
Taking Advantage of
Newton Toolkit 1.5
by Bob Ebert, Apple Computer, Inc.

INTRODUCTION

This article is written for the developer who
is already familiar with Newton Toolkit (NTK)
and the Newton platform. It covers features
added to the 1.5 release of Newton Toolkit for
Macintosh.

The article is divided into three major
sections. The first section describes
productivity enhance-ments and general
changes. The second covers the
NewtonScript (NS) profiler and shows how to
take advantage of it in your applications. The
last covers the NS native compiler and
describes how to make the best use of
compiled code.

ENHANCEMENTS

This section describes some of the many
changes that are found in this release of NTK,
along with a brief description of how these
changes may affect your development
practices.

Project Improvements
The project window now allows you to

control the build order for your files. You can
sort by any column by clicking on the
heading. Click on the Sequence column to see
the order in which files will be processed.
Option-up and -down arrows will move a file
earlier or later in the build order.

You can include more than one text file in
your project. You don’t have to be frustrated

New Technology

Taking Advantage of Newton Toolkit 1.51

NewtonScript Techniques

Small Parts: A Faster Way to
Develop Large Applications 1

Communications Technology

Programming Wide-Area
Communications Using the Marco 3

Server Technology

The Wayfarer Enterprise Server NT 7

Server Technology

BLACKSMITH:
PDA-Mainframe Communications 9

NewtonScript Techniques

Function Objects in NewtonScript 11

Developer Group News

New Choices and Reduced Prices on
Newton Developer Support Programs14

continued on page 16 continued on page 15

Volume I, Number 4 August 1995

gy gy Newton Technolo
J O U R N A L

®

Small Parts: A
Faster Way to
Develop Large
Applications
by Maurice Sharp, Apple Computer, Inc.

INTRODUCTION

Developing small applications using Newton
Toolkit (NTK) is easy and fast. Even developing
large applications with lots of views and data
is not too difficult. However, there are ways to
make development of larger applications even
faster.

Most large applications can be easily split
into a number of smaller pieces. Sometimes
applications can be broken up by
functionality, sometimes by interface, and
sometimes the pieces can be split between
the interface and the data. If these parts are
included in one project, it can take some time
to compile and download, which reduces the
advantage gained from the rapid prototyping
provided by NTK. However, you usually don’t
have to recompile all the pieces of an
application – and suffer a long
compile/download cycle – when making a
reasonably localized change.

THE TRADITIONAL (SLOW) WAY

First, let’s look at a sample application done the
monolithic, single-package way. The example
will be a map viewer. To simplify matters, we’ll
assume that the application will use static data
structures instead of soups. A standard
development cycle for the application would be

New Technology NewtonScript TechniquesInside This Issue

August 1995 Newton Technology Journal

2

NTK 1.5 SIGNALS NEW OPENINGS

ON NEWTON PLATFORM

Last month brought scores of developers
to Apple Computer’s annual Worldwide
Developers Conference to hear the latest
news and check out the newest
technologies from Apple. Amidst the
sessions on Macintosh, the Newton
Systems Group packed its meeting rooms
with developers eager to learn about
Newton Platform directions and
technologies. In a standing-room only
setting, we delivered the latest news on
the Newton Toolkit 1.5. The content of this
session and the others on the Newton
platform set the tone for Apple’s future
directions with respect to platform tools
and Newton application development. In
case you missed that session, let me
highlight the key points and provide some
more insight on where we’re headed and
how you fit in.

The newest version of the Newton
Toolkit (NTK) is the product that you asked
for and is indicative of the changes going
on inside of the Newton Systems Group and
the platform at large. NTK 1.5 is more open
and flexible, as is the future of the platform.
We’ve provided the compiler you asked for
and delivered a profiler that allows you to
test your code to determine whether
compiling makes a difference in your code’s
speed and size. Unlike other compilers you
may be used to, you should not always
compile your code. In fact, you may even
make your code larger and slower by
compiling. Use of the profiler will let you
determine which routines in your Newton
application will benefit from being compiled.
The choice of exactly what code to compile
is up to you. Bob Ebert’s article on NTK 1.5
in this issue of NTJ will highlight some key
points in using the product and some areas
where you should be cautious. This is
critical reading for those looking forward to

working with this new version of NTK.
While we think you will laud the opening

of the tools as another step in the right
direction for you, it is clear that with the
increased flexibility and choice comes
increased risk and responsibility. When the
Newton platform was introduced, the tools
were closed and the developer was
protected from mistakes. While that
protection yielded easy application
development, it reduced power, control,
and creativity on the part of the developer.
We look forward to seeing the results that
the new choices and flexibility in NTK 1.5
allow from the applications you develop.

So the movement away from closed and
protected to open and flexible means more
choices, more power, and more
responsibility for Newton developers. It
also means greater possibilities. This is
clearly the theme moving through all of the
future directions for the platform and you
will continue to experience more of this.
Future tools will include Windows versions
of the Toolkit, and C++ tools which will
allow for even broader access. We’ll be
providing broader access to drivers for
communications and PCMCIA development.
Finally, we see the development of third-
party tools playing a growing role in
opening up the platform. All kinds of
changes are afoot in the Newton Systems
Group platform strategy that will benefit
our business partners and developers.

What exactly do all of these changes
signify to the Newton developer
community? Is it a loss of arrogance from
the Newton Systems Group? Is it simply a
change in philosophy? Probably a little bit
of both. But more importantly, it’s a big
change in the business model to that of a
customer focused, customer driven model.
We think you’ll benefit from these changes
and your applications will show it. The
new features in NTK 1.5 are just the first

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

David Glickman • Coordinating Editor, Business
Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Bruce Thompson

Contributors
Bob Ebert, Maurice Sharp, Julie McKeeham, Neil
Rhodes, Ed Colby, Russel D. Matichuk,

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1995 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume I, Number 4 August 1995

by Lee DePalma Dorsey, Managing Editor

Editor’s Note

Newton Technology Journal August 1995

3

Page references throughout the excerpt refer to sections of “Wireless for
the Newton” .

“Anytime, anywhere communications” is one of the mottoes of the
Newton. Indeed, communications is one of the hottest areas of
development within the computer industry, in general, and on the
Newton, in particular.

The Motorola Newton, the “Marco,” provides Newton users with an
important feature previously unavailable in a Newton: built-in two-way
wireless radio. This new feature gives the Newton user wireless access
to a nationwide electronic network that includes a gateway to the
Internet. This allows a wide range of new capabilities, including the
ability to send and receive wireless mail to and from the Internet.

Marco Specialized Transports for Supporting Wireless Mail
The Marco Newton comes with a dual protocol (MDC4800 at 4.8

Kbps, RDLAP at 19.2 Kbps) radio modem that connects to the ARDIS
network. A user can have an ARDIS Personal Messaging (ARDIS PM)
service agreement with ARDIS which enables sending messages to and
from other ARDIS PM users or to hosts on the ARDIS network. A user can
also establish a service agreement with Radiomail, which provides a mail
gateway to the Internet.

To enable this feat of wireless magic, Motorola has provided two
specialized transports which handle the interaction between the two
services:

ARDIS Personal Messaging This transport provides the ability to send
and receive messages from other ARDIS PM
users.

Radiomail This transport provides the ability to send
and receive messages from the Internet.

Programming the Marco
Any application that has provided mail support (see “Mailing” on page

44) will automatically support wireless email. Once the user has chosen
how to send mail (for example, ARDIS PM to another ARDIS PM user,
Radiomail to send via the Internet, NewtonMail using a wired modem, or
some custom transport), it will be automatically sent from any application
via the specified transport.

New Motorola APIs
Motorola has also offered the programmer other ways of making a

Newton application interact specifically with the Marco. There are three
APIs that a Newton application can use, depending on the type of
application it is:

Mail-based Applications that send mail directly
(without using the action menu) and
receive mail directly (without requiring the
user to use the In Box). These applications
should use the Universal Mail Services (UMS)
API.
Transport-specific Applications that require a specific
transport and communicate with that
transport’s API. Built-in transports on Marco
are Radiomail and ARDIS PM. Other transports could be

provided in the future.

Dedicated host These applications write directly to the
Wireless Manager endpoint. They send
packets to a specific host on the ARDIS
network.

Use of any of these APIS’s makes your application Marco-specific.
Of these three types of transports, we will be dealing with the first,

mail-based applications. We will cover it in detail since the vast majority
of Marco-specific applications will be of this type.

Note:
It is possible, using the Wireless Manager endpoint, to write your own
transport (a service which is io box-based, and which is available to all
applications). For example, you could provide a transport that accesses your
enterprise-wide email system. By simply connecting to a host on the ARDIS
network and writing transport software that would connect to the email
system. Incoming mail would appear in the In Box. Users could use the
action button to mail to a user on the enterprise email system. The mail
would go to the Out Box, and then out via the ARDIS network to the host on
that network.

For information on the transport-specific APIs, on the Wireless
Manager API, or on writing your own transport, you should contact
Motorola at MotoNewt.Dev@applelink.apple.com.

Writing to the Mail-based API
There are two parts to mail-based applications: sending mail without

going through the action button and mail slip, and receiving mail
without requiring the user to go through the In Box. Sending mail
without going through the action button has already been covered
(see “Posting to the Out Box Programmatically” on page 57). The
second part, receiving mail automatically, is done by registering your
application.

Programming Wide-Area Communications Using the Marco
Excerpted from “Wireless for the Newton” by Julie McKeehan and Neil Rhodes. AP Professional.

Communications Technology

August 1995 Newton Technology Journal

4

Registering an Application and Sending Mail
To register an application to receive mail, you use the

RegisterMailPackage method (a method of the
motorola global frame). This method takes one parameter, your
application symbol.

When a piece of mail arrives, the mail system goes through the
registered applications, sending each a message along with the piece
of incoming mail. Each application checks to see whether the incoming
mail belongs to it. If it does, it handles it and returns nil . Otherwise, it
returns the mail, which is passed to the next registered application.

If no registered application handles the mail, it is placed in the In
Box (as always). figure 2.2 shows a graphic representation of this
process.

Figure 2.2 How the Marco handles incoming mail.

Receiving Incoming Mail

The message sent when incoming mail arrives is
receivedMailScript . The parameter this method takes is a frame
containing at least the following slots:

dateStr The date of the mail as a string.

fromEmailAddress The email address of the sender.

f romName The user-readable name of the sender.

toEmailAddress The email address the item was sent to.

n a m e The user-readable name at the mail
address the item was sent to.

title The title of the mail message.

text The body of the mail message.

Unregistering an Application
To unregister your application, use the

UnregisterMailPackage method. This is also a slot in the
motorola global frame. You pass your application symbol as a
parameter with code similar to the following:

UnregisterMailPackage(kApplicationSymbol);

The time at which you register and unregister your application will
depend quite a bit on your particular application. Certainly, you’ll want
to register when you expect to receive mail. Different applications,
however, might want to do this at different times. Here are some
examples of when:
• When your application is opened.
• When your application is installed.
• When you send a message that requires a reply.
• At specific times. Perhaps your application receives mail at 10 am

each day. In that case, you could register an alarm for 9:55 am that
in turn registers your application for mail.

You’ll deregister when you no longer expect to receive mail, or when
your application can no longer receive it. The latter occurs when your
application is removed. Therefore, you should minimally unregister in
your RemoveScript . As to the former situation, any of the
following answers might be appropriate for different applications:

• When your application is closed.
• When the mail you’re expecting has finished arriving.
• At specific times. Perhaps your application listens for mail at 10 am,

but if no mail arrives by 10:15 am, then it won’t be arriving at all. In
that case, you could unregister at 10:15 am.

In general, you should try to minimize the amount of time your
application is registered. Otherwise, receiving mail can be quite time
consuming for the user. Imagine the time involved if every application
always looks at the incoming mail in turn and then passes it on to the
next application.

IMPLEMENTING A MARCO MAIL-BASED APPLICATION

Now that you have had an opportunity to get some sense of what is
involved in creating a mail-based application for the Marco, let us look
at a sample application that does this.

A Stock Quote Application
The application we’ll be creating obtains stock quotes from an Internet

stock information service. The user selects a stock symbol and taps
Lookup (see figure 2.3). This then sends a mail message to an Internet
address which in turn sends back information about that stock symbol.
This mail message is received by the application, which then displays it for
the user in a view (see figure 2.4).

Note:
The Internet service we are using for this application, QuoteCom,
provides stock quotes and other information. They have many levels of
service, one of which is free and allows up to 5 stock quotes per day. In
order to receive free quotes, you must have registered for service. For
further information, including information on registering for free
quotes, send email to info@quote.com.

Returns nil

The received Mail Scripts for each registered application

Each application looks at the incoming mail to
determine if it will handle it

In
Box

Incoming Radio Mail
From: Mary
 To: John

Newton Technology Journal August 1995

5

Figure 2.3 Looking up a stock quote.

Figure 2.4 Receiving a stock quote.

Sending a Stock Quote

The first thing that needs to be done is to send the request. To
receive a quote, we must send mail to services@quote.com
with the subject “Quote symbol ”. First we create the frame that
we will send out:

local mailFrame := {
appSymbol: kAppSymbol,
connect:true,
email: services@quote.com,
hidden: true,
text: "", // The text of the message is blank
title: "Quote" && stockSymbol,

};

Now, we call the Send function specifying our newly created
mailFrame and the transport we want to use:

call kSendFunc with ('mail, mailFrame);

Note
The Marco does allow sending frames in mail messages over its
transports (just as NewtonMail does). Of course, the receiver of the
mail must be a Newton in order to do anything with the frame.

Receiving a Stock Quote
Next, we must install our application so that it is notified when mail

arrives. Although we could do this in our InstallScript , that
would really be overkill. Rather, it is better to install only when we are
expecting to receive mail. This way unasked-for mail is never sent to us;
instead, mail comes in only in response to an outgoing item. Therefore,
we will install our application to receive mail only after sending a piece
of mail. Likewise, when our response comes we will want to deinstall.
This is a little trickier than is sounds, however. Here are the situations
we need to make sure we take into account:

• What if the user sends another stock lookup before the first has
returned?

• What if the user removes the application while there is an
outstanding request that hasn’t been received yet?

Thus, we’ll also need to keep a count of how many outstanding
requests we have. When we send a stock lookup request, we’ll
increment that count. If the count just went from 0 to 1 , we’ll install

ourselves for mail notification:

numberOutstandingRequests:=
numberOutstandingRequests + 1;

if numberOutstandingRequests = 1 then begin
motorola:RegisterMailPackage(kAppSymbol);

end;

At this point, the mail has been sent, and our application has been
registered to receive notification whenever mail arrives. If mail arrives,
the receivedMailScript message is sent to our application’s
base view. Thus, we will create this method as a slot in our application
base template, and within it check to see if the incoming mail belongs
to our application or not. If the message does not belong to us, we
also need to pass it along. Here is the receivedMailScript :

func(item)
begin

if :IsQuoteResponse(item) then begin
:RemoveRequestFromQueue();
local error := :GetError(item);
if error then

:Notify(kNotifyAlert,
EnsureInternal(kAppName),
EnsureInternal(error))

else begin
local quote := :GetQuote(item);

// EnsureInternal because floater may
// be open when app is removed

floater := BuildContext(EnsureInternal(
pt_quoteResponseFloater));

floater:Open();
floater:SetResponse(quote);

end;

// let's delete the entry since we saw it...
If IsSoupEntry(item) then

EntryRemoveFromSoup(item);

return nil;
end else // it’s not our mail

return item;
end

In this code, we check to see whether the mail is a response to our
quote request (with IsQuoteResponse). If it doesn’t belong to
us, we return the item, signifying that it’s not ours. Otherwise, we need
to take care of all of the following in this code:

• Reduce the count of outstanding requests (using
RemoveRequestFromQueue),

• Deinstall our application from mail notification, if necessary, if the
count is 0 (handled in RemoveRequestFromQueue).

• Read the information from the message. If the information is a valid
quote, we need to display it in a floater (in GetQuote).

• If the information is not a valid quote, we put up a notify slip
showing the error (handled in GetError).

Checking for a Valid Quote
Note that a response to a quote request will have a return address

of “services@quote.com” and a subject of “QuoteCom Email
Response”. We look for both of those in IsQuoteResponse :

func(item)
begin

constant kQuoteFromEMailAddress :=
"services@quote.com";

constant kQuoteTitle :=
"QuoteCom Email Response";

August 1995 Newton Technology Journal

6

return StrEqual(item.fromEmailAddress,
kQuoteFromEMailAddress) and
StrPos(item.title, kQuoteTitle, 0) <> nil;

end

The text of a valid quote response will look like:

Tue Feb 7 14:24 EST Quotes may be delayed by exchanges

Symbol High L o w Last Change

Volume

--

BRK 24600.0000 24500.0000 24500.0000 +50.0000 60

N a m e Earn/Shr P/E Div/Shr 52-wk Price Range

--

Berkshire Hathaway N/A 30.0 0.10 15150.00 - 25200.00

Handling an Error
We’ll assume that if the text starts with “Error:” or if the “---” can’t be

found that the response is some sort of an error (perhaps we aren’t
registered with Quote.Com or we’ve exceeded our number of quotes for
the day). Here is the GetError method which returns an error message,
or nil for no error:

GetError := func(item)
begin

constant kCharactersBeforeQuote := "----\n";

if BeginsWith(item.text, "Error:") then
return item.text

else if not StrPos(item.text,
kCharactersBeforeQuote, 0) then
return "Can't find the quote"

else
return nil;

end

Getting the Text for a Quote Frame

We need to extract the information from the quote text and put it
into a frame containing that information. An example of a desired quote
frame is:

{
name: "Berkshire Hathaway",
symbol: "BRK",
high: "24600.0000",
low: "24500.0000",
last: "24500.0000",
change: "+50.0000",
volume: "60"

}

Here is the GetQuote method, which searches through the text
using brute force alone. The method then, in turn, creates a quote
frame:

func(item)
begin

constant kCharactersBeforeQuote := "--\n";
local startOfQuote := StrPos(

item.text, kCharactersBeforeQuote, 0);
if not startOfQuote then

return nil;

local position := startOfQuote +
StrLen(kCharactersBeforeQuote);

local stuff := {name: "", symbol: nil,
high: nil, low: nil, last: nil,
change: nil, volume: nil};

local GetString := func(s, sLength)
begin

local endPos := position;
// skip white spaces at the beginning
while endPos < sLength and

IsWhiteSpace(s[endPos]) do begin
endPos := endPos + 1;

end;
position := min(endPos, sLength - 1);
// now skip over
while endPos < sLength and

not IsWhiteSpace(s[endPos]) do begin
endPos := endPos + 1;

end;
endPos := min(endPos, sLength - 1);
local s := SubStr(s, position,

endPos - position);
position := endPos;
return s;

end;

local length := StrLen(item.text);
stuff.symbol := call GetString with (

item.text, length);
stuff.high := call GetString with (

item.text, length);
stuff.low := call GetString with (

item.text, length);
stuff.last := call GetString with (

item.text, length);
stuff.change := call GetString with (

item.text, length);
stuff.volume := call GetString with (

item.text, length);

// name of stock follows after more "---"
position := StrPos(item.text,

kCharactersBeforeQuote, position);
if position then begin

stuff.name := Substr(item.text,
position + StrLen(kCharactersBeforeQuote),
kNameLength);

TrimString(stuff.name);
end;

return stuff;
end

Once we’ve got a quote frame, it’s a simple matter to set the various
static texts in a floater. Here is the SetResponse method of the
floater which does that:

func(quote)
begin

SetValue(headline, 'text, headline.text &&
quote.name);

SetValue(symbol, 'text, quote.symbol);
SetValue(high, 'text, quote.high);
SetValue(low, 'text, quote.low);
SetValue(last, 'text, quote.last);
SetValue(change, 'text, quote.change);
SetValue(volume, 'text, quote.volume);

end

Handling the Unregistration
The application must be unregistered if there are no more

outstanding requests. The RemoveRequestFromQueue
method does that:

func()
begin NTJ

Wayfarer provides developers a client/server framework on which to
develop Newton applications and integrate them into enterprise
networks and resources such as databases, terminal servers, e-mail
systems and legacy systems. Wayfarer's framework, the Wayfarer
Enterprise Server NT, hides the complexity of communications software,
so developers can implement custom applications quickly and run them
reliably over mobile networks. Wayfarer-based applications support
Newton connectivity using TCP/IP protocols over most leading wire-line
and wireless networks.

Programmers develop Wayfarer applications using standard
languages such as Visual Basic™, PowerBuilder™, Visual C++™, and
NewtonScript™. Developers use Wayfarer’s APIs to create user interfaces
on Windows™ PCs or Newton® MessagePad™ PDAs, and to work with
application logic on the server. The server provides flexible access to
multiple enterprise systems, such as databases, that can be
incorporated into mobile applications. Real-time data access,
transactions, messaging, work flow and other functions can all be
integrated into individual custom applications for mobile work forces.

DESIGNED FOR MOBILE NET WORKS

Wayfarer optimizes performance over low-bandwidth, high-latency
mobile networks. The Server offloads most storage, computing and
communications tasks from mobile computers and mobile networks
onto a powerful server computer and high-bandwidth, fixed enterprise
networks. Wayfarer supports most wire-line and wireless media in local-
and wide-area networks, used in any combination.

Access to Enterprise Systems
The Wayfarer Server provides tools to access and integrate data,

programs and services from any standard or legacy system. As a
distributed computing model, developers can access multiple systems
simultaneously and can integrate them into custom mobile

applications. Developers can also use standard tools for standard
systems, such as ODBC for SQL databases, or they can create their own
tools.

Communications and Work Flow
Wayfarer’s system includes extensive messaging, communications

and work flow support. The Wayfarer Server supports real-time
messaging, alphanumeric paging and e-mail. Messages can be
addressed or forwarded to individuals or groups of users. Using
Wayfarer’s APIs, programmers can easily integrate messaging into their
custom applications. These communications functions can also be
integrated into enterprise systems such as corporate e-mail. Wayfarer
also supports e-mail over the Internet.

Integration into the Enterprise
Wayfarer’s system is built on the leading standards for enterprise

computing, application development and internetworking. The Wayfarer
Server, and Windows and Newton mobile clients all use TCP/IP
networking protocols. Windows clients and the Server also support
Named Pipes. The Wayfarer System Manager provides a graphical
interface for system configuration, management and security. All system
access and usage is configured and controlled centrally. The Wayfarer
System Manager also communicates with mobile client users through
the messaging functions built into Wayfarer’s system.

Wayfarer’s architecture optimizes performance on mobile devices and
mobile networks by offloading the burden of computation, storage and
communications with enterprise servers onto the Wayfarer Enterprise
Server. These optimizations for mobile environments give rise to the
server and services model. A client/server architecture enables many
Newton MessagePads and Windows computers to be connected to a
single Wayfarer Enterprise Server.

Wayfarer uses a client/server architecture to connect Newton

The Wayfarer Enterprise Server NT
by Ed Colby, Wayfarer Communications, Inc.

Server Technology

Newton Technology Journal August 1995

7

wire-line or wireless
connectivity

Enterprise systems and servers

Wayfarer Enterprise
Server NT (v3.5)

Wayfarer System
Manager (WFW 3.11)

Framework to develop and deploy
custom applications on
Windows mobile computers and

Newton MessagePads

August 1995 Newton Technology Journal

8

MessagePads and Windows mobile client computers to the Wayfarer
Enterprise Server. Wayfarer relies on TCP/IP protocols in Newton,
included in Wayfarer’s product, to provide network connectivity
between mobile client devices and the Wayfarer Enterprise Server.

The server functions as a gateway between mobile client devices
and enterprise servers, such as SQL databases and e-mail systems. It
manages connections and communications with Newton MessagePads
and Windows mobile clients, eliminating the need for programmers to
manage these tasks.

The Server provides services to Wayfarer mobile clients. Wayfarer’s
services include mail, paging, messaging, and authentication. Using
enterprise information and communications resources, services provide
specific functionality to Wayfarer client users. Programmers write
programs on mobile client devices that use and integrate any or all of
Wayfarer’s services to meet specific applications requirements.

Programmers develop applications by calling Wayfarer’s APIs available
through NewtonScript and NTK. The APIs provide general functionality
for mobile applications, as well as calls for all services available from the
Wayfarer Server. Developers program Newton MessagePad applications
exclusively in NewtonScript.

Wayfarer applications do not have to change to work with different
connectivity media. By using TCP/IP as the network protocol,
developers can deploy mobile applications with any standard form of
wire-line or wireless connectivity for in-house, metropolitan or wide-
area coverage. Applications can be developed with wire-line
connectivity for convenience and cost, and can still be deployed with
wireless connectivity media. Supported connectivity media includes
land-line and cellular dial-up, CDPD, Metricom, Photonics, Dayna,
Digital Ocean and RAM Mobile Data.

Wayfarer’s system includes a Windows for Workgroups 3.11 program
called the Wayfarer System Manager; this provides all administrative
functionality for clients and servers on the Wayfarer system. Wayfarer
System Manager requires no programming, but does require
configuration in setting up a Wayfarer system.

Programmers can develop custom services using the Wayfarer
C++/OLE Automation Custom Service Framework. This framework allows
a developer to author custom services using Microsoft’s Visual C++, or
Visual Basic, running under Windows NT 3.5. Using this framework,
developers can easily create services that access enterprise-specific
resources such as databases. Custom services are full-fledged services
that can be accessed by client applications in the same manner as the
built-in Wayfarer services.

custom apps
Visual Basic

PowerBuilder

built-in services
ωauthentication
ωemail
ωpaging
ωreal-time messaging

Wayfarer Server
engine

custom
services
VB or
PowerBuilder

custom
services
C++

Network connection

Wayfarer
OLE 2.0
service
framework

Wayfarer
C++ service
framework

Wayfarer OLE
2.0 application
framework

Wayfarer C++
DLL application
framework

custom apps
C++

network connection
(TCP/IP or Named Pipe)

custom apps
NewtonScript/
NTK

Wayfarer
Newton
application
framework

TCP/IP network
connection

Newton
MessagePad

Windows
mobile computer

Wayfarer Enterprise Server NT
Windows NT 3.5

Enterprise systems
ωdatabases
ωemail
ωterminal and applications servers

Wayfarer
System
Manager
Windows 3.1

ωauthentication
ωconfiguration
ωadministration
ωmessaging

custom
development

Windows
Mobile computer

Wayfarer Enterprise Server NT
Windows NT 3.5

Custom
Development

Custom
Services
VB or
Power Builder

built-in services
• authentication
• email
• paging
• real-time messaging

Custom
Services
C++

Wayfarer
OLE 2.0
service
framework

Wayfarer Server
engine

Wayfarer
C++ service
framework

TCP/P network
connection

Custom Apps
Visual Basic
PowerBuilder

Custom Apps
C++

Wayfarer C++
CLL application
framework

Wayfarer OLE
2.0 application
framework

Wayfarer
Newton
application
framework

Custom Apps
NewtonScript/
NTK

Newton
MessagePad

network connection
(TCP/P or Named Pipe) Network connection

Wayfarer
System
Manager
Windows 3.1
• authentication
• configuration
• administration
• messaging

Enterprise Systems
• databases
• email
• terminal and applications servers

NTJ

Newton Technology Journal August 1995

9

Many large companies, universities, and government agencies have
considerable resources invested in large, mainframe-based databases.
Rather than replacing their existing systems to take advantage of
advances in client/server technology, these organizations can now
use a technology called middleware to enable PDAs, desktop
computers, or World Wide Web browsers to create data entry and
retrieval systems for applications that previously could be accessed
only by terminal emulators. CEL Corporation’s BLACKSMITH is a
middleware development tool that allows Newton developers to add
client/server communications capabilities to the Newton MessagePad.

DESKTOP-DRIVEN CLIENT/SERVERS

Today most users communicate with mainframes by means of terminal
emulation on PCs. But methods of interacting with mainframes have
changed dramatically over the last ten years. With the cost of PC
processing power at the lowest levels ever, it no longer makes sense to
use PCs simply for terminal emulation. Instead, firms are looking to
combine the flexibility, ease of use, and power of their personal
computers – including PDAs – with the resources of their mainframes.

The interaction between the host computer and the desktop
computer has evolved over the years, with the desktop machine taking
on a greater share of the processing power. Originally, PCs were used
only for terminal emulation, where the host-based system controlled all
processing and used the PC only for displaying data or receiving user
input. In front-ending, or simple automations, character streams from
the host were mapped to objects in a graphical user interface or to
keystroke commands for macros, making it easier for the user to interact
with the host. In host-driven client/server applications, the desktop
machine became a server capable of receiving messages from the host;
some of the host’s functionality was extended to the desktop machine,
and desktop-based user interface capabilities such as menus or dialog
boxes were possible. With desktop-driven client/server applications,
logic is split between the client and the server; however, the desktop
machine retains principle control of the application and determines
what should be displayed and how user input should be handled.

In a desktop-driven client/server scenario, the desktop application
submits queries or updates to a server on a host or another platform.
There is a significant increase in system functionality because of the
improved coordination between stand-alone desktop applications and
the server. This approach allows servers to be optimized for data-
management functions, such as high-volume transaction processing or
resource-intensive database query processing, while allowing desktop
computing power to be utilized more fully. An example of a desktop-
driven client/server is a fourth-generation language written using
extensions that send information to and retrieve information from

relational or nonrelational host systems.
In general, desktop-driven client/server solutions – also called

distributed applications – refer to transaction programs that rely on
specific client and server components designed to optimize
performance and productivity. The server elements include the program
engine and the management services governing security and
administration. The client software contains the end-user interface and
some level of intelligence that might include some local data storage
error checking and other functions. The model allows the two
components to be separated so that each may be independently
tailored to specific users and functions.

This contrasts with traditional methodology that has a central
department – such as management information systems (MIS) –
generating more generic processes that accommodate many users, but
are inherently less productive and are more difficult to adapt. Shifting
the burden of data access – from a centralized system where MIS
responds to departmental needs to a system where departments are
self-sufficient – benefits the entire organization by allowing each group
to satisfy its needs. Also, development time and costs decrease when
similar development functions are conducted on the PC instead of the
mainframe.

Another factor in this model is the distribution of processing power
across the enterprise. MIS organizations face the rigorous assignment
of allocating and managing mainframe resources. By integrating the
intelligence of personal computers, many traditional mainframe tasks –
such as error and syntax checking – can be handled by desktop
systems. As the intelligence of front-end systems evolves, more of the
information processing occurs at the desktop; response time increases
and use of unnecessary network bandwidth diminishes. In addition, by
sharing the processing burden across the enterprise, mainframes are
better utilized for CPU-intensive applications.

In this view of corporate data, all users share the cost of the system.
Departments can either allocate funds to develop custom tools and
applications on the mainframe, or they can move development to the
PC. Development tools for the PC such as Omnis 7, 4th Dimension,
PowerBuilder, Visual Basic, Microsoft Access, Uniface, Visual AppBuilder,
C++ – plus the introduction of PDAs and Web technology – have
significantly reduced the investment in time and capital required for the
development process. Increasingly, departments are taking
responsibility for developing their own tools on the PC instead of
investing heavily in similar tools on the mainframe.

BLACKSMITH: A DESKTOP-DRIVEN MIDDLEWARE SOLUTION

The growth of client/server applications is due in part to the
proliferation of a new generation of software development tools called

BLACKSMITH: PDA-Mainframe Communications
by Russel D. Matichuk, CEL Corporation

Server Technology

August 1995 Newton Technology Journal

10

middleware. Because no single protocol adequately solves all data
transmission issues, large companies tend to manage several protocols
throughout their corporate network. These organizations are also using
third- and fourth-generation languages (3GLs and 4GLs) extensively on
microcomputers and are evaluating the use of PDAs and Web technology.
This presents a number of challenges, especially when end users need to
access information from various host systems employing differing
network protocols. BLACKSMITH is designed to ease the process of
writing distributed applications by abstracting the details of both the
operating environments and the network protocols.

The key to improving user productivity is to break down the barriers
between these distinct environments – mainframes and PCs – so end
users can spend less time learning the intricacies of complicated
mainframe applications and concentrate instead on accessing
information. If users require data in different locations or on different
systems, they shouldn’t have to learn new methods for retrieving data,
but should be able to use familiar front ends such as PCs, PDAs, or Web
browsers. Middleware provides a migration path. Network developers
and support staff are usually skilled in developing, maintaining, and
operating host-based systems, leaving them reluctant to embark on a
distributed-solution development. Thus, a middleware product is only
viable for them if presented in an architectural framework that provides
a slow migration path, enabling them to preserve their legacy
investments, while gradually increasing the use of desktop and local
server computing resources. Several factors – operational savings
resulting from integrating desktop systems, the ability to create
scalable systems, and a reduction in development and deployment time
– should make distributed systems (desktop-driven client/server
systems) increasingly attractive to network developers.

There are several ways of providing a communications link between
a client and a server. The method that BLACKSMITH uses is called
Terminal Data Stream (TDS) communications. The TDS is the physical
connection that allows an operator to communicate with host
computers; it includes data streams of all types (3270, 5250, VT100, etc.).
Initially, only dumb terminals were connected through the TDS. With
the advent of terminal emulators, microcomputers have since
dominated the use of the TDS communications medium.

The key technology that spawned the terminal emulation industry –

and which is the critical ingredient in the recent explosion of
development using client/server technology – is the development of
the terminal emulator API (Application Programmers Interface). In an
effort to expand their market, vendors of terminal emulation products
wrote APIs that allowed third parties to create and sell software that
depended on these products. However, these APIs are fraught with
deficiencies. They were written to allow integration only by third-
generation languages like C, are very difficult to use, and in most cases
provide only very basic services. None of theAPIs provides a reliable
host-state management process. In addition, each vendor’s API is quite
different from those of other vendors.

BLACKSMITH is designed to eliminate the complexities of
connecting microcomputer applications to host systems. With terminal
emulator APIs or communications standards such as VT100, developers
must have advanced communications programming skills; with
BLACKSMITH, developers aren’t required to know anything about the
low-level communications issues. They can choose from a wide
selection of third- and fourth-generation development tools to build
applications that improve the data entry and retrieval processes used
by their organization. In addition, developers can implement solutions
that include PDAs or Web browsers communicating with a BLACKSMITH
server. One set of BLACKSMITH commands can be used in any of the
environments that are supported. This same set of commands will
allow a developer to write applications that communicate with any
host system, using any of the communications channels that are
supported.

USING BLACKSMITH WITH NEWTONS AND THE WORLD WIDE WEB

BLACKSMITH 2.0 adds Newton and Web client access to mainframes and
minicomputers. Organizations can now have their staff interacting with
their host systems using graphical Macintosh, Windows, Newton, or
Web applications, with no modification to the mainframe or
minicomputer applications.

Using NewtonScript or HTML (Hypertext Markup Language) Web
server code, BLACKSMITH developers can build functions that send a
Remote Procedure Call (RPC) to a waiting BLACKSMITH server. The RPC is
written using one of the Macintosh or Windows 4GLs or 3GLs that
BLACKSMITH supports: PowerBuilder™, Visual Basic™, Omnis 7, 4th NTJ

To request information on or an application for Apple’s Newton developer programs,
contact Apple’s Developer Support Center at 408-974-4897

or Applelink: DEVSUPPORT or Internet: devsupport@applelink.apple.com.

Newton Technology Journal August 1995

11

In NewtonScript, function objects (sometimes called closures) are first-
class objects which can be manipulated and stored just like other
values. For example, you can store a function object in:

• a local variable
• an array
• a slot in a frame
• a soup entry

You can use function objects in a variety of ways as well: you can
pass a function object as a parameter, Clone it, or DeepClone it. This
consistency between function objects and other values makes
NewtonScript very flexible.

These aspects of function objects are usually well understood by
NewtonScript programmers. There is another aspect to a NewtonScript
function object, however, that is less clear:

when a function object is created, by executing a func statement,
it saves the environment that exists at that time.

By doing so, the function object can have access to local variables,
parameters, and inherited variable lookup that existed at its creation
time.

The term “function object,” rather than just “function,” is used to
emphasize the fact that one func statement can give rise to many
different function objects. These functions will differ based on the
environment that exists at the time the func statement is executed.

THE FUNCTION ENVIRONMENT

To understand how you can use this aspect of a function in your
applications, let us first review the environment of most NewtonScript
functions. Usually, you create function objects at compile time. They are
slots in a template, edited using a slot browser, or they are functions
created in a Project Data file. In either case, the environment that exists
is the environment of NTK. Thus, there are no local variables,
parameters, or inherited variables available when that function object is
created.

Now, look at a different way to create a function object. In this case
the environment in which it is created will be significant. This will be a
run-time function object. Please note that by definition, these will be
nested functions (ones created inside other functions).

Here is an example:

outerFunction := func(aParameter)
begin

local aVariable := 3;

local nestedFunction := func(nestedParameter)

begin
local nestedlocal := 5;

Print(aParameter);
Print(aVariable);
Print(nestedParameter);
Print(nestedFunction);
Print(nestedlocal);

end;
…

The function object, nestedFunction , is created as
outerFunction is executing. At the run-time point when
nestedFunction is actually created, the environment includes
a local variable, aVariable , and a parameter, aParameter .
Since nestedFunction has access to that environment, it can
access both its own parameters and locals, as well as those of the
function in which it is nested.

HOW FUNCTION OBJECTS ARE CALLED

Before we actually talk about how you can use function objects in your
programming, we need to address the manner in which you call a
function object. There are four ways you can do this:

With a compile-time argument list (Call):

Call functionObject with (argumentList)

With a run-time argument list (Apply):

Apply(functionObject , argumentArray)

By sending a message with a compile-time argument list (: and :?):

frameExpression:message(argumentList)

By sending a message with a run-time argument list (Perform):

Perform(frameExpression, messageSymbol, argumentArray)

Here is some sample code that uses these four ways:

local Pow := func(num, iterations)
begin

for i := 1 to iterations do
total := total * num;

return total;
end;

Call Pow with (2, 3) ☞ 8

local argArray:= [2, 3];
Apply(Pow, argArray) ☞ 8

local account := {
balance: 0,
Deposit: func(amount)

return balance := balance + amount,

Function Objects in NewtonScript
by Julie McKeehan and Neil Rhodes, Calliope Enterprises, Inc.

NewtonScript Techniques

© 1995, Apple Computer, Inc. and Calliope Enterprises, Inc.

August 1995 Newton Technology Journal

12

};

account:Deposit(50) ☞ 50
Perform(account, 'Deposit, [75]) ☞ 125
Print(account) ☞ {balance: 125,

Deposit: <CodeBlock, 1 args #4419361>}

HOW FUNCTION OBJECTS CAN BE USED

The sections that follow describe a several ways that you might use
function objects. Two examples are:
• to implement abstract data types
• to support Date Find operations.

Abstract Data Types
One use of function objects is to implement abstract data types.

These are types that can only be modified procedurally; their actual data
is hidden. Though it might appear so, frames with methods don’t
provide the same functionality. In a frame, the data values in the slots
are visible and can be modified even when not using the appropriate
methods.

Consider the following account generator:

MakeAccount := func()
begin

local balance := 0;
local Deposit := func(amount) begin

return balance := balance + amount;
end;
return Deposit;

end;

Calling MakeAccount returns a function object:

myAccount := call MakeAccount with ()

This function object references the balance local variable from
MakeAccount . Even though MakeAccount is no longer
executing, since the nested function, Deposit , references
balance , the balance variable continues to exist. Thus, calling
myAccount modifies the hidden variable balance :

call myAccount with (50) ☞ 50
call myAccount with (75) ☞ 100

Notice also that one function object can return multiple function
objects, each of which references shared data. For instance, suppose
you want both Deposit and Clear capabilities in your account:

MakeAccount := func()
begin

local balance := 0;
local Deposit := func(amount) begin

return balance := balance + amount;
end;
local Clear := func() begin

balance := 0;
end;
return [Deposit, Clear];

end;

Because MakeAccount needs to return two values (two function
objects), it returns them in an array:

myAccount := call MakeAccount with ();
myOtherAccount := call MakeAccount with ();

call myAccount[0] with (50) ☞ 50

call myOtherAccount[0] with (40) ☞ 40
call myAccount[0] with (75) ☞ 125
call myAccount[1] with () ☞ 0
call myOtherAccount[1] with () ☞ 0

Using an array for the two function objects is somewhat
inconvenient, however, since the numbers 0 and 1 don’t describe the
Deposit and Clear functions in a very useful manner. To fix this
problem, we will rewrite MakeAccount to return the two function
objects in a frame rather than in an array. This way, the function objects
can be referenced by name, rather than by array location.

MakeAccount := func()
begin

local balance := 0;
local d := func(amount) begin

return balance := balance + amount;
end;
local c := func() begin

balance := 0;
end;
return {

Deposit: d,
Clear: c,

};
end;

myAccount := call MakeAccount with ();

call myAccount.Deposit with (50) ☞ 50
call myAccount.Deposit with (75) ☞ 125
call myAccount.Clear with () ☞ 0

Remember, however, that we are using the above frame only as a way
to store two named values. We have not started using any object
programming, however, as no messages are being sent.

Admittedly, this use of function objects to create Abstract Data Types
is not common. There are cases, however, where function objects are
necessary in your Newton programming. One of the most common
examples occurs when an application is supporting Date Find.

Using Function Objects to Support Date Find
Here is an excerpt of code from DataFind:

func(comparison, time, …)
begin

cursor := Query(…, {
type: 'index,
validTest: func(e)
begin

if comparison = 'dateBefore then
return e.date < time

else
return e.date > time;

end
});
return cursor to caller

end;

Even though the validTest function is embedded in the cursor,
it is called from the Find results slip to display the found entries. Notice
how DateFind ’s comparison and time parameters are used by the
nested function validTest . Keep in mind that the validTest is
called after the DateFind function has finished executing.

Here is another example of how you might use function objects.
Imagine that you want to count the number of entries that are in a
particular query. In such a case, you might use a function object to
count the number of entries in a cursor using MapCursor:

Newton Technology Journal August 1995

13

CountEntries := func(cursor)
begin

local total := 0;
MapCursor(cursor, func(e)

begin
total := total + 1;
return nil;

end);
return total;

end

The function object passed to MapCursor increments a variable
in CountEntries . Notice that the function object returns nil , and
thus MapCursor will end up returning an empty array.

STACK FRAMES/ACTIVATION RECORDS

In most programming languages, when a function is entered, an
activation record (also called a stack frame) is pushed on the stack. This
activation record contains the parameters to the function and local
variables. When the function returns, the activation record is popped
from the stack.

For NewtonScript, some allowance needs to be made for variables
which are closed over; that is, variables which are accessed by nested
functions. Since nested functions may need to access variables from
outer functions even after the outer function has exited, a stack-based
system which always pops outer references from the stack would fail.

One possible implementation could be to allocate activation records
in dynamic memory (the heap).

Like all other allocated memory, when no more references are made
to the memory, it can be garbage collected. Thus, the activation record
is not freed when a function object exits if any nested functions still
exist. Only when all nested functions are freed is the activation record
available for garbage collection.

Another implementation might store part of an activation record on
the stack, and part on the heap (only those variables referenced by
nested functions need be on the heap).

MESSAGE CONTEXT AS PART OF FUNCTION OBJECT

A function object has access to more than local variables and
parameters from enclosing functions. It also has inheritance lookup
based on the value of self at the time the function object was created.
This means that a function object has access to all variables, including
inherited slots, that are available to the code that created the closure.

This inheritance lookup is implemented by storing a message
context as part of a function object. This message context contains the
value of self at the time a closure is created. Calling a closure restores
self to the value stored in its message context.

The major difference between calling a closure and sending a
message is that sending a message sets the value of self to the frame
where the message is sent. Thus, sending a message causes the
message context of the closure to be ignored.

Using Inheritance in a Function Object
There are times, however, when you need to use inheritance in a

function that has not been executed in response to a message send. A
common case of this in Newton programming is found in the
implementation of filing. Filing is usually implemented by creating a

cursor that contains a validTest . The cursor is usually created
when the application opens:

app.viewSetupFormScript := func()
begin

…
self.theCursor := Query(…, {type: 'index,

validTest: func(e)
begin

return labelsFilter = '_all or
labelsFilter = e.labels;

end,
});
…

end

The cursor saves the validTest cursor and calls it every time the
cursor is moved. When the validTest is called, the labelsFilter
variable is looked up first as a local, and then using inheritance based
on the value of self at the time the validTest function object was
created. Since self was the application view when the validTest
was created, self is set to the application base view when the
validTest is called.

Sending a Message Changes the Message Context
Thus, the major difference between sending a message and calling a

function has to do with the value of self. When a message is sent, self is
set to the frame that was sent the message. When a function is called
directly, self is based on the message context of the function object.

FUNCTION OBJECTS CREATED AT COMPILE TIME

Function objects created at compile time have no lexical environment or
message context. When a top-level function object is created at compile
time – either as a slot in a template editor, or in the top-level of the
Project Data file – the lexical environment and message context are
empty (Technically, the lexical environment and message context exist,
but are nil'ed out after the function is created). This is important for
you to remember when you are creating standalone closures (ones
which have no references to your package). Examples of such closures
are those copied to a soup, or the one used as a postParse routine for
Intelligent Assistance. If you use a closure that has a non-empty
message context here, the whole receiver will be copied into the soup
(or into memory in the case of Intelligent Assistance). This is not a good
idea, in most cases. Thus, for function objects which need to execute
independently of your package, make sure they are created at compile-
time, rather than runtime.

SUMMARY

In NewtonScript, function objects are first-class objects which have
access to the environment that exists at the time they are created. They
have access to variables in enclosing functions, as well as to inherited
slots based on the value of self at the time the function object was
created. Because of these characteristics, you can do particular types
of things with function objects that can not be done in most other
languages.

NTJ

August 1995 Newton Technology Journal

14

Newton Developers now have access to a full suite of Newton
developer support options, with just announced new programs, and
enhancements with reduced prices to existing programs. Newton
developers may choose from a range of support programs, from self-
support to unlimited priority support, offered through the Apple
Developer Group. Our goal is to help you succeed in your
development efforts – so we have delivered programs that provide you
with the level of support you need, at a cost you can afford. Read on
for more details on new programs and reduced program pricing!

THE NEWTON ASSOCIATES PROGRAM

Introduced in December of 1994, this program has been designed as
the development support option for developers seeking low-cost, self-
help development resources for Apple's Newton technology. Primary
program features include access to on-line technical information, Q&As,
updates to Newton development tools, the Newton Developer Mailing,
the Newton Developer CD, discounts on Newton developer training
classes, Apple hardware purchase discounts, and a full suite of
developer assistance from the Apple Developer Support Center. A full
features list follows.

Annual membership fees are $250, reduced from $400 in May of 1995.

Associates Program Features:
• The Newton Orientation Kit
• Newton Developer Mailing

- Newton Technology Journal
- Newton Developer CD
- Newton Development Tool Updates
- Utilities
- Q&A's
- Sample Code
- User Interface Guidelines
- Apple Directions

• $200 worth of Discounts on Newton development training classes
• Members-only access to the Newton area on Apple's on-line service
• Discounted rates for Apple's online Service
• Developer Handbook
• Developer Support Center resources
• Development hardware purchase privileges
• Worldwide Developer Conference invitation
• Newton Developer Conference invitation
• Third-Party Compatability Test Lab

NEW: THE NEWTON ASSOCIATES PLUS PROGRAM

This new program, announced in May, 1995, provides developers who
need a limited amount of code-level support an option other than
purchasing the unlimited support available in the Newton Partners
Program. Developers receive all of the same self-help features of the
Newton Associates Program, plus the option of submitting up to 10
development code-level questions to the Newton Systems Group DTS
team via e-mail.

Annual fees for the Newton Associates Plus Program are $500 and
includes the following features:

Newton Associates Plus Program Features:
• All of the features of the Newton Associates Program
• Up to 10 code-level questions via e-mail

THE NEWTON PARTNERS PROGRAM

The enhanced Newton Partners Program boasts an even further
reduced price and enhanced support features. The improved program
includes all of the features of the Newton Associates program, plus
unlimited expert-level programming support directly from Newton
Systems Group engineers on the Newton platform via e-mail. Additional
features include more hardware purchase privileges, and select
participation in Apple-sponsored marketing activities, all available at a
reduced price.

Annual fees are $1500. Members of both the Macintosh Partners
Program and the Newton Partners Program will now receive a discount
of $1000 off the combined membership fees, making dual platform
support options even more affordable than ever before.

Newton Partners Program Features:
• All Newton Associates Program Features
• Unlimited Newton programming-level support via e-mail
• Additional discounts on development-related Newtons
• Consideration as a test site for pre-release Newton products
• Select participation in Apple-sponsored marketing activities

While these programs are for US and Canadian Newton developers,
many European developer groups will be follwing with similar programs
and pricing structures. European developers should watch for more
information and details on Newton programs. US and Canadian
developers may obtain additional information and applications for the
Newton Developer Programs by contacting the Apple Developer

New Choices and Reduced Prices on Newton Developer
Support Programs
by Lee Dorsey, Apple Computer, Inc.

Developer Group News

NTJ

Newton Technology Journal August 1995

15

as follows:
1. Process the data for use on the Newton
2. Create the interface
3. Build and test the package
4. Refine the interface and data
5. Test the product
6. Build the final product

Step 1 can take quite a bit of time. A developer may often have a large
amount of data that needs to be processed into data structures that
can be used by a NewtonScript program, as well as the need to create
indexes or other meta information that can be used to access the raw
data. Whether this preprocessing step occurs on the Newton or as part
of the NTK package build, it may well be quite a slow process. It’s not
uncommon for this step to take 10 minutes or more for a large amount
of data, and adding 10 minutes to each compile/load cycle can
drastically cut your productivity.

Steps 2, 3, and 4 are an ongoing process. Usually a developer would
start by creating a simple interface for testing the data. Then the
interface would be progressively refined. Note that each
compile/download of the interface will have the overhead of recompiling
and reprocessing the data; that means 10 or more minutes per iteration
that could be better spent hacking instead of making coffee.

Once the product has been refined to a state that matches the
original goals, the developer can proceed to step 5. Note that testing
will probably require more changes, which means that each testing
revision requires another 10-minute wait. You could easily waste several
days worth of prime programming time waiting for those
compile/download cycles.

Once the testing is completed and all those off-by-one errors have
been fixed, you can build the final version of the product.

A BETTER WAY

It’s clear from the previous discussion that those long
compile/download cycles are a time sink. A better approach would be to
split the application up into logical parts so that you compile and
download only what you need.

The most obvious split in our map application is between the data
and the interface. Massaging the data takes a significant amount of time
on each build, so it would make sense to build the data only when it
has changed. You can do this by splitting your application into two
parts: the data in one part, and the interface in another. Each part
works with the whole, but each is in a package of its own.

continued from page 1

Small Parts: A Faster Way to Develop Large Applications

Monolithic
Package

Static Data

Interface

Separate
Packages

Static Data
Package

Interface
Package

August 1995 Newton Technology Journal

16

because your InstallScript needs to get at some object that isn’t
created until later in the build. You can still include a “Project Data” file
early in the build order that includes all the project-wide constants,
globals, or functions you need, but now you can add a text file named
something like “Install & Remove Scripts” at the end of the build order
to define these scripts.

It’s much easier to create multi-part packages. If a package from
another project is included in the project file, all the parts from the
included package will be copied into the resulting package when the
project is built. The build order is considered: if the included package is
first, the parts it contains are output first; if the package is included at
the end, the parts it contains are output after the part produced by the
current project.

Layout Improvements
The first thing you’ll notice is that the floating palette that

accompanies the Layout window is significantly smaller. Only the most
frequently used protos are on the palette itself, which means there’s a
much better chance you’ll be able to remember what all the icons are. All
the protos are still available in the pop-up menu on the palette.

The new layout windows are much better about view justification, so
the rectangles you see in the layout window now more closely match
where the windows will appear on the Newton. (Tip: The rectangle
shows where the outside of the view’s border will be; the inner corner
markers show the corners of the view’s visible area.)

continued from page 1

Taking Advantage of Newton Toolkit 1.5

A typical way to include a static data structure in an application is to
define a constant and then reference that constant. In this case, you
might see something like:

// In a project text file
DefConst('kMyStaticData, call BuildMyDataFunc with ()) ;
...
// and somewhere in the application, we use myStaticData
val := ArrayPos(kMyStaticData, targetKey, 0, nil);

When you use this method, the static data is an integral part of the
project; however, this means the data must be compiled and
downloaded each time the project is built.

An alternative is to create a separate package for the data, and
reference that data through a well known path. In the simplest
implementation, you could build another form part and put the staticNTJ

Newton Technology Journal August 1995

17

Finally, the two common screen sizes are readily available in the
Layout preferences. (These are 240x336 for the Original Apple
MessagePad, MessagePad 100, and Sharp ExpertPad, and 240x320 for the
Apple MessagePad 110, Apple MessagePad 120, and Motorola Marco.)
You can still enter your own sizes to see what your application would
look like on a wristwatch- or whiteboard-sized Newton product.

Browser Improvements
Developers spend most of their time working in the Browser

window, so double-clicking a layout file in the project window now
opens a browser instead of the graphical layout. �-B still opens a
browser as well, and layout windows are opened with �-L. Once in a
browser, it takes just a single click to open an editor on a slot. You’ll
find all of the browser-related menu items, including Browser
Preferences, in the Browser menu.

The Text editor type is no longer required. Editing text slots is now
done by default in a standard Evaluate editor, so you’ll have to include
double quotes for string literals. This change allows you to easily use
constants or compile-time code for text slots, which aids in localization.
The Text editor type is still available for compatibility. (Tip: Turn on
“Show Slot Values” to see the type of each editor in the browser
window.)

Search
The List feature of NTK 1.0.1 has been extended into a useful project-

wide search that lets you quickly locate views, slots, or text in slots. In
NTK 1.5, searching is much faster and includes text files. The results are
displayed in a list window; double-clicking on a line in that window will
take you to a browser or editor with the result selected.

Error Reporting
The same location features used in Search are also used when an

error occurs while building. NTK displays a dialog box with the error
message, adds the text of the error to the inspector window, and then
highlights the line or lines where the error occurred, using an open
browser if one is available. Compile-time warnings (such as using a
global function that NTK doesn’t recognize) are displayed in the
inspector window only.

Print Formats, User Protos, Layouts, and Constants
Print Formats as a special subclass of layouts are no longer

necessary, so you won’t find them in the New menu. A print format file
was special in two ways: it was compiled first and it produced a variable
so you could reference it in your application. Now you can put a layout
file anyplace in the build order, and templates from all layouts are made
available as described below, so print formats can be replaced with
standard layouts.

Here “layout” means both proto templates and layouts. The only
difference between a proto template and a layout in NTK 1.5 is that the
proto template files in the project will be available in the layout palette
as user protos.

A new function called GetLayout is provided to access the
templates for layouts that have been compiled by NTK. GetLayout
takes the name of the layout file as an argument, and evaluates to the
template produced. GetLayout will not force the layout to be
compiled; you’ll have to change the order in the project window to fix

file dependencies, but GetLayout will generate an error if the
layout hasn’t been built yet.

As in NTK 1.0.1, every layout, print format, or user proto compiled
also causes a constant to be created for the template produced. This
constant, called layout_ thefilename , is created as soon as
the layout is compiled. However, GetLayout is the preferred
method for getting at the template, because of the additional error
checking it provides.

You must pass GetLayout a constant argument (a string literal
or a constant containing a string). GetLayout is constant folded
(see the following section), so you can safely use it in the body of a
function such as viewSetupChildrenScript , as shown in
this example:

viewSetupChildrenScript: func()
begin

self.stepChildren := [GetLayout(“My Special Proto”)];
end;

Constant Folding
Some expressions have only constant elements, so they can be

evaluated as a function is compiled without changing the behavior of
the program. This process is called constant folding, and NTK will now
do this for some expressions. For example, in previous versions of NTK
the expression 2+2 in a function body would produce code to add 2
and 2 at run-time. With NTK 1.5, this expression will be evaluated during
the build and the constant 4 will be substituted. (More practical
examples would be the folding of vjParentCenterH +
vjParentBottomV for viewJustify , or vClickable +
vGesturesAllowed + vNumbersAllowed for
viewFlags .)

Frame and array access can be constant folded, if the frame or array
being accessed is a constant. Consider the following constant frame:

constant kUninvitedGuests := ‘{
thingOne: “A cat”,
thingTwo: “A hat”,

}

If a function included the expression
kUninvitedGuests.thingOne , the string “A cat” would
be substituted by the compiler.

More Constants
NTK 1.5 provides many more constants that allow your code to take

advantage of the current compiler settings and other values stored
with the project file.

The commonly used constants kAppSymbol , kAppString ,
kAppName, and kPackageName are now defined by NTK
from the various settings dialogs. If your project already defines these
constants, an error will occur during building when the constant is
redefined. The old definition will be highlighted, and can easily be
deleted. If for some reason you wish to keep the old constant
definitions, the “NTK 1.0 build rules” switch in Project Settings will make
NTK skip creation of these constants (among other things).

kDebugOn is set to true or nil depending on the state of the
“Debug build” flag. kProfileOn will be true if compiling for
profiling. kIgnoreNativeKeyword is set if the “Ignore native

August 1995 Newton Technology Journal

18

keyword” value is checked; this will be discussed further later in this
article. (The debugOn constant from NTK 1.0.1 is also set; it always
matches kDebugOn.)

Localization Support
Some features have been added to make it easier to localize

applications for other languages. You define what’s called a Localization
Frame, which contains all the strings, bitmaps, or other data that needs
to change based on the target language. To use localized information,
you use LocObj , which will look up the appropriate information
based on the currently selected language.

Since most developers will be starting with English projects, the
English information is provided as a first argument to the LocObj
function. For example, if you had a title slot in your application’s base
view with the string “A Demo Application” , you might
change the contents to this:

LocObj(“A Demo Application”, ‘baseview.title)

When you have English selected as the language in the Project
Settings dialog, LocObj simply evaluates to its first argument, so
you’ll still get the string “A Demo Application” in the title
slot.

When some other language is selected, LocObj will use the
second argument as a path expression to find the information in a
localization frame. The localization frame contains a single slot for each
language, and the path expression is applied to that slot to find the
information. To specify the localization frame, you call the compile-time
function SetLocalizationFrame . Here is a partial localization
frame for French and German:

SetLocalizationFrame({
french: {

baseview: {
title: “Un Logiciel de Démonstration”, …

}, …
german: {

baseview: {
title: “Ein Versuchsprogramm”, …

}, …
});

When the language is set to French, LocObj will evaluate to the
string “Un Logiciel de Démonstration” ; for German, the
string “Ein Versuchsprogramm” will be used.

Like GetLayout , LocObj must be passed constant arguments
because it is constant folded. It’s fine to use LocObj inside any
function.

Inspector Improvements
You’ll notice a button bar along the top of the inspector window.

The first button allows you to connect or disconnect the inspector
from the Macintosh end without closing the window. The rest provide

easy access to debugging features like PrintDepth ,
BreakOnThrows , StackTrace , and ExitBreakLoop .
There is also a button to set the global variable trace to nil (this
button was at the bottom of the inspector in NTK 1.0.1).

The inspector output when an exception occurs at run-time is much
prettier. The list of known exceptions has been extended, so you’re less
likely to need to look up error codes, and the exception symbol and all
the exception data are displayed for those unusual cases. The output
from StackTrace has also been made much more readable; only
information that is relevant to debugging is displayed.

SETTINGS AND PREFERENCES

Looking through the Project menu, you’ll find three new dialog boxes
that give you a lot more control over the way NTK builds your project and
what it builds.

Project Settings gives you control over the aspects of the build-time
environment for the project. You can choose the platform file from a list,
and choose the language that applies to the LocObj function. Here
you will also find several switches for the compiler, including controls
for debug builds, profiling builds, the native compiler, and a
compatibility option for old projects.

Package Settings gives you control over the package-wide
paramaters of the build, such as the user-visible name of the package,
version number, and copyright message. Copy protection and
compressions flags are here, as well as the flag that tells NTK to delete
the old package when downloading a new one. One new flag is the
“Auto remove package” setting. This is only useful with packages that
contain auto parts, since it causes the package to be removed
immediately after the InstallScript for the parts is run.

Output Settings lets you choose what the project produces. The
default is still an Application, or form part. If you choose this part type,
you’ll be able to edit the name for the extras drawer, application symbol,
and icon. It’s now easier to create more than just applications, which is
to say part types other than form parts. The Output Settings dialog has
radio buttons for auto, book, and store parts, and is extensible.

Building Books
NTK 1.0.1 produced book parts if you included a book file in the

project. In NTK 1.5, book files (produced with the BookMaker
application) are added like any other text file, and you must choose the
Book part option. NTK 1.5 now lets you type in a name, symbol, and
icon for the book parts. Normally this information comes from the book
file, but if, for example, no icon is found in the book file, NTK will use the
one in Output Settings instead.

Auto Parts
Auto parts are now easier to create. These parts, which do not

appear in the Extras drawer, can be selected in
the Output Settings dialog. The name, symbol,
and icon settings are not relevant to auto parts,
and so are disabled. Auto-dispatch auto parts are
created by choosing an auto part and selecting
the “Auto remove package” option in the Package
Settings dialog.

Newton Technology Journal August 1995

19

Store Parts
NTK 1.5 now allows you to create package-based stores, called store

parts or sometimes soup parts. Choosing “Store part” makes a compile-
time global variable called theStore available. The functions
available on this store are just like the ones for the internal or card
stores at run-time. During build time you create soups on
theStore , then add indexes and entries. It’s important to give this
store a name that’s based on your registered signature – for example,
theStore:SetName(“Demo:PIEDTS”) . When the part is
downloaded, the package-based store – and the soups on it –
becomes available through a pair of global functions.
GetPackageStore takes the store name and returns the store
object contained in the part, and GetPackageStores return s
an array of stores for all store parts installed.

You can’t do much with package-based stores in the current
Newton OS. They are read-only, and soups on them cannot participate
in soup unions with soups on other stores. While you may consider
using them for the convenient indexing that soups provide, you
should keep in mind that soups are often not the most compact or
efficiently accessed data structures for read-only data. Usually a
collection of arrays or frames will be more efficient for read-only data.
(See the article “Lost in Space” – available on the CD, AppleLink, and via
ftp – for more details.)

Custom Parts (Fonts, Dictionaries)
With the Custom Part feature and some tools which will become

available around the same time as NTK 1.5, building custom fonts or
recognition dictionaries is possible. If you choose Custom Part, you
must specify the part type and the part contents yourself. The part type
is entered in the small field next to the Custom Part radio button, and
the part contents are entered in the field labeled Result. Commonly you
will create a global frame or array in a text file, add data to it in other
text or layout files, and then enter the global variable in the Result field.
This will include all objects referenced by the variable in the custom
part. (You could also type everything into the tiny Result field, or use
the Load or ReadStreamFile functions to read in data, but
these approaches don’t take advantage of any of the nice features of
NTK Projects.)

Stream Files
You can take advantage of NTK’s new stream file feature to speed up

building some projects, especially those that include large data
structures that don’t change very often. For example, part number,
price, or phone lists would be excellent candidates to place into a
separate stream project.

Making a Stream File
A stream file contains one NewtonScript object, but this can be a

frame or array so in effect multiple objects can be included. Let’s
consider, for example, a database of employee names, phone numbers,
and office locations. The data might be stored in three separate arrays,
with each array sorted by the employee name. For example:

namesList := [“Anderson, Bob”, “Walthrop, Royce”, ...];
phonesList := [“315 555-4476”, “419 555-3543”, ...];
cubesList := [“PPR 51”, “CL-217”, ...];

(Tip: The NS array constructor is slow for very large arrays, so it’s
better to create them this way: names := Array(1000);
names[0] := “Anderson, Bob”; names[1] :=
“Walthrop, Royce”, ...)

Store the three arrays in a single object by putting references to
them in a frame:

output := {
kNames: namesList,
kPhones: phonesList,
kCubes: cubesList,

};

All this text is put in a text file (or several text files) and added to a
project in NTK.

Specify that the stream file should contain this data by going to the
Output Settings dialog, selecting the “Stream File” radio button, and
typing output into the results window. (We could have simply typed
the frame right there, but by using a single global variable we make it
easier to add to the output later, as only the text file needs to be
modified.)

August 1995 Newton Technology Journal

20

Building this project will produce a file with a “.stream” extension,
usually referred to as a stream file.

Using a Stream File
Using the three arrays in another project requires that the stream file

be read in to it during the build. This is done by using the
ReadStreamFile compile-time function. You could add a new
text file called “Streamed Data” to the project to control this, and put
the following code in it:

call func() begin
foreach symbol, value in

ReadStreamFile(HOME & “MyData.stream”) do
DefConst(symbol, value);

end with ();

Now the data from the streamed project is available in three
constants for use in the rest of the project. Building a project using a
stream file will be much faster than constructing the arrays each time
the project is built. You just have to remember to build a new stream file
when the data changes.

(Tip: During development it may be even faster to put the database
in a separate package and make the three arrays available via a global
variable. Doing this allows you to avoid the time needed to download
the database each time the application changes. See the Application
Design section of the Q&As for details on this approach.)

(Tip: It may be worthwhile to adopt a convention where the top-
level object in the stream file defines an Install function, which
would contain code like the above Streamed Data code. Then the line to
read in the stream file and create the constants is simply
ReadStreamFile(HOME & “MyData.stream”):Install())

Combining Objects
It’s possible to save space in most packages by combining objects

that are identical. For example, if the string “New” appears in a text
slot for two different buttons, both slots could reference the same
string. The behavior of the program would be virtually unchanged.

In previous version of NTK, the only way to accomplish this kind of
object sharing was to create a compile-time constant or global variable
to hold the object, and explicitly use the “shared” reference wherever
the object was needed.

NTK can now combine objects as a final step in the build process.
Because this takes extra time, it will normally do this only when the
“Compile for debugging” switch in Project Settings is off. Since
combining objects is useful only for frame-based part types, NTK will
not combine objects in store parts or stream files. In version 1.5, only
frame maps and binary objects (including strings and bitmaps) will be
combined.

Combining objects usually results in smaller packages; typically a
10% to 20% savings can be achieved for large projects. But combining
objects can also change the behavior of the program in two ways. The
first is that objects that would have been different may now be
identical, so that the = operator will evaluate to true for these
objects. Since the objects are always read-only, it would be unusual to
compare them against each other, so it’s difficult to imagine how this
could affect most programs.

The other effect that combining objects can have is to change the

locality of the stored program. Here we need to take a short digression
into how data is stored on the Newton.

When writing the code and data to a package, NTK generally ends
up writing objects when references to them are encountered. Initializers
for variables in a function tend to be stored near the function’s
instructions, and elements of an array or frame tend to be written close
together. Because there is now only one copy of an object where before
there may have been many, the object will be stored near the first place
that the program references it. This may not be near other parts that
also use the object.

This makes a difference because data stored in packages on the
current Newton OS is paged in to system memory as it is accessed.
(That’s right, the Newton OS uses a virtual memory model for
packages.) Because objects may not be near the code that references
them, more segments of the project may need to be paged in to run the
program. (The fact that there are fewer pages overall may reduce the
cost for this paging.)

We don’t currently know what performance impact combining
objects has on applications, so NTK provides a way to skip the
combination step. NTK 1.5 will check for a global variable called
consolidateObjectsAfterBuilding . If the variable exists
and has the value nil , consolidation will be skipped. (Setting the
variable true will not force consolidation for debug builds.)

Apple Events
Being MacApp based, NTK has always had support for AppleEvents,

but in previous versions that was limited to the four required events
(Open App, Open Doc, Print, and Quit). NTK now responds to two
additional AppleEvents. One corresponds to the Build Package menu
item, which will come in handy for those trying to automate building
large projects. The other is a “do script” event, where the “script” is
NewtonScript code. The script is compiled and executed in the NS
environment on the Macintosh, and a test representation of the result
is returned. (Currently this result is limited to 256 characters.)

Projector Compatibility
NTK 1.5 is much friendlier to Projector. It will no longer delete ‘ckid’

resources in text files, layouts, protos, or projects, making it much
easier to use Projector to manage your NTK projects. The output
packages, stream files, and exported text files are still created from
scratch each time a build or export takes place, so you may still have
some difficulty keeping these produced files in Projector.

PROFILER

A major new feature in NTK 1.5 is the NewtonScript profiler. The
profiler collects and summarizes performance data about the
system and your application.

A System Update for MP100, MP110 Is Required
Profiling requires some support from the Newton OS. The

supporting routines are built in to the Apple MessagePad 120 and
Motorola Marco, and system updates are provided with NTK for the
Apple MessagePad 100 and Apple MessagePad 110. (You cannot profile
with an Original Apple MessagePad or Sharp ExpertPad.) Other than
including the profiling support, these updates are identical to the

Newton Technology Journal August 1995

21

latest updates for those products. Because profiling support requires
some memory and some changes to the way functions are called,
installing the profiling updates may slightly reduce the products’
performance. (That is, it’s probably best not to install the profiling
updates unless you actually plan to use the profiler.)

Profilable MP100s and MP110s can be recognized by a “p” at the end
of the version number at the bottom of Prefs. When the NTK Toolkit App
is installed on a profilable Newton product, an additional button will
appear in its slip called “Profile Control.” The same Toolkit App will
function normally on non-profilable units.

How to Use the Profiler
Profiling your code requires you to do two things. The first is to

make your application profilable; the second is to add calls that tell the
OS when to start and stop gathering data; and the third (three things)
is to turn on the profiling features of the OS.

Making your application profilable is easy. Simply turn on the
“Compile for profiling” check box in the Project Settings dialog. This
causes NTK to keep information about your application when it builds.
(Fine point: The information isn’t saved with the project, so you’ll need
to make sure you build once before starting to profile after launching
NTK.)

Because profiling native compiled code adds a higher overhead than
profiling code that is interpreted, you have the option of skipping
profiling for native functions. Check the “Profile native functions”
checkbox in Project Settings to have the system gather data for native
functions called from within other native functions. (If the box is
unchecked, all the time spent in native functions will be attributed to
the first native function called from an interpreted function.)

Telling the OS when to start and stop gathering data is
accomplished by calling a new run-time global function called
EnableProfiling . Pass true to begin gathering data, and nil
to stop. The function returns the state the profiler was in before
EnableProfiling was called. Typically you might turn off profiling
during initial setup for a function call, or while interacting with the user,
and turn it on when the heavy processing is taking place. This allows
you to filter out the other work the system does as idle tasks or while
waiting for input.

It may be a good idea to test the constant kProfileOn before
calling EnableProfiling , to make it easy to turn off all profiling
support for your application. For example:

if kProfileOn then EnableProfiling(true);

The profiling features of the OS itself are controlled through the
Profile Control slip in the Toolkit App. When profiling is not active, a
single button labeled “Begin Profiling Run” is visible. Tapping this
button sets up the OS to gather data. When a run has started, two
buttons are available, one to stop profiling and upload the results
gathered, and another to abort the profile run. When data is actually
being gathered (when EnableProfiling(true) has been
called), the upload button changes to the text “Profiling Enabled.” It is
not possible to upload the data while it is being gathered.

In summary, there are four steps you need to take to profile your
application. First, change the Project Settings. Second, insert calls to
EnableProfiling before and after the code you’re interested in.

Third, compile and download the application. Fourth, on the Newton
end open the Profile Control slip, begin a profiling run, and run the
application. Finally, (five steps,) upload the results back to NTK, where
they will be displayed in the inspector window.

(Tip: The inspector does not need to be connected while profiling
your application. Because the inspector connection takes some system
memory, you’ll get more accurate results by disconnecting it before
profiling. If you tap the Upload Results button and the inspector is not
connected, the Toolkit App will open so you can connect. Once
connected, the upload will take place.)

Profiling Options
There are two settings available in the Prefs for the Profile Control

slip. The buffer size setting controls the amount of RAM allocated to
storing profiling data. The default is 4K, which is enough to profile
almost all applications. Since the memory is allocated from a shared area
that is also used for running the OS, it’s best to keep the allocation as
small as possible. (If the profiler runs out of memory, statistics
gathering is stopped and NTK will report this along with the partial
results obtained. You should only increase the buffer size if this
happens.)

The other setting in the preferences slip controls whether or not the
profiler will gather data about calls to system functions. If “Detail
System Calls” is checked, the time spent in each system function will be
displayed individually. This can add a lot of data to your summary. If
unchecked, the profiler will display just one line for all the system calls
together. (I generally want to know which system functions are being
called and how much time is spent in each, because I can change the
way functions are implemented to minimize calls to expensive
functions.)

Interpreting the Results
The top section of the profiler results gives overview information

about how much time was spent in your code and how much was
spent in the system. Occasionally you will see an “Other” line; this
shows time spent in functions in the NewtonScript heap that aren’t
from your application. Functions from other packages are included with
the system functions in the summary. If native code is involved, you will
see the number of calls to interpreted functions from native functions
(this will be discussed in the next section). The summary will also show
the number of times garbage was collected, and the time spent doing it.

Below that will be a detailed list of all the functions called while
profiling. The profiler shows the number of times a given function was
called, along with the total time spent in the function in milliseconds
and the percentage of total profiled time taken up by that function. The
list is sorted by percentage of time, with the worst offenders at the top
of the list.

Interpreting the results depends on what the program is intended
to do and how it is being profiled. Here are six things to look out for:

• Functions using most of the time. Can they be implemented more
efficiently? Consider these functions for native compilation. (Be sure
to read the next item first.)

• A function called twice where you only expect it once. This could

August 1995 Newton Technology Journal

22

also be a function called twice as many times as neighboring
functions. Usually these functions turn out to be “accessor”
functions to get some data from some object. Performance can be
boosted by keeping the result in a local variable instead of calling
the function repeatedly.

• Several functions all called the same number of times. Because
function calls do take significant time with the NewtonScript
interpreter, it can be more efficient to write a single large function.

• A function called many times. Check the code that calls that
function. If the function is called within a loop, check and see that
the function in being called efficiently. Performance can usually be
boosted by moving the code out of the function and into the loop,
thus removing the function call overhead. (Doing this will often
uncover other optimizations that can be made, given assumptions
about how the function is called in this circumstance.)

• Many calls to GC or time spent in garbage collection. This means
your application is generating a lot of intermediate structures.
Cutting down on this can be hard, and often involves significant
changes to code to re-use existing frames, arrays, or binary objects.

• (Five things)

The key to profiling effectively is to test, theorize, change, and test
again. Change just one thing at a time. Some changes may help, while
others may not, so if you make many changes at once you won’t know
which helped or how much. Sometimes a change that seems like a great
idea (compile that function!) will slow things down because the
application will be bigger or paged differently and cause thrashing.

When You’re Done
Don’t forget to turn off the profiling switches and remove calls to

EnableProfiling before making your application available to
other people. While projects with profiling enabled will not damage
data in units that don’t support profiling, they will be slower than non-
profiled code. The EnableProfiling call will not be available on
units that don’t have the profiling support, which may cause an
“unknown global function” exception to be thrown.

Remember: don’t optimize too soon. The right time to start working
on performance is after everything else is the way you want it. Wait until
you can identify the parts of the application that need performance
help. Until then, you’re better off writing clean and easy-to-read code.
(Usually, most of your application won’t need any help at all.)

COMPILER

The native NewtonScript compiler for the ARM processer is the most
eagerly awaited part of the NTK 1.5 release. Before you rush out and
nativ – compile your entire application, there are some things you
should know.

Compiling Can Slow You Down
The native compiler in not a panacea. Typically, your application

spends 90% of its time in system calls. Native-compiling a function that

just calls system functions does no good. It simply increases code size
and slows down execution speed. Native compilation also increases the
time it takes to build. It pays to be selective about which functions to
native-compile.

Why would it slow things down? There are two reasons. Native
functions are big, typically 8 to 10 times the size of the equivalent
interpreted code. Bigger functions mean more paging.

Also, calling interpreted functions from within native functions is
slow – much slower than calling interpreted functions from interpreted
functions or native functions from native functions. The extra cost is
attributed to the time needed to initialize the interpreter. Because many
system functions are interpreted, you can’t always remove all the
interpreted calls from native code. The NS profiler will count the number
of times an interpreted function is called from a native function; you
should keep an eye on this number.

Use the Profiler First
Before making functions native in your application, use the profiler

to find good candidates for native compilation. Often, while doing this
you’ll find other coding improvements that will help more than simply
compiling native. (No matter how much faster they are executed,
efficient algorithms will be better than inefficient ones.)

Using the Compiler
Enabling the native compiler is very easy. Simply insert the native

keyword after the func keyword and before the argument list.
func(foo) becomes func native (foo) . The native
keyword is ignored for functions used at build time or functions typed
directly into the Inspector.

Taking Full Advantage of the Compiler
Simply adding the native keyword will get you native-compiled

functions, but there are some additional things you should do to take
full advantage of the compiler.

The most important thing (besides writing efficient code in the first
place) is to declare the types of your variables when possible. The
compiler in NTK 1.5 recognizes integer and array types, and can
generate much more efficient instructions if the variable type is
specified.

Paramaters to functions are declared by adding the int or array
keyword in the parameter list. Local variables are declared by adding
the int or array keyword immediately after the local keyword. (All
the variables declared in a single local statement will be of the same
type.) For loop iterators are implicitly declared as integers, and a
warning will be issued if the iterator is used as a non-integer variable
elsewhere. This function takes full advantage of type declarations:

AddRange := func native (array a, int start, int stop)
begin

local int sum := 0;
for i := start to stop do // i is implicitly int

sum := sum + a[i];
sum;

end;

Some system functions are treated specially by the native compiler to
further optimize common tasks. A full list is available in the Newton Toolkit
User’s Guide. An important group of functions that are efficient when

NTJ

If you have an idea
for an article you’d like to write for Newton
Technology Journal, send it via Internet to:

piesysop@applelink.apple.com

called from native code are the binary
data extraction and manipulation
functions, such as ExtractByte , StuffByte , and BAND.
Calling these functions from native code is vastly more efficient than
calling them from interpreted code, enough so that common binary
manipulation algortihms like checksum can be as many as 100 times faster
when using the native compiler.

(Fine point: Variables declared int in native functions produced by
NTK for the ARM processor are 32 bits wide. Before you think about how
to take advantage of this, you should consider these drawbacks:
integers will be shortened to 30 bits whenever they are passed to a

function or stored in an untyped variable; the interpreted bytecodes
may be used instead of the native code on some platforms, and
interpreted code will always be used if you ever set the “Ignore native
keyword” option.)

Compiler Options
During development, fast builds may be more important than fast

code. For this reason, NTK offers an “Ignore native keyword” option in
the Project Settings dialog. Turning on this option causes NTK to skip

Newton Developer Programs
Apple offers three programs for Newton developers—the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low
cost, self-help development program. The Newton Associates Plus Program provides for developers
who need a limited amount of code-level support and options. The Newton Partners Program is
designed for developers who need ujnlimited expert-level development. All programs provide focused
Newton development information and discounts on development hardware, software, and tools—all of
which can reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-
cost, self-help development resources to Newton
developers. Participants gain access to online
technical information and receive monthly mailings
of essential Newton development information. With
the discounts that participants receive on
everything from development hardware to training,
many find that their annual fee is recouped in the
first few months of membership.

Self-Help Technical Support
• Online technical information and developer

forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal – six issues per year
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code
– Newton Q & A’s
– Newton System Software updates
– Marketing and business information

• Apple Directions—The Developer Business Report
• Newton Platform News & Information

Savings on Hardware, Tools, and

Training
• Discounts on development-related Apple

hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

Annual fees are $250. Newton Partners
Program
This expert-level development support program
helps developers create products and services
compatible with Newton products. Newton
Partners receive all Newton Associates Program
features, as well as unlimited programming-level
development support via electronic mail, discounts
on five additional Newton development units, and
participation in select marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the
Newton Partners Program, more than ever, can
help keep your projects on the fast track and
reduce development costs.

Unlimited Expert Newton

Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton

development units

Pre-release Hardware and Software
• Consideration as a test site for pre-release

Newton products

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities

All Newton Associates Program

Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Annual fees are $1500.

For Information on All

Apple Developer Programs
Call the Developer Support Center for
information or an application.
Developers outside the United States
and Canada should contact their local
Apple office for information about local
programs.

Developer Support Center

at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Apple Developer Group

®

Dear Newton Developer,

We’d like to introduce you to StarCore, the software publishing and distribution arm

of the Personal Interactive Electronics Division at Apple Computer, Inc. As a Newton

developer, you are already involved in creating products for this exciting technology.

There are many ways in which we can build relationships that will benefit you and

the Newton platform.

At StarCore, we are actively recruiting titles for the Newton. StarCore can provide

developers with a broad range of services and opportunities. The developer creates

the software, StarCore provides the packaging, manuals, testing, user studies,

marketing and end-user support.

We are anxious to talk with developers about products or concepts they would like to

see published or distributed. We are particularly interested in business-oriented

applications that would appeal to a mobile professional. We are also looking for

products that have connectivity to Macintosh and Windows desktop applications.

Please contact us at:

StarCore
Apple Computer, Inc.
5 Infinite Loop, MS 305-3C
Cupertino, CA 95014
Attn: StarCore

