
Inside This Issue

continued on page 17 continued on page 22

Volume II, Number 1 February 1996

gy gy Newton Technolo
J O U R N A L

®

NewtonScript Techniques NewtonScript Techniques

NewtonScript Techniques
Extra Extra: Extras Drawer Features
in Newton 2.0 1

NewtonScript Techniques
Gotcha! Common Issues Converting
From 1.x to 2.0 1

Understanding NewtonScript
Introduction to Newton Programming 3

Business Opportunities
Newton 2.0 Developers Tell It Like It Is 6

NewtonScript Techniques
Converting an Existing Application
to Stationery 8

Business Opportunities
PC Integration and Newton 2.0:
First Class Connectivity for Mac OS
and Windows Users 10

Business Opportunities/
Marketing News
Newton Platform Market Segmentation
and Positioning – A Useful Tool for
Solutions Marketing 12

Business Opportunities/
Marketing News
New Logo Licensing for Newton
Developers 14

Developer Group News
Newton 2.0 Programming Courses 16

Gotcha! Common
Issues Converting
From 1.x to 2.0
by Maurice Sharp, Apple Computer, Inc.

Now that you have seen all the cool new
features of 2.0, you must be anxious to
update your 1.x applications. But beware, in
that first rush of excitement you may try to
convert too much too soon and end up in a
debugging nightmare from which even the
new debug tools can not extract you.

This article covers some of the common
gotchas that you will encounter when
converting from 1.x to 2.0. If you follow the
suggestions you will save some time and
aggravation. If not, read on.

First Steps
Before you even consider starting, you

should read the 2.0 documentation from
cover to cover. As you are reading, make
notes about what parts of 2.0 will give you
the biggest wins for your application. You
can also make notes about those functions
you wish you had in 1.x but did not.

Create a list of the 2.0 features you want to
add in your application. Now order that list
from most to least important. Generally you
can tell which new features give you the
largest gains in terms of performance or
interface. Then start converting one area at a
time. The worst thing you can do is try to
change all parts at once. Code an area,
debug it, test it, and when it is finished, move
on to the next area.

Extra Extra: Extras
Drawer Features
in Newton 2.0
by Maurice Sharp, Apple Computer, Inc.

The Extras Drawer in Newton 2.0 has
undergone significant changes. Some, like
the ability to scroll, are user level changes.
Others changes are for the developer. This
article talks about the Extras Drawer API’s that
did not make it into the beta release of the
Newton Programmer’s Guide.

FILING YOUR PACKAGE

The Extras Drawer now has folders. Users can
file icons in either built-in folders or in ones
that they create. As a developer, there are
some occasions when it makes sense to file a
package in a particular folder. A good example
is a help book which naturally belongs in the
Help folder.

The Extras Drawer code associates a
labels slot with each application icon. If the
icon is unfiled, the labels slot is nil or not
present. To file the icon you need to set the
labels slot to the correct folder symbol.

This can be accomplished in two ways.
Once the package is installed, you can use
SetExtrasInfo . For more information on
that way see SetExtrasInfo below.

The other way is to associate a labels slot
with your package at compile time. Note that
the Extras Drawer displays icons for parts and
a package can contain multiple parts. We will
explore this a little later.

For now, assume you have a single-part

February 1996 Newton Technology Journal

2

Newton 2.0
Hits the Road
Running –
Development
Support and
Tools Keep Pace!
Newton 2.0 made it’s first public debut
during the second week of November at
Comdex in sunny Las Vegas. And a sunny
week it was for everyone involved in the
roll out of the Newton 2.0 operating
system and all of the Newton platform
enhancements. Not only was Newton 2.0
well received by customers eager to get
their first peek at the next generation
Newton platform, but it was also very well
received by members of the press. The
rollout was about a lot more than just the
new version of the Newton operating
system, however. It was about a
comprehensive approach to the Newton
platform as a whole, covering many issues
critical to you, the solutions providers.

The excitement and enthusiasm around
Newton 2.0 is a welcome change for
members of Apple’s Newton Systems team.
We’ve seen favorable reviews in MacWeek,
Computer Retail Week, InfoWorld,
ComputerWorld, and other leading
industry publications. Customers have
been clamoring to upgrade their
MessagePad 120’s, and to buy new units
with Newton 2.0 to replace MessagePad
110s and 100s. Developers have been
flooding the Newton Systems Group with

requests for information on the newest
version of the OS and have waxed poetic
about all kinds of new solutions to
enhance the platform’s capabilities.
Developers with compatible solutions
have received unprecedented interest.
And two new licensees (Harris-Dracon
Division and Schlumberger) have
announced the adoption of the platform
for their hardware devices. Perhaps the
most notable acknowledgment of the
team’s work and improvements to Newton
was winning Byte Magazine’s “Best of
COMDEX” award in the new OS category,
in the very first week of its public life.
Clearly, Newton 2.0 is off to a great start.

Getting a good start in life is important
and often critical to a product’s success.
We think we’ve gotten that start and hit
the road running. Newton 2.0 meets the
market on Apple’s MessagePad 120, and
licensees expect to ship product based on
2.0 in 1996. However, Newton 2.0 is just the
beginning of the platform roll out story
and it’s introduction is certainly just the
beginning of the rest of the platform’s life.
Equally important as the new OS, is the
developer story: the desktop integration
tools, the development tools, the new
platform philosophy, and an integrated
marketing approach to the platform and its
solutions.

We’ve talked about the new platform
philosophy, the integration tools and the
development tools in previous issues of
the Newton Technology Journal, and I
cannot emphasize enough how critical a
role each of these pieces plays in Newton’s
long-term success. Apple recognizes that
there are several keys to succeeding in the
mobile business professional space as
well as the vertical space. First is the
delivery of an open platform with robust
development tools. We think Newton

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Bruce Thompson

Contributors
Todd Courtois, Lee Dorsey, Jennifer Dunvan,
Rick Giles, David Glickman, Scott Gruby,
Jim O’Grady, Maurice Sharp, Don Vollum

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1996 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume II, Number 1 February 1996

Letter From the Editor
by Lee DePalma Dorsey, Apple Computer, Inc.

Editor’s Note

continued on page 5

If you’re considering taking the plunge to learn to write Newton
applications, now is the time. If you have an object-oriented
programming background, you’ve got a head start, but even if you’ve
never programmed before, the Newton is a great place to begin. One of
the best features of programming for the Newton 2.0 platform is the
simplicity and power of the language, NewtonScript, combined with the
fast and easy-to-use development environment, Newton Toolkit (NTK).
This article will explain some basic concepts of Newton programming.

Before you get started with NewtonScript and NTK, you should
understand some fundamentals about the architecture of the operating
system. Given the inherent memory limitations of running on a small
device, you may find the Newton memory model, view system, and
inheritance model to be unique.

Memory
Before you begin writing Newton applications, you must

understand how memory is arranged and used in the operating
system. Imagine that Newton memory is divided into three parts: ROM,
“protected” RAM, and RAM.

ROM is where operating system software components, or the built-
in libraries, are stored. These include all of the pre-built buttons,
boxes, menus, and other user-interface elements. Also included here
are NewtApp objects and other pre-programmed “protos” for your use.

Protected RAM, or user storage, is where soups (also referred to as
persistent data) and third-party applications, or packages, are stored.
A PCMCIA card, or flash RAM, extends memory of this type, in addition
to an already existing internal store. This area is deemed “protected”
for two reasons: (1) packages are considered read-only, and (2) all
data stored in this area will survive when you turn the Newton off or
when you reset your device. (Note that this does not include what is
called a “hard” reset, which occurs when you push the reset button
while holding down the on-off button. Only data stored in ROM and
system updates will survive a hard reset.)

The last portion is RAM, which is divided into two groups of memory,
the NewtonScript heap and the System heap. The NS heap is what your
application will use when it is opened by the user. You might expect
your package to be loaded into RAM while it’s running (just like apps
your desktop machine), however, only a very small part of a Newton
application uses RAM. Rather than making copies of objects and
loading them at runtime, the Newton ingeniously makes use of objects
already stored in ROM and protected RAM. This allows fairly complex
applications to run in a relatively small space. This also has a profound
effect on the way you go about programming for the Newton.

The System heap portion of RAM is used by the operating system for
construction of objects and low-level communications purposes.

NewtonScript
NewtonScript is an object-oriented dynamic language. The

fundamental data structures, or objects, of NewtonScript are called
frames. You’ll hear the terms view, template, and proto, which are
typically all variations of frames. Their differences will be discussed later.

A Newton frame is reminiscent of a struct in C or a record in Pascal.
Frames have fields or slots that contain data, functions, and/or more
frames. The syntax for creating a frame is as follows:

myFrame := {
age : 29, //a slot in the frame
name: "Jen", //another slot...
Weekend: nil,
pet: func() //here’s a function definition
begin

if Weekend then return "kitten"
else return "no pet";

end,
};

You may notice several things from the above frame definition: a
colon is used to initialize variables and functions in frame slots; you
don’t need to declare data types or allocate memory for frames or arrays
(this is done for you dynamically); slot definitions are separated by
commas; and you use the keyword func when you define functions.
Not having to initialize pointers may seem too good to be true.

To access a slot in a frame, use dot syntax. For example,

myFrame.name; //evaluates to “Jen”

To call a function within a frame, use colon syntax. For example,

myFrame.Weekend:=true; //use “:=“ to assign
myFrame:pet(); //evaluates to “kitten”

Let’s try dynamic allocation and illustrate runtime typing:

myFrame.coolslot := "Wow, I got added on the fly!";
myFrame.age:="twenty-nine"; //change from int to string

Here’s another nifty trick:

myFrame.myArray:=[1,"two",[3,4]]; //mixed data types

Fun, eh? And you probably guessed correctly that I didn’t have to
explicitly allocate any memory for that array.

If we look at the slots of myFrame, we now see

age -> "twenty-nine"
name -> "Jen"
Weekend -> true,
pet() -> function
coolslot ->"Wow, I got added on the fly!"
myArray ->[1,"two",[3,4]]

Newton Technology Journal February 1996

3

Introduction to Newton Programming
by Jennifer Dunvan, Apple Computer, Inc.

Understanding NewtonScript

Views vs. Templates vs. Protos
As mentioned earlier, all things can reside in frames. There are some

tricky concepts associated with this idea, and I’ll do my best to explain
them.

The basic objects in the Newton OS, the prototypes for all objects
you will use and derive from, are called system protos. These protos
reside in ROM and are built into the OS. They consist of the pre-
programmed gadgets you use in your application, plus the basic
framework your application will rest on. You can use system protos
directly, or you can derive your own user protos and override
functionality to your heart’s content (be creative, but respect the UI
guidelines). Keep in mind that system protos reside in ROM. Any protos
that you create will usually reside in protected RAM.

In order to provide a user interface for your application, you’ll need to
create the prototype using NTK. This is where the visual aspect of your
application comes to life. The frames you create in NTK are called
templates. Newton uses the information contained in templates to
construct the visual frames that the user sees and interacts with on the
screen. These visual frames are called views, which are created in RAM by
the Newton view system. Every item the user sees on the screen is a view,
including buttons, icons, boxes, inputlines, and so on. Each of these
views is instantiated at run time (and therefore resides in the NS heap) by
the Newton view system using templates you create in NTK. Every view is
defined by a template. And templates are typically defined by protos
(system and/or user). For an excellent explanation of the Newton view
system, read the article entitled “Tales From the View System” by Michael S.
Engber, located on the latest Newton Developer CD.

Application Structure
A Newton application can be considered to be a tree of templates.

Think of the topmost template as the fundamental or base template.
When an application (or “package”) is installed onto the Newton, a
base view associated with this template is created and resides in RAM at
all times, ready and waiting to receive an “open” tap from the user.
When the application is opened, subviews for the application are
created (these subviews are what the user sees and interacts with).
When the application is closed, the subviews are destroyed, but the
base view remains, ready to receive an “open” message again.

Inheritance
Newton inheritance differs from inheritance in the traditional

programming sense in some fundamental ways. In the traditional idea
of multiple inheritance, an object inherits functionality from two or more
parent objects. In Newton programming, there are two flavors of
inheritance: proto and parent inheritance.

Every view has two default slots. One is named _proto and
contains a reference to the template it is based on, and the other is
named _parent and contains a reference to its parent view. A typical
template has one default _proto slot that references the system or user
proto it is derived from.

Proto inheritance is pretty straightforward. For example, if I wanted
to derive a new frame from myFrame, I’d do it like this:

newProtoFrame :={
_proto: myFrame, //proto inheritance syntax
pet: func() //override myFrame:pet()
begin

if Weekend

then coolslot:="Yay!"; //creates and assigns locally
return inherited:pet(); //calls myFrame:pet()

end,
};

Currently, newProtoFrame contains two slots, a _proto slot
referencing myFrame and a function slot containing pet() . You may
find it interesting that calling newFrame:pet() creates a third slot
called coolslot within newProtoFrame . Notice also the use of
inherited:pet() , which automatically calls the proto frame’s pet()
function. The inherited keyword is reserved for proto inheritance
only.

Parent inheritance works a bit differently. Suppose, for example, I
want to use parent inheritance this time:

newParentFrame :={
_parent: myFrame, //parent inheritance syntax
pet: func() //override myFrame:pet()
begin

if Weekend
then coolslot:="Yay!"; // re-assigns in parent frame!!!
return myFrame:pet(); //calls myFrame:pet()

end,
};

Calling newParentFrame:pet() actually changes the coolslot
value in the parent frame (which in this case is myFrame) rather than
creating a new local slot. This is an important difference between proto
and parent inheritance. Normally, views use parent inheritance to
communicate with each other and share data. Because they are located
in RAM, it makes sense that a parent’s child can alter the parent’s data.

Proto inheritance, on the other hand, is typically used to inherit
functionality from system or user protos, which are usually located in
ROM or protected RAM. You can see that a frame would be unable to
alter the data of the frame it proto ’d from, even if NewtonScript allowed
it.

Although a child frame has access to its parent’s functionality, you
normally would not override functionality via parent inheritance –
although you may want to share data. Overriding functionality should
typically be reserved for proto inheritance.

As you may have already gathered, another important aspect of
Newton inheritance is that an object stores only the differences from the
object it inherits from. This includes overridden data values and
methods, as well as new data slots and method slots. The purpose of
this design is to limit the amount of memory required at runtime, and to
take advantage of the more abundant ROM. A typical view frame starts
out small in RAM with only three slots: _parent , _proto , and a
pointer to its viewClass (which you shouldn’t worry about at this
stage). Other slots are inherited or created dynamically as they get
modified.

Finally, Newton inheritance provides no “security” in the C++ sense.
All children derived from the the same parent can access their parent’s
and each other’s slots, although you should remember that your
templates and protos are usually safe because they reside in protected
memory. In other words, you cannot usually alter data or functionality
contained in a template or a proto. The only place data or functionality
can be changed dynamically is in a view (because it resides in writable
memory). This fact is probably the most challenging aspect of Newton
programming, and it often takes some time to fully appreciate its
implications.

February 1996 Newton Technology Journal

4

Message-based Programming
If you have ever programmed for the Macintosh or Windows

environment, you’re familiar with event-driven programming. In this
environment, when the user clicks or moves the mouse, an event-
handling function in your application receives a message from the
operating system, which it parses to determine what part of the screen
got activated and which window to alert. While the Newton
environment may seem similar to a desktop windowing environment in
the sense that it receives user taps and gestures, it behaves differently
in the way messages are handled.

Whenever you tap, write, or make a gesture on the surface of the
screen, the Newton operating system sends a message directly to the
view that received the input (rather than to a general message-
handling function). For example, let’s say the user taps on a button
you created (and let’s say you named it “myButton”). Upon receiving
the tap, the operating system will send a buttonClickScript()
message to the myButton view. It is in this function, the one that
gets sent to your view by the OS, where you typically will want to add
your code (like self:SysBeep() to make your button beep when it’s
tapped on, for example).

NTK
You’ll be writing your application using Newton Toolkit (NTK),

Newton’s visual development environment that runs on a Macintosh
(be on the lookout for WinNTK, the Windows version). You have to use
NTK to write your application; there is no separate editor, compiler, or

linker as you might expect with C/C++ or Pascal. Using your mouse in
NTK, you visually design exactly what you want your Newton
application to look like by adding and creating buttons, boxes, icons,
and other gadgets. The best part about designing in NTK is that you
get immediate satisfaction by seeing what your app will look like on the
Newton device itself after mere seconds of building and downloading.

A feature I found to be very useful within NTK is the Inspector
Window. Imagine an editor that interacts with you as you write and
test code. Let’s say you have an idea for a function you want to write
in your Newton app. You can test it first in the Inspector (before you
actually edit your Newton code). Any code you type in the Inspector
Window is actually executed on the connected Newton device, and the
result is returned immediately. For example, if I type

3 + 4 + 5

and then hit ENTER (not RETURN), I get

#IC 12

This means you can pre-test any algorithms and functionality you
want before you even begin to write your application. The Inspector is
the perfect place to play with NewtonScript and test out the new
syntax and constructs.

What’s Next
There are many other important topics to cover, including creating

and accessing persistent data objects (called “soups”); using

Newton Technology Journal February 1996

5

Toolkit 1.6 does this and the soon-to-be released Newton Toolkit for
Windows will provide even more choice and flexibility. Second,
providing libraries to enable desktop PCs and legacy systems
integration is critical. The Desktop Integration Libraries (DILs) are the
key to this functionality and developers have been working with them
for several months now. Third, top notch training and support is also
essential to ensure that the development community is delivering the
most powerful solutions, in the quickest, most accurate way possible.
Apple’s Developer University provides the training and the DTS

provides top notch support. All of these deliverables, combined with
an award winning operating system and the promise of problem
solving mobile solutions from third parties will continue to make the
Newton the premier PDA platform.

This Newton roll out was about a great deal more than just Newton
2.0. It was about the evolution of an entire platform and all of its
components. We’re off to a great start and want to continue in the
same direction by providing excellent service, support, and tools to
some of our most important partners in this business – Newton

continued from page 2

Letter From the Editor

N

February 1996 Newton Technology Journal

6

It’s In There!
by Todd Courtois, AllPen Software

The folks at Apple have asked me to give a candid glimpse at what it’s
like to develop an application under Newton 2.0. If you don’t already
know what it’s like to develop an application under Newton 1.x,
consider yourself lucky – but this glimpse probably isn’t for you.

Newton 2.0 is heavier on the paradigm than Newton 1.x. The original
Newton was a cute toy with a lot of potential: anyone could pick it up,
plug it into NTK’s Inspector, and see the potential it had. The new
Newton requires the programmer to dive more deeply into the cranial
fluid of a PDA – but once there, it’s much easier (and more fun) to swim.

The first Newton application I wrote included animation, sound, and
a completely interactive GUI – and I wrote it in less than a day. Then
came the hard part: writing a useful application. As we thought of more
and more killer applications for PDAs, it seemed to become more and
more difficult to stretch the fabric of Newton to meet our goals. We
screamed for better OS support for everything from communications to
soups to desktop integration.

The result of our implementation anguish is Newton 2.0. We
screamed for new features and speed improvements and, for the most
part, Apple listened. Almost all of the obstacles to getting our job done
right in the areas of communications, routing, data storage and
retrieval, drawing, sound, and, yes, user input have been removed. Of
course, we’re already starting to discover new obstacles, but Newton
2.0’s greatest achievement has been to obliterate the development
problems we faced under 1.x.

Learning Newton 2.0 doesn’t mean forgetting everything you already
know about Newton development. Newton 2.0 is an extension of
Newton 1.x; all of the things you liked about developing under 1.x have
been enhanced, with the notable exception of the Inspector.
Personally, I find it a bit more difficult to debug with the new NS Debug
Tools than I did with the original Inspector (but then again, I became
really good at debugging with the old Inspector). In time, I’ll probably
find all of these newfangled features – such as breakpoints and single-
stepping – useful. And I suppose the return of Inspector over AppleTalk
will make it easier to debug ADSP-based communications applications.

I think the biggest difference between Newton 2.0 and Newton 1.x
has been the change in attitude and motivation from Apple that we’ve
witnessed over the past two years. The Newton platform has grown to
be a wide-open platform with a tight feedback loop between developers
and the Newton engineering team. The thing that encourages me most
about Newton’s future is that the changes we kicked and screamed for
are now “in there”...and I believe this trend will continue.

Newton 2.0 Developers Tell It Like It Is

Business Opportunities

Backward Compatible = New User Features
by Rick Giles, Holosoft, Inc.

We see Newton 2.0 as providing a good platform for building the next
generation of PDA applications. In addition to providing many new
protos and functions, the operating system has very good backward
compatibility, making porting a large application fairly painless. This
has allowed us to focus more on adding new content to our
applications rather than fixing incompatibilities. Compatibility was a
very important issue for us since we wanted to provide our installed
base with an upgrade while at the same time adding features that
would take advantage of the new operating system. One such feature
is the ability to rotate the screen, which is particularly useful for
spreadsheet users.

We have found that the improvements in the soup architecture and
communications are a plus for our applications. With Equate, we have
pushed the envelope of how much data one can load into the Newton,
and now we have extended the envelope further while getting better
overall performance. One way we have taken advantage of these
features is by allowing users to import Excel workbooks directly to the
Newton. The ability to import workbooks means that users can now
import multiple worksheets of any size simultaneously, which places a
bigger burden on both communications and the soup architecture.

The improvements in communications provides the groundwork for
our “Desktop Direct” software, which allows users to synchronize
their Excel data to Equate without the need for Newton Connection Kit.
The use of DILs and the new Newton 2.0-specific communications
features are crucial to our desktop integration efforts.

Newton 2.0 – Go Ahead, Do It!
by Don Vollum, PelicanWare

Developing for Newton 2.0 after developing for Newton 1.x is like
reaching adulthood: there are so many things you can do which you
couldn’t even consider before. Extend the Notes application? Sure.
Work with large binary objects? No problem. Copy bitmaps into
paragraphViews ? Be my guest. Everywhere you look, there are APIs
to do things which either couldn’t be done at all under 1.x, or required
some very marginal hack.

Even better, there are new protos and functions that reduce the
workload tremendously and let your application be more responsive to
the user. For example, protoOverview generates a very slick
overview, without much more work than the protoTable I used to
use. DoProgress() generates a detailed status indicator with a single
function call, and gives the user the ability to cancel the action in
progress.

The stationery concept allows you to both extend built-in
applications and create your own extensible applications. We extended
the Notepad to include our spreadsheet application, QuickFigure Pro,
so that users can create spreadsheets without ever leaving the
Notepad application.

Newton 2.0: A Revolution for Programmers
by Scott Gruby, QUALCOMM, Inc.

Newton 2.0 is viewed by many as a big step forward for users of PDAs.
While this is true, Newton 2.0 is more of a revolution for developers of
Newton applications. Under Newton 1.x, many developers had to
individually implement functions that would provide overviews, access
the Names application from within their applications, and deal with the
cumbersome and mysterious communications layer. With Newton 2.0,
many of these dreaded tasks are documented protos that can easily be
added to any application. This not only makes it easier for developers
to quickly generate applications, it provides a more unified interface for
the user.

For most developers, the switch to programming under Newton 2.0
will be an easy one. Porting applications to take advantage of the new
features offered in Newton 2.0 should be quite simple (in most cases),
as long as you have followed documented methods. The hardest task
in porting will be finding and removing some functions you have
created and replacing them with documented protos. Once you’ve
made the switch and are accustomed to the new features, you won’t
want to support pre-2.0. Since Newton 2.0 has a very small market right
now, you might not want to abandon users of current 1.x products;
however, I think that the benefits of Newton 2.0 outweigh the
continued support of Newton 1.x. In addition, once users see Newton
2.0, I feel that they’ll want to upgrade and have access to all the new
features.

To me, two of the most exciting Newton 2.0 frameworks are
protoTransport and NewtApp. The protoTransport allows a developer
to create different backends that can be used from other applications.
For example, mail transports can be created not just for eWorld, but for
POP/SMTP mail, AOL, CompuServe, and so on. This allows the user to
have access to all these services via the Mail routing action and the
universal In/Out box. The transport interface also allows developers to
externalize the communications layer of an application so that the
application and communications layer can be developed independently
(and therefore speed up compile times). Transport layers do not all
have to be for mail, but that may be the most common use for them.
NewtApp was designed to be like MacApp in terms of providing different
pieces that a developer can link to create an application without
having to create each individual piece. Even though I’ve never used
MacApp, I can see how the model is very useful on the Macintosh.
NewtApp handles so many things for you—such as registering soups
and handling various messages automatically – that a basic, yet
potentially powerful, application can be created within a very short
time. In addition, NewtApp will make applications have more of a
standard interface, making it easier for users to switch among
applications.

Developing for Newton 2.0 will be exciting for all developers. The
improvements in the operating system will make more users interested
in the Newton OS, thereby creating a larger market for your
applications. Make the leap to Newton 2.0; Newton 1.x users will have
to be content with what they have now, as there is no sense in
developing for an operating system that has many limitations. The
future is bright for Newton 2.0 and beyond.

Go out and start developing for Newton 2.0!

Newton Technology Journal February 1996

7

NTJ

February 1996 Newton Technology Journal

8

Stationery is one of the most exciting features of Newton 2.0. Using
stationery you can extend the built-in applications, let other
developers use your data in their applications, and create powerful
stand-alone solutions. This article discusses the issues involved in
converting an existing Newton application from a stand-alone
application into a piece of stationery for the built-in Notes application.

WHAT IS STATIONERY?
A piece of Newton stationery has two parts: the dataDef and the
viewDef . The concept is that you give a container application a
definition for a specific type of data (the dataDef), and then provide
an editor or viewer to manipulate the data (the viewDef). The
container application looks at the type of data, and then searches for
an appropriate editor for that data.

The container application also deals with all issues related to
storing your data, displaying an overview, and routing (you do need to
provide appropriate routing formats). A good example of this is the
Notes application. Essentially, the Notes application is a container for
different types of stationery. Each built-in data type (note, outline, and
checklist) provides a data description and an editor. Other built-in
applications which support stationery include Names, Calls, and I/O
Box.

A piece of stationery may be used by several different container
applications. For example, Notes and I/O Box both can display the
note, outline, and checklist stationery. If you route an outline from
Notes, you can open and edit it within the I/O Box application.

All of the built-in applications which support stationery are built on
the NewtApp framework. NewtApp provides most of the structure
necessary to support and create stationery, although your stationery
item does not need to be based on NewtApp. Still, a good
understanding of NewtApp is critical to building stationery.

WHY STATIONERY?
The first issue to consider is whether your application is appropriate for
use as a piece of stationery. Stationery applications have both
advantages and drawbacks when compared to their stand-alone
equivalents. The advantages include user convenience (if you are
extending Notes, for instance, the user need only tap the “New” button
to access your application), a smaller memory and system resources
footprint, and extensibility – other developers can use your stationery
to extend their applications.

Drawbacks include less usable screen area (because of the screen
space used by the container application), no programmatic access to
your application (you can’t access your base view by calling

getRoot().|myApp:mySig| any more), and a lack of flexibility if your
application doesn’t use a one frame per data item storage metaphor.

APPLICATION DESIGN ISSUES

Several design issues must be resolved. First, your application does
not have control of the status bar. If you need to provide status-bar
style buttons, you can do this through the newtFloatingBar proto,
but it uses up screen real estate (it floats above your editor or viewer’s
space.)

Second, you can no longer access your application from the root.
This can be an issue for routing, and also if you provide an API for other
developers. In the case of my application, QuickFigure Pro, this was
significant, since we provide an open API which allows other developers
to script our application.

Generally, you need to be aware that your code could end up being
executed in a different environment than you intended, so it needs to
be very self sufficient. For example, the same viewDef could be called
by either the Notes application or the I/O Box application (to view data
received via beaming or mail). Therefore, you must not make any
assumptions about the application that will contain your stationery.

Unless your stationery is built into a stand-alone application, you
should consider building it as an auto-part.

DATA STORAGE

Finally, you need to consider how your application stores data. The
stationery system assumes that your data will be entirely contained in a
single frame, and will usually be stored in a soup. This frame may be
added into a soup directly, or may be combined with other frames and
added to a soup.

As a general rule, the further your design is from NewtApp (one frame
per document), the more difficult data storage will be. If you can store
everything in one frame (and fit that frame into a soup entry), you’re in
good shape. If not... well, read on.

If you store your data in multiple soup entries (or in an entire soup,
as was my case), there are two strategies you can pursue. The first is to
write your data into a Virtual Binary Object (VBO) when you need to
save it, and then attach that object to your soup entry.

VBOs are binary objects which are stored persistently in a specified
store and attached to a soup entry. A VBO’s size is limited only to the
space available in the store on which it resides, making it perfect for
working with large binary objects. When the soup entry to which the
VBO is attached is deleted or moved, the VBO goes with it.

This makes VBOs an excellent solution for stationery items needing
to manipulate lots of data. It minimizes the burden of keeping track of
different pieces of data: when the container application deletes or

Converting an Existing Application to Stationery
by Don Vollum, PelicanWare

NewtonScript Techniques

moves your soup entry, the VBO goes with it.
If your data doesn’t lend itself to being manipulated in binary form,

then VBOs have a significant drawback: performance. You can use the
NewtonScript translate function to convert between frames and
binary objects, but it’s not particularly fast. If you have to write your
data from a frame, into a VBO, you can have some serious performance
problems. Use of native code can help a lot with these performance
issues.

IMPLEMENTING STATIONERY

DataDefs
If you are starting with an existing application, the primary piece of

new code you will have to create is the dataDef . This should be a
template based on the newtStationery proto. Most of the slots and
methods related to newtStationery are self-explanatory; however, a
few slots are especially important:

symbol – The contents of this slot link the dataDef to the
viewDef . When the container application finds a piece of data with
this symbol, it looks for a viewDef with a matching symbol (which is
set when the viewDef is registered). This symbol must be unique, so
use your registered signature.

SuperSymbol – This slot contains the symbol for the intended
container application. However, your dataDef could end up in
another container; for example, a piece of data intended for the paper
roll could end up being viewed in the I/O Box application.

ViewDefs
Your viewDef is the editor for the data defined in the dataDef . If

you are converting an existing application, you can probably use your
existing main view. Keep in mind that the status bar, as well as
anything at the top of the display should be deleted.

To convert your main view into a viewDef , you must add the
following slots: version , type , symbol , and n a m e. Symbol must
be the same symbol as the one in the dataDef ’s symbol slot.

Install and Remove Scripts
In your InstallScript , you need to call RegisterViewDef to

register your viewDef , and RegDataDef to install the dataDef . If
your application is an auto-part, you can use GetLayout in your
installScript to get access to your main view (viewDef) and
dataDef . For example:

partData := {};

partData.qfDataDef := GetLayout("QF DataDef");
partData.qfViewDef := GetLayout("QF Stationery 3.0 Main");

InstallScript := func(partFrame,removeFrame)
begin

// add dataDef and dataView so it’ll show up in paperroll new picker
RegDataDef(EnsureInternal(kQFStationerySym),

partFrame.partData.qfDataDef);
RegisterViewDef(partFrame.partData.qfViewDef,

kQFStationerySym);
end;

Note that if your application is not an auto-part, you must be careful
about using GetLayout in your install script.

RemoveScript
In your removeScript , you need to unregister the viewDef and

dataDef , along with any routing formats you have installed. For
example:

RemoveScript := func(removeFrame)
begin

//unreg the viewDef:
UnRegisterViewDef('default,kQFStationerySym);

//unreg the dataDef:
UnRegDataDef(kQFStationerySym);

end;

When removing your stationery item, you should keep in mind that
your viewDef could be open in another application while it is being
removed – this is a major problem with roll-based applications, such as
Notes. In this case, you need to notify all applications that your
viewDef has been removed, so they can handle this gracefully.

Newton Systems Group is working on a solution for this problem,
but it was not available at press-time.

Routing
Routing support for stationery items is handled no differently than

for other Newton 2.0 applications. All you need to do is create your
route formats, and register them appropriately. The container
application will automatically provide duplicate and delete, and check
for any route formats you have registered to handle your class of data.

For frame routing (beam and mail), you should ensure that your data
requires no special processing when it is put away. Your stationery
item has no control over the container’s PutAway method.

Newton Technology Journal February 1996

9

NTJ

To send comments or to make requests for articles in Newton Technology Journal,
send mail via the Internet to: NEWTONDEV@applelink.apple.com

February 1996 Newton Technology Journal

10

Organize. Communicate. Integrate. Most likely, when hearing about
Newton 2.0, you have come across this “mantra” that we live by in the
Newton Systems Group. Newton 2.0 is not just a new operating system,
but rather, a full suite of applications, developer tools, and third party
solutions that make up the most powerful and flexible PDA platform
today.

A key component of Newton 2.0 is the capability that the platform
provides to let customers easily integrate and exchange information
between Newton PDAs and personal computers – both Windows and Mac
OS based computers. After listening to customers and developers alike,
the Newton group set out to provide some key solutions in the area of
integration:

• provide a simple, cost-effective solution to store the data from a
Newton PDA on a PC.

• enable true synchronization of information between Newton PDAs
and PCs.

• provide an easy method for gathering and publishing reference
information stored on a PC to distribute and view on a Newton PDA.

• continue to offer innovative solutions to use Newton PDAs in
conjunction with PCs – from remote access capabilities to the ability
to use a PC keyboard with a Newton PDA.

THE ADVANTAGE OF NEWTON 2.0 THROUGH PC INTEGRATION

The Newton 2.0 platform has been designed to provide the basis for a
complete suite of solutions for integrating PDAs, PCs, and enterprise
environments without changing the way people use their PCs. Built-in
capabilities, along with add-on utilities and developer technologies
from Apple and third parties, provide the functionality users require in
Newton 2.0 – functionality for making their Newton PDA a powerful
extension of their PC and enterprise environment, with the following
advantages:

• Windows and Mac OS connectivity. Newton 2.0 provides full cross-
platform connectivity, so that Newton PDA devices can be easily
integrated into both Windows and Mac OS environments –
including Windows 95. This capability is a key requirement of users
and developers alike.

• Connectivity to an enterprise. Newton 2.0 has a sophisticated
communications architecture that gives users easier access to their
corporate computing environment, whether they’re at a desk in
their office building, or miles from headquarters. This architecture
includes connectivity to a corporate network, as well as individual

PCs or workstations.
• Data security. The Newton 2.0 platform, by providing seamless

connectivity to PCs and a variety of backup and restore features,
helps ensure the safekeeping of user information. This is especially
useful for users working with information from remote locations.

• Productivity tools. The Newton 2.0 platform offers products and
technologies that allow users to extend what they can do with
information – for example, synchronizing it between applications,
publishing electronic books, and performing PC connectivity tasks
from remote locations.

To satisfy these needs, Apple and third parties are providing a range
of solutions designed for Newton 2.0.

DESKTOP INTEGRATION LIBRARIES (DILS)
Integrating data from the PC and Newton PDAs

Newton 2.0 incorporates a rich set of tools for developers, enabling
you to create direct links between applications on PDAs and PCs so that
users can synchronize PDA data directly with the PC applications they
use every day. The key technology for this PDA-to-PC integration is
Apple’s Desktop Integration Libraries (DILs). DILs make the Newton PDA
an extension of the PC platform. Simply put, DILs are application
programming interfaces (APIs) that you can integrate into your PC
applications, to let users access Newton PDA data from their PC. DILs
help match the functionality of data used on a Newton PDA with the
corresponding data in a specific application running on a PC. This is
especially helpful when using personal information management (PIM)
software, such as appointment-scheduling applications, because it
allows users to keep the data in PDA PIMs current with data in a PC PIM.
DILs also enable import and export of names and dates information.

The flexibility and simplicity that DILs contribute to applications
make Newton 2.0 an even more attractive platform in an enterprise
environment. To learn more about DILs and receive information about
how to obtain this technology, contact the Newton Developer
Relations Group at NEWTONDEV@applelink.apple.com.

Newton Press: Electronic publishing on Newton PDAs
Many developers are probably familiar with Bookmaker, a tool for

creating Newton Books. With Newton Press, we have delivered this
functionality to the end user and we therefore see the proliferation of
Newton Books growing exponentially. This will increase the
opportunities developers have to create commercial quality electronic
books, since customers will have a greater appreciation of the value of

PC Integration and Newton 2.0:
First Class Connectivity for Mac OS and Windows Users
by David Glickman, Apple Computer, Inc.

Business Opportunities

Newton Technology Journal February 1996

11

Newton Books.
Newton 2.0 software gives users an easy way to combine different

types of information into an electronic document and distribute it on
PDAs. Through Newton Press software, mobile professionals and
corporate customers can use the combined power of PCs, enterprise
information, and Newton PDAs to publish and distribute electronic
books. Newton Press lets users “drag and drop” text blocks, word
processing files, e-mail messages, and graphics onto the Newton Press
icon on their PC screen to compose an electronic book for personal use
– or to publish it for an entire group of Newton PDA users. On an
enterprise-wide level, this is especially useful, since documents can be
easily and quickly distributed to whole teams – documents such as
manual updates, price lists, approval forms, and the like.

Newton Press is a flexible tool. It can integrate any imported word
processing, text, or graphic document supported by Claris XTND
technology (for the Mac OS). It supports all of the most popular word
processing and graphics applications on the Windows platform,
including the following:

• Microsoft Word v1.x, 2.0, and 6.0
• Interleaf Publisher v1.1, 5.2, and 6.0
• PC Paintbrush
• Windows Bitmap
• WPGI (Word Perfect vector)
• ASCII

Newton Press running on Windows 95

Data backup and restoration with Newton Backup Utility

Research shows that data security is a key concern for PDA users.
The Newton 2.0 platform offers a simple solution for backing up Newton
PDA data. It’s easy to back up information residing on a Newton PDA
onto a PC running either the Mac OS or Windows software – and later
restore it to the Newton PDA.

The Newton Backup Utility (NBU) lets users connect a Newton PDA
to a PC – and use the PC as a place to store PDA information. Users
with a Mac OS-based computer connect their Newton PDA via the serial
port or LocalTalk port; Windows software-based systems can be
connected using the serial port.

By providing NBU free of charge to users (it’s included with the
MessagePad 120 and available online for other Newton PDA users), we
are able to ensure that all customers will have a method to maintain the
integrity of their data. In addition to all the built-in software in Newton
2.0, NBU will back up and restore all third party information as well.

Newton Backup Utility running on Mac OS

Imagine a Newton PDA user who is in a rush to catch a plane, and
wants to back up important names and dates data before leaving.
Using NBU, users simply tap the “Backup” button on the Newton PDA
screen, and choose where on the PC they want to store the
information. To retrieve data that’s been backed up, users simply click
the “Restore” button on the Newton PDA screen. NBU also allows users
to selectively restore any part of that information from a backup file –
saving significant time. Or, they can install software packages from their
PC.

The Newton Backup Utility allows users
to download packages into a Newton PDA.

After clicking the “Install Package” button on the Newton PDA
screen, users are presented with a standard open dialog box, and can
select the packages they wish to download. The data is stored in the
Extras drawer.

LOOKING TOWARD THE FUTURE

We believe that providing you with tools and solutions such as the
DILs and Newton Backup Utility is a great start to establishing Newton
2.0 as the PDA platform for PC integration. However, we have not
stopped here – we are continually working to bring developers and
end users more integration solutions.

In the future, as the Newton platform matures, you will see solutionsNTJ

February 1996 Newton Technology Journal

12

It is a common event in the high-tech industry to find companies
creating innovative new technologies, throwing them out on the
market, and just waiting to see who will bite and exactly how they will
be successful. Sometimes they win, and sometimes they don’t. Most
often, they don’t. However, as the computer industry becomes more
and more mature, successful players are finding that they need to
employ more of a text-book approach to defining marketing strategies
and methodologies in order to understand their markets and
customers and to compete more effectively. In the Newton Systems
Group, we’ve gone through market analysis exercises to define the PDA
market, proactively identify and target our market opportunities, and
define the segments where the Newton platform offers real competitive
advantages.

The marketing team in the Newton Systems Group has segmented
the market and identified two market opportunities where the Newton
platform best meets the needs of the target customers. In Marketing
101, this approach is known as “needs-based” marketing. The
segment(s) are identified, the product is positioned with respect to the

unique needs of the target customer in the segment and the benefits it
offers to that customer, and the product is marketed in a way that
demonstrates its ability to satisfy the needs of the identified customer.

As the platform marketing group at Apple works to make the Newton
Platform successful for two key target markets (mobile business
professionals on the horizontal side and corporate and institutional
customers on the vertical side), third-party solutions developers
should target a subset of the same customers and appeal to the same
needs in order to sell solutions. It will be a critical exercise for
solutions providers to go through the steps of segmenting their
markets within those that the Newton Systems Group has identified,
qualifying the target customer and his/her needs, and then marketing
the product based on its ability to satisfy those needs. Understanding
the customers and positioning that Apple is going after from a platform
perspective will be essential. We’ve provided you with the Platform
Positioning Matrix shown below to help in your strategic market
planning. Use the information to help you position and talk about
your product with respect to the Newton Platform and its target

Newton Platform Market Segmentation and Positioning –
A Useful Tool for Solutions Marketing
by Lee Dorsey, Apple Computer, Inc.

Business Opportunities/Marketing News

Platform Target Customers

Audiences

Platform Category

PDA Definition

Horizontal

Mobile Professionals
(Business people who spend considerable time
away from their desks and have a need to organize
and communicate information, and integrate
information on their Newton devices with
information on their Mac OS or Windows personal
computers.)

Mobile Professionals
Channel
ISVs
Media
Key industry influencers

PDA

A new generation of hand held devices based on
advanced technology and designed from the
ground up to meet the needs of business
professionals and organizations. Newton PDAs
provide a full range of personal computer

Vertical

Corp./Institutional Customers
(Business, Government and Education - Customers who
need specialized applications)

Corp./Institutional Customers
Channel
ISVs, SIs, VARs
Media
Industry/financial analysts
Apple Internal

PDA

A new generation of hand held devices based on
advanced technology and designed from the ground up
to meet the needs of business organizations and
education institutions. Newton PDAs provide a full range
of mobile solutions for key markets such as health care,
sales force, field service and education customers

Newton Technology Journal February 1996

13

Platform Definition

Overarching Platform Positioning

Key Platform Messages

Platform Positioning

integration, organization, and communications
solutions.

Vertical

The Newton platform comprises the Newton operating
system, development environment, connectivity
solutions, applications and peripherals from Apple and
third-parties, and devices from a variety of manufacturers
in the telecommunications, consumer electronics, and
computing industries.

Newton leads the industry with the most advanced,
open, easy-to-use PDA platform with the best mobile
solutions on the market today.

Newton leads the industry with the most advanced,
open, easy-to-use PDA platform with the best mobile
solutions on the market today.

• Powerful platform for software development
The Newton platform provides cross-platform, high-
productivity tools for rapid software development.

• Complete developer support infrastructure
Development on the Newton Platform is supported
through developer programs, co-marketing opportunities,
training, and technical support.

• Seamless integration into enterprise computing
environments
A range of products have been developed for the Newton
Platform to give customers access to desktop
applications, networks, Internet, and corporate databases

The Newton platform is for business, government, and
education customers requiring a powerful
communications-enabled platform to deploy custom hand
held vertical market solutions for individuals,
departments, and enterprises.

NTJ

February 1996 Newton Technology Journal

14

Business Opportunities/“Marketing News”

Those of you who attended the Newton Platform Development
Conference in September got a sneak preview of some of Apple’s plans
to change Newton branding strategies for third-party solutions
providers. The changes are now final and official, and if you haven’t
already heard from Apple’s Software Licensing Group, you’ll want to
contact them at SW.LICENSE@applelink.apple.com or (512) 919-2645 to
learn more. The basic changes are outlined here for your convenience.

So what’s changed? First, and most important, the circular “Newton
Compatible” logo (Figure 1) that many developers licensed for use on
packaging along with the NTK license agreement has been terminated.
That means that you should no longer be using the mark on
packaging, documentation, or media.

Figure 1.

Why did we terminate this mark? We found that the logo didn’t allow
for future growth and changes in the platform operating system
without causing customer confusion or modification of the mark.
Customers might experience a great deal of confusion upon finding a
“Newton Compatible” application on the shelf, only to find that it really
isn’t compatible with ALL versions of the Newton operating system. The
mark would need to be updated for each version of the Newton
operating system released, causing developers to have to re-print
packaging or cover the old marks with new ones. We wanted to move
third-parties to a more universal mark that customers could easily
identify and will work in the long-term without changes each time we
rev the OS.

In place of the “Newton Compatible” logo, we have moved to the
use of the original vertical Newton Signature (Figure 2) by third-parties,
which comprises the familiar light bulb logo and the word Newton.

Figure 2.

For the first time, third-parties will be able to license the Newton
Signature for use on their packaging and product promotions. The
Newton Signature is a highly recognizable mark that carries with it a
great deal of brand equity in the market place. We’d like to extend the
use of the mark to third-parties to identify their applications and
solutions as platform products, and to leverage the equity that Apple
has built around the logo. The Newton Signature logo should be used
in combination with system requirements on the solution packaging.
Customers will then know to look for the familiar Newton logo on both
hardware and software platform products for Newton PDA devices.
They will then be able to identify its operating system compatibility by
the system requirements on the packaging. For a no-fee license
agreement and guidelines for use of the mark on packaging, contact
Software Licensing at SW.LICENSE@applelink.apple.com.

We have also developed a logo strategy to help you communicate to
customers about your adoption of new technologies in your solutions.
The first of these, seen below (Figure 3), will allow you to communicate
to customers that your solution works on Newton 2.0.

Figure 3.

New Logo Licensing for Newton Developers
by Lee Dorsey, Apple Computer, Inc.

Whether you’ve got a 1.x application that is compatible with Newton
2.0 or have created a new application from scratch for Newton 2.0, use
of this mark will clearly identify it for customers as a product to use on
Newton 2.0 PDA devices. This was important, given the number of
changes that occurred in the operating system and the number of
applications that used undocumented calls under 1.x, thereby making
them incompatible with Newton 2.0. Use of this mark will make it easy
for developers and customers to communicate which products they
should buy and run on new Newton 2.0 PDAs, whether it’s an original
1.x application or a new 2.0 application.

Like the Newton Signature logo, this “Works with Newton 2.0” logo
is easy to obtain and use. You may request a no-fee license agreement
from Software Licensing. Part of the agreement is a technical criteria
survey, against which you must test your application. Once your
product meets the technical criteria, it qualifies for use of the mark. We
encourage all developers to test their application against the survey
criteria and to use the mark whenever possible. Additionally, by
licensing the mark, your product will automatically be placed on a list of
applications for Newton 2.0, which will be made widely available to
Newton customers via on-line postings, fax-back services, and other
distribution channels. Use of the logo is a great way to educate your
customers that your product is one that they should use on a Newton
2.0 device and to gain exposure for your product in Apple’s marketing
channels.

Questions on any of these logo programs can be directed to
Software Licensing or to the Newton Developer Relations Group at
NEWTONDEV@applelink.apple.com.

Apple Drops
1% Royalty
Requirement on
Newton Software Sales
by Staff, Apple Computer, Inc.

In a continuing effort to make the Newton platform the
most attactive PDA platform for software development,
Apple announced at the recent Newton Platform
Developer’s Conference that it was dropping the 1%
royalty requirement on all Newton software sales.
Previously, all developers creating commercially available
software for the Newton platform needed to pay Apple
Computer a 1% royalty on their total product revenues.

“Software developers and compelling third-party
software solutions are key factors that have established
Newton as the premier PDA platform,” said Rick
Fleischman, Product Line Manager for Newton Tools at
Apple. “Removing the royalty requirement on third-party
software sales sends a clear message that we value our
developers and the work they do in supporting the
Newton platform.”

Removing the 1% royalty requirement is only one
example of the many ways that Apple has been working to
increase the opportunity and decrease the costs for
Newton software developers. Other recent changes
include: dramatic decreases in the pricing for both
Newton development support and development tools;
opening up the previously confidential byte code and
package formats for third-party use; the addition of a
compiler and profiler to Newton Toolkit, enabling
developers to acheive higher performance in their Newton
applications; and the release of the Newton 2.0 platform,
providing a much richer platform for software
development. In the future, Newton developers can look
forward to development tools hosted on the Windows
platform as well as the Mac OS platform, and tools to
enable developers to add routines written in C or C++ to

Newton Technology Journal February 1996

15

NTJ

NTJ

To request information on
or an application for

Apple’s Newton developer programs,
contact Apple’s Developer Support Center at

408-974-4897
or Applelink: DEVSUPPORT

or Internet:
DEVSUPPORT@applelink.apple.com

February 1996 Newton Technology Journal

16

Newton 2.0 is a major revision of the operating system and the result
of extensive customer feedback and user testing. The Newton
Developer Training group has been busy developing new courseware
for developers who want to take advantage of the Newton 2.0 operating
system. We are proud to present two new courses complementing the
Newton 2.0 platform: Newton Programming: Essentials 2.0 and Newton
Programming: OS Enhancements. Soon we’ll be releasing self-paced
training modules for Newton 2.0 Communications and Extended Topics,
and possibly other areas, depending on developer interest.

What does Newton Programming Courseware provide that books
and source code don’t? Well, have you ever found that reading source
code and documentation provided you with the content you needed
but not necessarily the context? Or, as you were learning about a new
concept, have you had sophisticated or contextual questions that the
written material couldn’t answer? Imagine spending an entire week
steeping yourself in the technology you are committed to mastering
with virtually no interruptions. Our courses are designed for
developers by developers, with the goal of providing not only the
technical information you need, but also background information and
an understanding of how the technology is meant to work. Our
instructors are experts in their fields, and if you manage to stump them
they will do everything they can to find you the answers. Our courses
are designed to cut your learning and development time while
providing you with the expertise you need to write useful and powerful
applications.

Students who attend Newton Programming courses should expect
to spend a productive and demanding week in class, since they often
are learning a new technology, a new operating system, and a new
language over the course of five days. Students spend much of their
time doing hands-on development and debugging, and have continual
access to a highly qualified instructor. Participants will also spend a
session with the Newton Developer Support team and have the
opportunity to ask technical questions.

Students who attend Newton Programming: Essentials 2.0 will learn
how to write, test, and debug fully functional Newton 2.0 applications
using Newton Toolkit, NewtonScript, and NewtApp. Any programmer with
object-oriented development experience is welcome to attend the

Essentials 2.0 class.
For those developers already experienced in Newton 1.x

programming, Newton Programming: OS Enhancements provides
migration support to the Newton 2.0 operating system. This class is
designed to bring 1.x programmers quickly up to speed in Newton 2.0
technology and assist them in converting their 1.x applications.
Students will learn the differences between 1.x and 2.0, how to write
applications that take full advantage of Newton 2.0, and how to move
existing 1.x applications to the 2.0 platform. Students are encouraged
to bring their existing 1.x applications to class and begin converting
their code to Newton 2.0.

Call (408) 974-4897 or e-mail DEVUNIV@applelink.apple.com to
register!

NEWTON PROGRAMMING: ESSENTIALS 2.0
Course Description

Learn how to develop applications for Newton using NewtonScript
and NewtApp, and how to develop and optimize your Newton 2.0
applications using Newton Toolkit 1.6.
Schedule for the Week:
Monday

• Newton 2.0 System Overview
• NewtonScript
• Structure of an Application
• Newton Toolkit

Tuesday
• Understanding Inheritance
• Protos
• Programming with NewtApp
• Lab Time

Wednesday
• The View System and Justification
• Lab Time
• Lunch with DTS
• Lab Time

Thursday
• Debugging and Tools
• Soups and Stores
• Rich Strings
• Lab Time

Friday
• Stationery
• Routing
• Lab Time

This course will provide you with all the knowledge and hands-on

Newton 2.0 Programming Courses
from Newton Systems Group Developer Training

Developer Group News

Newton Technology Journal February 1996

17

experience you need to begin building powerful Newton 2.0
applications. You will learn NewtonScript, the programming language
of the Newton OS, in addition to Newton Toolkit, which provides you
with a graphical interface and easy access to powerful, reusable
components. Using NTK you will interactively develop your
applications without having to execute sequential edit, compile, and
link cycles. You will also learn to program with NewtApp, a new
application framework designed to help you build complete, high-
quality, and full-featured Newton applications quickly and easily. A brief
overview of Newton communications is also provided.
Length of class: 5 days from 8:30 am to 5:30 pm
Prerequisites: You must have developed a complete application in an
object-oriented programming language and have basic familiarity with
the use of a Macintosh computer and a Newton MessagePad.
Dates: January 15–19, February 12–16, March 11–15
Tuition: $1500

NEWTON PROGRAMMING: OS ENHANCEMENTS

Course Description
Here’s your opportunity to learn about the many changes in all

areas of Newton System Software for version 2.0, how to write a 2.0 app,
and how to convert and make your 1.x Newton apps 2.0 savvy.

Schedule for the Week:
Monday

• Newton 2.0 System Overview
• NTK 1.6
• Compatibility
• Programming with NewtApp

Tuesday
• Data Storage and Retrieval
• Find and Filing
• Stationery
• Lab Time

Wednesday
• Routing

• Extending your Application
• Lunch with DTS
• Lab Time

Thursday
• Miscellaneous Topics
• Rich Strings
• Lab Time

Friday
• Desktop Integration Libraries
• Communications
• NTK 1.6 Advanced Features

The Newton Programming: OS Enhancements course provides a
comprehensive overview of what is new and what has changed in
system 2.0, focusing on those programming interfaces that you’ll be
most interested in as a developer. During this course you will learn
how to take advantage of Newton 2.0 features including NewtApp (a
new, easy-to-use application framework), Stationery, new Protos, new
functions, Routing, and improvements in Text Input, Recognition, and
Soups. This course focuses on compatibility and taking full advantage
of 2.0 features. Be sure to bring your 1.x applications and take this
opportunity to begin converting your code to 2.0.
Length of class: 5 days from 9:00 am to 5:00 pm
Prerequisites: You must have developed a Newton 1.x application,
completed the course Newton Programming: Essentials, or read
Programming for the Newton by Julie McKeehan and Neil Rhodes.
Dates: January 29–February 2, February 26–March 1
Tuition: $1500

Newton Programming Self-Paced Training
Soon to be released are Newton Programming Self-Paced training

courses, which will provide you with convenient and inexpensive
access to Newton Developer training. Included with this training are
technical articles, step-by-step coding labs, illustrations, demos, sample
code, and online assistance. NTJ

help book that you want to file into the Help folder. In Newton Toolkit
you can use the SetPartFrameSlot compile time function to add a
slot to the part frame that is generated at build time. The symbol for the
Help folder in the Extras Drawer is '_help . So, to set the default folder
for the help book to the Help folder, you would add this line to a text
file (or even an evaluate slot) in your project:

// put the part in the Help folder by default
SetPartFrameSlot('labels, '_help) ;

When the OS loads the package, it will go through each part frame.
Some slots from the part frame will be copied over to the icon structure
used by the Extras Drawer. In this case, the labels slot is used to

specify the initial folder.
For packages that contain multiple parts, you should set the labels

slot of the particular part you want to be filed. You can only do this in
the project that build the particular part. In other words, if you have an
application that includes a help book, you will probably have two
projects. One is used to build the help book, the other may be used to
build the application. The second project would include the output
(the .pkg file) from the first project. Since the help book is the part you
want to file, you would set the labels slot of the help book in the help
book project. Using SetPartFrameSlot in the application package,
would set the labels slot of the application, not the help book.

Under rare circumstances, you may need to file parts into other default

continued from page 1

Extra Extra: Extras Drawer Features in Newton 2.0

February 1996 Newton Technology Journal

18

folders. The default Extras Drawer folders and their symbols are listed in
Table 1.
Folder Symbol
Unfiled NIL

Extensions '_extensions

Help '_help

Setup '_setup

Storage '_soups

Table 1. Symbols for Extras Drawer built-in folders

Having said all this, you should carefully consider where you are placing
icons. In general, not setting a labels slot is the correct thing. The icon
will show up in the Unfiled icons drawer and the user will be able to file it
where they wish.

API’S
There are two important API’s that are not included in the beta version of
the Newton Programmer’s Guide. First, SetExtraInfo used to be
implemented as a platform file function for the 1.x world. It is now a
method of the Extras Drawer and has expanded functionality. Second,
buttonToggleScript is part of the new way that applications are
opened from Extras Drawer.

SetExtrasInfo
In 2.0 you can send the SetExtrasInfo message directly to the

Extras Drawer. However, for SetExtrasInfo to work, your icon must
have an app slot that corresponds to your appSymbol . For form
(that is, application) parts, this slot is created for you and is set to the
kAppSymbol constant. For other types of parts you have to manually
add the slot.

To create the app slot, you can use the SetPartFrameSlot call in
your Newton Toolkit project. However, in order for the OS to check for the
app slot, you must also have a text slot. The text slot is used for the
name in the Extras Drawer. So for an auto part, you would minimally need to
do the following:

// give autopart an app slot so SetExtrasInfo can access it
SetPartFrameSlot('text, kAutoPartName) ;
SetPartFrameSlot('app, kAppSymbol) ;

One side note: there is no programmatic way to file an auto part into
the Unfiled folder. Doing so will currently throw an exception and not
move the part. You can file it in any other folder. If you need an auto
part interface in the Unfiled drawer, you can use a Script Icon (see
below.)

Once you have an app slot in your icon, you can call
SetExtrasInfo . However, the call has changed a bit since 1.x. The
syntax is:

SetExtrasInfo(paramFrame, newInfoFrame);

The first argument is now a frame. Specifying an appSymbol still

works, but this is just for compatibility. Expect that to change in the
next major release of the OS. The more slots you specify, the faster the
call to SetExtrasInfo will execute.

Slot Req/Opt Value
appSymbol Required application symbol, must be
the
same as the app slot of the icon

store Optional store that the icon resides on

packageName Optional package name for the icon

Table 2. Slots for the paramFrame argument to SetExtrasInfo

The second argument is a frame that specifies what to change in the
icon. You can change multiple things with one call.

Slot Type Effect
icon Bitmap Changes the icon to the new bitmap

text String Changes the text under the icon to the
new string. It can be a Rich String.

labels Symbol Files the icon in the new folder. The
symbol must be a valid file folder symbol, not NIL.

Table 3. Slots for the newInfoFrame argument to SetExtrasInfo

So to change the text of an application icon to the string “wiggy”,
you would use the code:

local ed := GetRoot().extrasDrawer ;
local paramFrame := {appSymbol: kAppSymbol,

packageName: kPackageName};
local newInfoFrame := {text: "Wiggy"};

ed:SetExtrasInfo(paramFrame, newInfoFrame) ;

You can further limit the search that SetExtrasInfo needs to make
by specifying the store your package is on. Since the user can move
your package, you need to find out the store each time you make the
call. You can find the store by using GetVBOStore in combination
with ObjectPkgRef .

ObjectPkgRef takes a reference in your package and returns the
package ref. Since packages are stored as VBO’s in 2.0, you can then
use GetVBOStore to get the store. Note that you must make sure the
argument to ObjectPkgRef is a reference.

local ed := GetRoot().extrasDrawer ;
local paramFrame := {appSymbol: kAppSymbol,

packageName: kPackageName};
local newInfoFrame := {text: "Wiggy"};

// the proto of a view should be a template in the package.
local myStore := GetVBOStore(ObjectPkgRef(self._proto)) ;

if myStore then
paramFrame.store := myStore ;

ed:SetExtrasInfo(paramFrame, newInfoFrame) ;

Newton Technology Journal February 1996

19

buttonToggleScript

In 1.x, when the user tapped an icon in the Extras Drawer, the OS
would send the Toggle view message to the base application view. In
2.0, this is no longer the case. The reason for the change is that any
application can now be the background. If the user taps the icon for
the background application, we may want different behavior from
tapping the icon of a non-background application. In addition, if the
launched application has a splash screen and takes some time to come
up, it is possible for the user to get two taps on the Extras Drawer icon.
The result is that your application base view can come up over your
splash screen.

To take care of this circumstance, the OS send the
buttonToggleScript message to your base application view if it is
defined. The message gets sent each time the user clicks on your icon
in the Extras Drawer. The syntax is:

buttonToggleScript(top)

top is the topmost application view. In general you will never use this
parameter. If you return true from your buttonToggleScript , the default
system action will not happen. You will be responsible for taking
appropriate action based on the current blessed application and your
application’s current state.

The most common use of this script is to make sure your splash
screen stays on top until it is closed. Assume you have a slot in your
base view called mySplash that points to your splash screen when it is
open, and is set to NIL when your splash screen closes. Then your
buttonToggleScript would look like this:

myBase.buttonToggleScript := func(top)
begin

// if the splash is open, make sure it is frontmost
if mySplash then
begin

mySplash:MoveBehind(nil) ;
true ;

end;
end;

SPECIAL ICON TYPES

The 2.0 OS has added two specialized icon types. Script icons let you
specify an icon that executes a specified function when the user taps it.
Soup icons let you group more than one soup under one icon.

To use the special icons you need to know about a few functions:

kAddExtraIconFunc(extraType, paramFrame, pkgName, store)

This is a function defined in the 2.0 Platform file. It will create an icon
of type extraType on the specified store. pkgName is a unique
identifier for the icon which may just be your application package name.

It is important to remember that kAddExtraIconFunc does not
check if your icon already exists. If you add your icon four times, there
will be four copies of it in the Extras Drawer. You must use
GetExtraIcons (see below) to check if your icon exists before adding
it.

extraType a symbol for the type ('scriptEntry , 'soupEntry)
paramFrame parameters used in creating the icon (see below)
pkgName name of package to associate with the icon
store store to store the icon on

If the pkgName is the same as your main package, the special icon
will be removed when your main package is removed.

extrasDrawer:GetExtraIcons(extraType, pkgName, store)

This method of the Extras Drawer returns an array of all icons of type
extraType on the specified store that have the name pkgName.
pkgName is the name assigned in kAddExtraIconFunc in the
pkgName argument. If no icons are found, it returns an empty array. If
an invalid extraType is specified, it returns NIL.

extratype a symbol for the type ('soupEntry, 'scriptEntry)

pkgName name of package to associate with the icon
store store to search for the icons

IMPORTANT: do not rely on the format of the items returned in the
array. They could drastically change in the future.

extrasDrawer:RemoveExtraIcon(extraIcon)

This method is used to remove a special icon that has been
previously added. The extraIcon argument is an element from the
array returned by GetExtraIcons .
extraIcon element of array returned by GetExtraIcons

paramFrame Common Slots
The paramFrame argument to kAddExtraIconFunc is similar to

a part frame. You can specify the icon bitmap, the text shown and other
slots. Most of the slots are common to Script and Soup icons. See
Table 4 for a list The ones that are different will be covered below.

Slot Req/Opt Description

text Required string for the Extras Drawer
icon

icon Recommended icon to show in the Extras
Drawer

app Recommended symbol used by SetExtrasInfo
to
find your extras icon

labels Optional symbol for folder icon should
appear in

ownerApp Optional symbol of owner app for
soupervisor (see below)

Table 4. Common slots for the paramFrame

Script Icons

A script icon is just a visible wrapper for a function. When a user
taps on the script icon, the closure associated with it is called. The
main use for this icon type is to open some user interface for a
transport.

Script icons are created by passing the symbol 'scriptEntry to
kAddExtraIconFunc as the extraType . The tap action is a function
of no arguments. Note that the closure is currently stored in a soup.

You should make it as small as possible. To specify the tap action add a
tapAction slot to the paramFrame .

In general, the pkgName for the script icon will be the same as the
package that it accesses. For instance if you are adding a transport
with a package name of “myTransport:SIG”, you would use the same
package name for the script icon. This allows the OS to remove the
script icon whenever your main package is removed.

The code below assumes that you are writing an auto part that
defines a user interface slip in the layout “MySlip.t”, and that there is a
resource file called “pictures” in the same directory as the project that
contains a PICT resource named “myIcon”. The tap action will open up
the slip defined in the MySlip.t layout.

// a symbol for the configuration slip
DefConst('kMyConfigSlipSym,

Intern("configSlip:" & kAppSymbol));

// get the icon picture
r := OpenResFileX(HOME & "pictures");
DefConst('kMyScriptIcon, GetPictAsBits("myIcon", nil));
CloseResFileX(r);

// name for the script icon in the Extras Drawer
constant kScriptIconName := "ScriptIcon Slip" ;

// the tap action, small and simple
DefConst('kTapScript, func()

GetGlobalVar(kMyConfigSlipSym):ButtonToggle()
);

// Construct the paramFrame for the AddExtrasIcon call
DefConst('kScriptIconParamFrame,

{text: kScriptIconName, // name in the Extras Drawer
icon: kMyScriptIcon, // icon in the Extras Drawer
app: kAppSymbol, // so can call SetExtrasInfo
tapAction: kTapScript // call when icon is tapped
}

);

InstallScript := func(partFrame, removeFrame)
begin

local mySlip := GetLayout("MySlip.t") ;

// install the slip
DefGlobalVar(

EnsureInternal(kMyConfigSlipSym),
BuildContext(mySlip));

// install my script icon for accessing the Config slip
local ed := GetRoot().extrasDrawer ;

// get my store by using a reference in the package
local myStore := GetVBOStore(ObjectPkgRef(mySlip)) ;

// only add if it is not already there
if Length(

ed:GetExtraIcons('ScriptEntry, kPackageName, myStore))
= 0 then

call kAddExtraIconFunc with('ScriptEntry,
kScriptIconParamFrame,
kPackageName,
myStore) ;

end ;

RemoveScript := func(removeFrame)
begin

// remove the slip
UnDefGlobalVar(kMyConfigSlipSym);

// NOTE: we do not have to remove the script icon since it is associated with our package...
// it gets removed when we do.

end;

Soup Icons
It used to be that you needed a third party utility to see and edit

soups on Newton. On 2.0 all you do is go to the Storage folder in the
Extras Drawer. For some applications this is all that is needed since the
soup definition frame allows you to specify a user visible name for your
soup. However, if your application uses multiple soups, this may not be
enough. To help you with this, 2.0 provides a Soup Icon that represents
a collection of different soups.

In Figure 1 you can see the Storage drawer with lots of individual
soups for the UberSoup application. Figure 2 shows you what a Soup
Icon can do for you. Notice that there is now just one icon labeled
“UberSoup Items.”

Figure 1: Storage folder with 5 of UberSoups

Figure 2. One icon for lots of UberSoups

Creating a soup icon is somewhat different from creating a script
icon. One big difference is that you do not want your soup icon
removed when your application is removed. Consider the situation
where you use union soups and your application is on a storage card.
If the card is removed, your soups may still exist on the internal store. If
your soup icon is removed with your package, all your component
soups will show up.

To prevent this you need to install your soup icon in the internal
store and give it a different package name. However, you will eventually
want to delete your soup icon. A good place to do this is your
deletionScript which is called only when your application is actually
deleted (e.g., scrubbed) by the user.

February 1996 Newton Technology Journal

20

The only addition to the paramFrame is a soupNames slot that
contains an array of soup names to be encapsulated by the soup icon.
The extraType for kAddExtraIconFunc is 'SoupEntry . The code
below is from the package that was used to produce the screen shots
in Figure 1 and 2. Figure 1 is the package installed without the soup
icon, Figure 2 is with the soup icon installed.

// some useful constants
constant kSoupName := kPackageName ;

// the soup names
DefConst('kSoupNamesArray,

call func()
begin

local result := Array(5, nil) ;
for soupID := 1 to 5 do

result[soupID - 1] := soupID & ":" & kSoupName ;
result;

end
with ()

);

// name for soup icon
DefConst('kUserSoupname, kAppName && "Items");

// package name for the soup icon
DefConst('kUberSoupPackageName,

"Soups:" & kPackageName) ;

// Param Frame for the soup icon.
DefConst('kExtraIconParamFrame,

{soupNames: kSoupNamesArray, // soups to encapsulate
text: kUserSoupName, // user name for icon
ownerApp: kAppSymbol, // soupervisor hook
app: kAppSymbol, // access via SetExtrasInfo
}

);

// InstallScript - install the Soup icon
InstallScript := func(partFrame)
begin

// register the soups
foreach soupName in kSoupNamesArray do

RegUnionSoup(kAppSymbol,
{name: soupName,
ownerApp: kAppSymbol,
ownerAppName: kAppName,
indexes: '[]});

// Add Soup icon
local ed := GetRoot().extrasDrawer ;
// always put on internal store
local theStore := GetStores()[0];

// make sure soup icon not installed
if Length(
ed:GetExtraIcons('SoupEntry, kUberSoupPackageName,

theStore)) = 0 then
call kAddExtraIconFunc with

('SoupEntry, kExtraIconParamFrame,
kUberSoupPackageName, theStore);

end;

// DeletionScript to remove the soup icon
SetPartFrameSlot(

'DeletionScript,
func()
begin

// remove the constituent soups
foreach store in GetStores() do

foreach soupName in kSoupNamesArray do
begin

local soup := store:GetSoup(soupName) ;
if soup then

soup:RemoveFromStoreXmit(kAppSymbol);
end ;

// remove the soup script icon
local ed := GetRoot().extrasDrawer ;

// always on internal store
local theStore := GetStores()[0];

foreach icon in ed:GetExtraIcons('SoupEntry,
kUberSoupPackageName, theStore) do

ed:RemoveExtraIcon(icon);
end) ;

SOUPERVISOR

Tapping on a storage icon in the Extras Drawer, gives you a slip like
that in Figure 3. This slip is part of the Soupervisor API. With the slip as
shown, it is only possible to delete all items from all of the component
soups. However, Figure 4 shows a similar slip with a filing button. This
allows the entire contents of the union soup to be moved to a different
store and/or filed to a particular folder as in Figure 5.

Figure 3. The Soupervisor Slip

Figure 4. Soupervisor with Filing

Figure 5. Filing and Moving Soup Contents.

The default Soupervisor slip does not contain a filing button. When

Newton Technology Journal February 1996

21

February 1996 Newton Technology Journal

22

But before you start converting, review your old workaround code.
At best the code will do something that the ROM will now do for you.
At worst it will cause your application to throw. Some of the more
common things now done in ROM are: finding which word or character
was clicked on (PointToCharOffset , PointToWord) and capturing
signatures (stroke bundles).

The rest of this article goes over areas of the system where you are
likely to make mistakes. Each section deals with a specific section of the
ROM. This is so you can refer back to it at two in the morning before
you start tearing your hair out. Naturally you will read the entire article
first.

SOUPS

Many things have been added to soups: tags for fast queries, multi-
index queries, entry aliases and expanded soup notification are some of
the ones you are likely to use. Of course, you have to form some new
habits...

Empty Soups
The first error you will hit is trying to initialize your soup. See if you

can figure out what is wrong with this first attempt at initialization
code:

// register the soup
RegUnionSoup(kAppSymbol, kSoupDef);

local mySoup := GetUnionSoup(kSoupName) ;
for i := 1 to 10 do
begin

local newEntry := {first: GetRandomWord(3,10)};
mySoup:AddToDefaultStoreXMIT(newEntry, kAppSymbol) ;

end;

The chances are this code will throw. The error is using
GetUnionSoup since the union can be empty. This is because soups
are not created on a given store until something is added to them.

You can fix the code in two ways. The easy way is to use the result
from RegUnionSoup . However, since you do not want to register
your soup all over the place, you can also use
GetUnionSoupAlways .

Along the same lines, you may think of using the initHook in a
soup definition frame. It allows you to specify a closure that is called
when the soup is created on a store. Note that it is called when the
soup is created, not when you register the soup. So the initHook is
not useful for seeding a soup with initial values.

Storage Folder
If you have played with the extras drawer, you will note there is a

folder called Storage. This is a place where the user can go and work
with all data from a given application. Remember that your soup can be
deleted from this folder. Do not assume that your soup will always be

continued from page 1

Gotcha! Common Problems Converting From 1.x to 2.0

a user taps on a soup icon, the system checks if that icon has an
ownerApp slot. If so, it assumes that the value of the slot is an
application symbol and checks the base view of that application for a
Soupervisor slot. The Soupervisor slot determines if the filing button
shows up and what types of filing are available.

Note that applications with only one soup will get a soup icon in
the Storage folder, but this icon will not have an ownerApp slot. If you
want to support the Soupervisor you will have to create a soup icon
whose soupNames array contains your soup name.

The slots you can specify in the Soupervisor frame are given in Table
4.
Slot Req/Opt. Description

type Required one of 'moveOnly, 'fileOnly or 'all

FileSoup Optional hook for you to file and move all
your
soup entries

FileEntry Optional hook to file an individual entry

MoveEntry Optional hook to move an individual entry

The type slot determines what types of filing can be done to your
soups. moveOnly allows the user to move entries between stores.
fileOnly allows bulk filing of all soup entries. all allows the user to
both move and file entries.

The FileSoup function is called whenever the user chooses the File
button in the slip in Figure 5. Note that one press of the button could
result in both filing entries to a new folder and moving entries to a new
store. If you define a FileSoup function, you are responsible for doing
all the work of filing and moving. The syntax is:

FileSoup(newLabels, newStore)

The newLabels slot is either NIL, a symbol for the new folder or
some invalid value. You must check this (see below). The newStore
slot is either a new store or NIL. Remember that an individual entry
could already be in the selected folder or on the selected store.

FileSoup: func(newLabels, newStore)
begin

// should we file
local filingP := newLabels = NIL OR IsSymbol(newLabels);

if filingP OR newStore then
// iterate through the stores
foreach store in GetStores() do
begin NTJ

there.

Query Quandary
It used to be that startKey , endTest and validTest were the

way to get efficient queries. That has changed. beginKey , endKey
and indexValidTest have replaced them. Check your old queries,
they probably use the less efficient or obsolete ways.

A good way to check is to do a Search in Newton ToolKit for Query .
This can find some lurkers you may have forgotten. Remember that the
new way to do things is to use soup:Query .

On the subject of indexValidTest , carefully read the
documentation. Note that truncation of keys occurs. Make sure your
valid test takes this truncation into account.

Xmit Files
Upon reading the documentation, you will note that most of the

functions you knew have been replaced by an Xmit (transmit change)
version. Although the old functions (e.g., RemoveIndex ,
AddToDefaultStore , etc.) still exist, you should use the new Xmit
form. In most cases the change is only in the notification, but in some
cases there is extra behavior that is required and that only exists in the
Xmit form.

View System
There have been many changes in the view system. There are several

places where undefined behaviors have been replaced with new
undefined behaviors. In other cases, we have replaced them with
defined behaviors.

Screen Size/Rotation
One of the really cool features in 2.0 is the ability to rotate the

screen. From a programmer’s perspective, you need decide if you want
to support a rotated mode. This may require considerable redesign of
your layouts.

If you do support rotation, you must provide a ReorientToScreen
method in any view that is a child of the root. Most people remember
to add the method to their base application view. Most also forget to
add it to things like splash screens or slips that are created with
BuildContext .

The key thing to remember is that ReorientToScreen is both a
method that allows you to perform some action upon rotation, and a
magic cookie that enables your application to open in Landscape
mode. If your application is running fine in rotated mode and some
action causes a notify that tells you the current thing can not operate
in rotated mode, you can be pretty sure you have missed a
BuildContext view somewhere.

Refresh/Update/Redraw
The 1.x OS had a mostly undefined behavior that tended to create

very large update areas. The result was a lot of redrawing that was
completely unnecessary.

The 2.0 OS is much smarter about what it will update. This means that
clipping is much more important that it was in 1.x. If you have a child
that draws outside of it’s parent, and the parent does not clip, you will
see artifacts and glitches on the screen. Things may not update the way
you expect.

On a related note, animation may look very jerky on 2.0. This is
because the interpreter is faster and the task scheduler has changed.
Although your changes may be written to the screen buffer quickly, the
buffer may not get written out to the LCD as often as before. The only
way to force a screen update is to use LockScreen (DrawShape and
CopyBits will not do this). Even if your animation works now, wrap the
code:

// wrap animation code in LockScreen to ensure timely LCD refreshes
LockScreen(true) ;
// ... do animation stuff
LockScreen(nil);

viewJustify
In 1.x a couple of the mixed sibling/parent justification modes had

problems. In 2.0 these problems have gone away. If you start seeing
weird placement, check your viewJustify and viewBounds .

Also, when you design your views, remember there are new
justification modes (ratio and anchored).

PROTOS

There are many more protos in 2.0 and several old standbys have been
fixed. But some of the new protos can be tricky...

listPicker, peoplePicker
These are both very cool and very useful protos. The gotcha is that

you will briefly read the manual then try and implement a listPicker .
Then you will read the manual some more. These protos are not as easy
to use as you first think. Make sure you check out the sample code and
understand the concept of a nameRef before you start coding these
beasties. If an unexpected behavior occurs, check whether the
behavior you want is specified in the listPicker or in the pickerDef .

My Title Moved
protoTitle now comes with an underline and a different font. If

your title was close to full width before, it will likely wrap. Also note that
it is possible to specify an icon for a title. This icon should be a small
version of your application icon. Checkout the Connection application
for an example.

INPUT & RECOGNITION

From a developer’s perspective there are two major changes in this
area: rich strings and better access to stroke information.

Rich Strings
There are lots of potential gotchas here. Most of them revolve

around one central point. A rich string is not a string, even though it
may look like one. Here is the first typical offense:

local input := Clone(myRichInputLine.text) ;

The code assumes the text slot is a simple string. It you do get
text this way, you will end up with box characters in the string and you
will loose the ink information. The correct code is:

local input := myRichInputLine:GetRichString() ;

Here is a table of common mistakes:

Nope Yep

Newton Technology Journal February 1996

23

Length StrLen
BinaryMunger StrMunger
str[i] can be kInkChar ($\uF700)
SubStr(str,i,0) can be an “empty” but really an ink character

Tab Order
Now that there is an external hardware keyboard available, tabbing

between fields is possible. In general, the tab order is the same order
as views are shown in the Newton ToolKit browser window. It traverses
recursively down the hierarchy through any view that is based on a
protoInputLine.

You should test to make sure that the tab order is what you expect.
You can do this using the tab key on any of the soft keyboards. If the
tab order is not what you want, either re-arrange the order in NTK, or
see the Newton Programmer’s Guide for how to define a custom tab
order.

Click and Recognize
This is more of a reminder of a new feature than a gotcha. It used to

be impossible to do recognition in a child when both the child and its
parent defined a viewClickScript . Returning true from the
viewClickScript terminated system processing of the current stroke.
But returning NIL from the child moved processing to the parent. Now
you can return the symbol 'skip from the viewClickScript of the
child. This will prevent the parent from processing the click, but will
allow the system to continue processing the current stroke.

ROUTING

Routing has been completely changed. The new system is much more
flexible than the old system. Your formats can take advantage of similar
types of transport without a modification to some global routing frame.
As an example, in the old system you had to define a mail routing frame
explicitly. Now you define a text based format that can be taken
advantage of by any mail system.

2.0 Route Enabling
The biggest gotcha in converting from 1.x to 2.0 routing is making

sure that your 1.x global routing frame is gone. If any part of it is
installed or remains, it will disable all Newton 2.0 routing for your
application.

Classy Target
Make sure your target includes a class slot. This slot is used to find

which routing formats to use from the view definitions registry. That
determines what type of routing you can do (beaming, print, fax, etc.)
So if you find your action menu empty, check your target for a class
slot. You may need to define a GetTargetInfo method for greater
flexibility.

Beam/Mail “Formats”
In the old system, beaming and mailing were specified in a different

way from printing and faxing. Beaming would grab the value of your
target slot and jam it in the item frame. Mail required specifying a
symbol in your print format and a method in your application. In 2.0
that has changed, however: beam and mail are a bit different from page-

based formats.
Just like printing or faxing, you need to register a view definition

using RegisterViewDef , but beam and mail need to be based on
protoFrameFormat instead of protoPrintFormat .

Faxing Folly
In the 1.x world, adding the ability to fax was easy. Getting the fax to

go through was a little more difficult. The main problem is the fax
standard, which will drop the line if too much time passes with no
activity. In the 1.x world it was a case of hurry up or hang up.

In the 2.0 world, the OS provides a FormatInitScript for fax
formats. Do all of your slow operations (soup queries, building cached
shapes, etc.) in this script and the fax should proceed without a hang
up.

Item Hacking
In transports that send an item to another Newton (for example,

beaming), the item sent is more than just your data. The item is a
wrapper that provides information to the OS about what the data is
and where it belongs. In the past, most of the item on the sending end
got copied to the receiving end. This included arbitrary slots added or
changed by your application.

However, just because the item appears to survive, does not mean
you can rely on everything surviving. The only slots you can rely on
arriving at the other side are the body and title . Anything else is fair
game for change or deletion.

COMMUNICATIONS

What can we say – we made it better. Endpoints are now much easier to
use. But there are a few bits and pieces that can get you...

protoEndpoint
This beasty is gone. It is not defined in the 2.0 platform file. Of

course you can still find it, but you should not use it. OK, you really do
not want to use it because protoBasicEndpoint works much better
and is much cleaner. protoEndpoint is there only for 1.x applications.
If you are converting, you must use the new endpoints.

FlushOutput Gone
In the old world you followed every output with a FlushOutput . In

the new world FlushOutput is gone. That means if you call it you will
get an undefined method error. The 2.0 output calls tell you if the
output succeeded by either terminating (synchronous) or calling the
callback (asynchronous).

In addition, FlushOutput used to cause many problems when
called from input specs. Now that it is gone, you can do output from
input specs without having to worry about the “FlushOutput
Problem.”

Method Tuples
Check your argument counts. Most methods of the new endpoints

take two arguments. In 99% of the cases the second argument will be
NIL. The second argument is a frame that lets you further specify a call.
Things like: timeouts, synchronous/asynchronous and a completion
script. In some cases you can pass additional options.

February 1996 Newton Technology Journal

24

NTJ

