both at the human interface and low level.
Based on the marketing and engineering requirements, SQA develops a test
plan defining how testing will be done to converge on a high quality
product. All of the teams must agree on what the end product will look like,
who it’s for, and what problems it solves. Never get so caught up in the
details of the project that you lose sight of the big picture.

Software development is an iterative process. What does it mean for
your software to reach the alpha, beta, final, and golden master milestones?
What metrics do you choose to measure your progress, and by what
milestone criteria do you judge the status of the project? These questions
are largely dependent upon the goals of the project. Choose metrics and
criteria with care. Minimalism is better than weighing your project down
with bureaucracy.

A well planned product development process provides the guidelines for
getting the work done, but software development is intrinsically dynamic.
Make sure your day-to-day decisions still reflect the project goals and
customer requirements.

GENERAL SQA PRACTICES

The following concepts underlie any good SQA program.

• Prioritized Test Coverage
Since you can’t test everything, prioritized testing is key.
What absolutely has to work from the customer’s perspective to make

your product successful? Concentrate more of your resources on those
features and less on others based on their relative importance.

Coverage should be partially driven from development engineering.
Ask the development engineers about the areas of their code and hacks

that concern them the most.
Look for interdependencies and assumptions. These might be bug-rich

areas.
Test any error-checking. Simulate the errors and validate the error-

handling.
Development and quality engineers should collaborate on creative ways

to break the code.
Weaknesses might be uncovered in code or design reviews.
Inexperienced programmers might require more test coverage, especially

in the system-specific features.

• Shared Knowledge
As much as possible, development and quality engineers should share a

common understanding of the features of the software and the underlying
code paths.

• Scientific Method to Isolate Bugs
The best quality and development engineers have internalized the formal

scientific method and subconsciously use it when debugging. “The real
purpose of the scientific method is to make sure Nature hasn’t misled you
into thinking you know something you don’t actually know.” [1] The
following is a terse description of the scientific method as applied to SQA:
1) statement of the problem
2) hypotheses as to the cause of the problem
3) test cases to test each hypothesis
4) predicted results of the test cases
5) observed results of the test cases
6) conclusions from the results of the test cases

• Managed Risk
Most decisions related to qualifying and shipping the product entail

varying degrees of risk. The challenge lies in correctly analyzing the risk and
taking steps to minimize it. Risk analysis should be undertaken seriously,
and any judgments should be based on facts, not conjecture. Always try to
think of creative ways to minimize the risk. Here are some examples:

Code changes
If there are code changes late into the project or near critical milestones,
there are some obvious ways to minimize the risk of the change:

Creating Quality Newton Applications
by Peter Murray, Apple Computer, Inc.

Product Development

Newton Technology Journal June 1996

23

The change should be code-reviewed by another development engineer.

The developer making the change should write a release note about the
change, its impact on other areas of the system, and important tests to run.

SQA should verify and test the change and any related areas.

Bugs
Since you can’t test everything or use the product in every way that a real
customer might, you won’t find every bug, and you’ll almost certainly ship
with known bugs. Make sure you prioritize the bugs to fix based upon
their importance to the customer. If a bug happens in only obscure cases
it may not be worth fixing. Fix the bugs and usability problems that will
affect the majority of users, or which might cause bad press. Sometimes
you’ll guess wrong. Keep track of the bugs you defer and see if real
customers report them, then escalate them to fix in the next version.

• Customer Feedback
Improving product development is based on a feedback loop. There are

three main programs for incorporating customer feedback at different parts of
the product cycle: user testing, beta testing, and (uh oh) customer support.

User Testing
Bringing in target users to give feedback on your product early in the
development cycle can give you data about the intuitiveness of the design
and validate whether your feature set is the right one. SQA engineers can
also improve their tests by watching how real customers use the product.
Fresh perspectives are always valuable, because the development team
becomes too close to the product.

Beta Testing
Software used in real-world situations often provides some of the best
feedback and bugs. During the Newton 2.0 OS project, most people on
the Newton team carried around flash ROM MessagePads with the latest
software. A lot of the good bug reports came from people using them in
meetings. That was the difference between 1.x and 2.0 – you can actually
take notes in meetings.

Customer Support
Product development doesn’t end when you ship your product.
Customer support quantifies customer reaction, and based upon call
frequency you can prioritize bugs to fix in future revisions. Feature
requests provide a source of good ideas from people actually using the
product. The development of Newton 2.0 OS was largely driven from
customer requests and usability problems, along with inspired design
work from the software engineering team.

SPECIFICS OF NEWTON TESTING

Testing a Mac OS, Windows, or Newton application is all essentially the same.
Take your software development and SQA background and overlay the
technical details of the platform. When testing a Newton application, know
how the Newton works and how it’s architected. The best sources of
information are the user’s manual, Newton Programmer’s Guide (NPG),
and Newton User Interface Guidelines. Applications written for the Newton
plug into a layer of system services. So, besides testing the features of your

software in isolation, you need to test the areas where your application
intersects with these system services.

Some of the important things to test are:

• Make sure the recognition view flags are set for the right kind of input.
• Test data storage and filing on an unlocked and locked card and

internally to validate the soup code.
• Erase your application from extras to test its removeScript and optional

deletionScript. Make sure the application removes itself from various
registries to avoid the “grip of death.”

• Eject a card with application data on it. Make sure the screen is
refreshed.

• Test the differences when your application modifies a built-in prototype.
• If your application supports landscape, make sure all the dialogs fit.
• Test your application’s use of Find – especially if it does something

different like highlight the entry.
• Make your application the backdrop and see if it behaves correctly.
• If you link in custom dictionaries, test them in the various fields.
• Make sure soup change and other notifications get intercepted by your

application.
• Optimize your program’s use of frame and/or system memory.
• Make sure your application doesn’t create global functions unless

absolutely necessary.
• Test with the latest version of the system update. (The easiest way to

remove a system update is to remove all batteries and short the backup
battery terminals with a penny).

• Make sure your application uses screen-relative bounds to remain
compatible with different screen sizes.

• Make sure the user interface of your application conforms to the
guidelines.

• Delete your soup from the storage folder and see if your application
handles it gracefully.

• If your application supports both 1.x and 2.0, test on both platforms.
• Test how your application reacts to its own data on a read-only 1.x and

locked 2.0 formatted card in a 2.0 system.
• Use the Newton Keyboard with your application and make sure the tab

order for views is correct.
• Test any application interfaces exported for public use.
• Test all peripherals you support.
• If your application runs on 1.x and 2.0, make sure it uses gestalt to

test for the existence of Newton features.
• If your application modifies the behavior of a built-in application, then

research existing applications and see if anyone else is doing what you’re
doing and document any incompatibilities.

• Make sure your application uses documented APIs or DTS-approved
methods, for example, when accessing built-in application soup data.
This will avoid incompatibilities in the future.

Applying the background and Newton-specific information, the following
five steps provide the framework for testing a Newton application through its
development:

1. Create a very detailed, hierarchical feature list for the product based
upon documentation, prototypes, and communication with
development engineers. Every feature that a user can access should be

June 1996 Newton Technology Journal

24

represented, but don’t go overboard on the details. Keep the feature list
updated to reflect the current state of the product.

2. From that feature list, create test cases. For each specific feature there
will be one or more test cases. Your base functional test cases should
only be testing one thing. That way you can more easily isolate bugs and
relate test cases to bugs. Be sure to go through the list of system
services and create test cases for the way your application interacts with
the rest of the Newton.

Example: A feature in the Newton 2.0 Time Zones application is the ability
to delete cities. Some test cases to derive from this feature would be:

a. delete a built-in ROM city
b. delete a city added by the user
c. delete a city that was specified as a worksite
d. delete a city and tap undo
e. delete a built-in ROM city, then delete the Time Zones soup from the

storage folder in extras

3. Identify a subset of your test cases as “quicklooks”. These test the major
areas of product functionality. When a new build of the software is
handed off to SQA, you start your structured testing by running through
your quicklook test cases. It’s more productive to discover that a major
part of your application is broken in the first 30 minutes of your test
cycle than two days into it.

4. Determine the most effective test cycle time for normal engineering
builds and milestone builds. You won’t want to run all your test cases for
every build. It’s more effective to run all the quicklooks and then
concentrate testing on the changed areas and bug fixes documented in
the build release notes. You will want to run all your test cases at
milestones such as alpha, beta, and final.

Be sure to devote some time in each test cycle to ad hoc testing. Use
your understanding of how your application works and how customers
might use its features. If you’ve ever observed a user test, you’re
immediately struck by the fact that most users don’t follow the “rules” –
even when using the “simplest of features”. Towards the end of testing
2.0 we placed more importance on ad hoc testing by splitting the test
team into two groups, Validators and Exterminators (for lack of better
names). The Validators performed the systematic testing of all the
product features by running through all of the developed test cases, and
the Exterminators were exclusively ad hoc testers with free reign across
the whole system.

5. As the project progresses and the features of the software coalesce into
stability, expand your testing into more stress and boundary conditions.
The goal is to increase the robustness of the software in its ability to
respond gracefully to unusual conditions. And since you can’t test
everything in every way that customers will use your product, this is one
more thing you can do to minimize the risk of serious bugs in the field.
A simple way to stress a Newton application is to see how it handles a lot
of data. For example, the average Newton user probably has 100–200
entries in the Names application, but in 2.0 we tested with 1500 and
sometimes more.

CONCLUSION

There’s no guarantee that you’ll ship quality applications even if you follow
all of this advice. The glue holding everything together is caring – the pride
in your work and the satisfaction of knowing you did your best. “Care and
Quality are internal and external aspects of the same thing. A person who
sees Quality and feels it as he works is a person who cares. A person who
cares about what he sees and does is a person who’s bound to have some
characteristics of Quality.” [2]

1. Pirsig, Robert. Zen and the Art of Motorcycle Maintenance. 1974. Page 94.NTJ

To send comments or to make requests for articles in Newton Technology Journal,
send mail via the Internet to: NEWTONDEV@applelink.apple.com

