
Making the ACT!
Connection
by Jeff Cable, Symantec Corporation

For each person on a software design team,
there will be a long list of potential features to
include, from which only a handful make it into
the final product. When we started designing
ACT! for Newton, we contemplated all the
feature requests and tried to determine which
combination would yield the best final product.
Of course there were the obvious features:
contact list, attached notes and histories, and
task list. But when it came to Newton-specific
features, we all had different ideas. There was
one feature of ACT! for Newton, however, upon
which we all agreed, and that was connectivity.

It was clear that without a solid connection to
both Macintosh and Windows machines, ACT! for
Newton would not offer the much-needed
solution on the Newton platform. As good as the
stand-alone Newton application might be, it
would remain a kind of island without some
connectivity.

Luckily, at the same time we at Symantec
were designing our product, the Newton Group
at Apple Computer was writing the Desktop
Integration Libraries (DILs). This made for an
obvious choice – use the DILs to both simplify
and streamline data synchronization between
ACT! for the Newton and ACT! for the desktop
machines.

From a marketing perspective, the DILs
helped save time and money, by providing the
desktop connectivity element required in our
marketing specification. From a development
perspective, getting data moved quickly was very

Technology At Work

Making the ACT! Connection 1

New Technology

Welcome to the Desktop
Integration Libraries 1

State of Technology

Global Systems for Mobile
Communications (GSM) 3

Communications Technology

Modem Setup Packages 5

NewtonScript Techniques

AppleTalk and Complex State Machines 9

continued on page 8 continued on page 22

Volume I, Number 3 June 1995

gy gy Newton Technolo
J O U R N A L

®

Welcome
to the Desktop
Integration
Libraries
by J. Christopher Bell, Apple Computer, Inc.

Ever since its release in August 1993, Newton
has been hailed as an ideal platform for
gathering information “at the source.” Client-
server solutions, consumer applications, and
information distribution systems all require
information-gathering or browsing directly on a
mobile device, rather than waiting until a user
returns to a local network or desktop.

For many end-user applications, the Newton
Connection Kit offered a great solution since it
combined backup/restore functions and third-
party import/export functions, while allowing the
user to edit much of their Newton data on a
Windows or MacOS desktop computer. All of
this was achieved without developers directly
addressing communications or NewtonScript
frame translation. The Newton Connection Kit
(NCK) handled synchronization and
communications directly, and the built-in
NewtonScript interpreter made manipulation of
user data easy within the context of “meta-data”
code executed within NCK.

However, many users asked for a direct link
between their Newtons and their favorite
desktop calendar, or expense programs. They
were frustrated with the extra necessary step of
Newton Connection Kit synchronization.

The desired direct link is possible using the
Newton’s application programming interface

Newton Technology At Work New TechnologyInside This Issue

June 1995 Newton Technology Journal

2

DILS MAKE

NEWTON CONNECTIVITY SEAMLESS

Newton PDA devices have brought mobile
professionals the ability to organize
information and communicate from a small
form-factor device away from their offices and
telephone lines. The Newton Connection Kit
has also enabled users to download,
synchronize and back-up data between their
Newton PDA devices and their Windows or
Macintosh computers, making desktop
connection one of Newton’s most important
features for mobile users.

While the Newton Connection Kit has
enabled the essential connection to the
desktop and allowed non-PIM users easy
synchronization and a simple PIM of sorts,
desktop application users have been required
to take an extra step with the software. Often,
the data does not match up one-for-one with
their favorite PIM, contact management
application, or database. Conversely,
applications developers have not been able to
easily move data from an existing desktop
application to a built-in or third-party Newton
application. While some Newton developers
were able to write code that enabled a direct
connection built into the application, it was
not an easy task and the results were slow and
sometimes inaccurate synchronization. Users
have been asking for an easier way and
developers have asked for the tools to make
one-to-one seamless connection easier.

We are pleased to be able to announce that
the Desktop Integration Libraries (DILs) will
solve this problem for both users and
developers. As a customizable “black box,” the
Desktop Integration Libraries are the glue to
bind Windows and Macintosh applications to
Newton devices. Using the appropriate DIL
libraries, desktop developers can enable their
Windows and Macintosh applications to directly
connect with a Newton device, exchange data
and synch up with appropriate Newton
applications. Similarly, Newton application

developers can use these libraries to ensure
more effective Macintosh/Windows connectivity
for their applications, which can be developed
in shorter time periods and resulting in faster
time to market. Using the libraries, Newton and
Desktop developers will be able to deliver more
effective mobile connectivity solutions for both
horizontal and vertical markets, opening up an
entire new marketplace for existing desktop
applications. While the Newton Connection Kit
will still be essential for certain user functions,
such as backup, restore, and general access to
desktop data, applications useing the DILs will
give users the seamless connection they’ve
been looking for.

The feature articles in this edition of the
Newton Technology Journal will provide you
with a technical view into how the DILs work,
and Jeff Cable of Symantec Corporation
provides you with a view of the developer
who has actually already produced a Newton
application from their desktop contact
management application, ACT. We encourage
you to think about how you might take
advantage of the DILs to add value to your
existing desktop or Newton applications and
help yourself build a new business or market
segment in the process.

These Desktop Integration Libraries will soon
be bundled with the Newton Toolkit, and made
available to Newton developers at no extra
charge. Watch the Newton Technology Journal
or your Newton Developer Monthly Mailing for
more details. Developers interested in more
information on the DILs can send questions to
directconnect@newton.apple.com. We know
the delivery of the libraries will significantly
enhance your ability to create powerful Newton
applications that deliver the solutions Newton
device users want.

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

David Glickman • Coordinating Editor, Business
Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Bruce Thompson

Contributors
J. Christopher Bell, Christopher Bey, Jeff Cable,
Rob Langhorne, Susan Schuman, Bill Worzel

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1995 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume I, Number 3 June 1995

by Lee DePalma Dorsey, Managing Editor

Editor’s Note

Newton Technology Journal June 1995

3

Ever since the first European cellular communications services appeared in
1982, cellular technology has been central to the development of the mobile
communications market. The concept of users being able to make or receive
a phone call while away from a fixed location revolutionized the industry and
a mobile communications market began to emerge. Wireless data meant the
possibility of instant access to information and communication services
anytime, anywhere.

If the introduction of analog cellular represented a revolution in mobile
communications, the development of European digital cellular technology –
the Global Systems for Mobile Communications (GSM) – represents the next
crucial step for the industry. This technology will allow mobile
communications to break out of the professional and business niches and to
move into broader markets. The GSM standard and service is the first truly
pan-European network providing digital technology advantages and a system
that allows full inter-working between countries. But before explaining GSM
further, let’s first look at the basics of analog cellular communication, since it
provides the foundation for transition to digital cellular networks.

Today, the most widespread option available for transmitting and
receiving data wirelessly is called circuit-switched analog cellular. Basically the
cellular network works like the standard telephone network. Circuit-switched
cellular users send data to a base station, where it is routed over the public
telephone network to its destination. From the perspective of the cellular
phone system, a circuit-switched data call is the same as a cellular voice call;
there is no operational difference in how the two kinds of calls are handled.
All the principles and procedures of the analog cellular networks still apply,
and these include roaming, hand-off and routing of calls through the cellular
provider’s central office.

The important point here is that data is being sent over a voice network.
The analog cellular network was not designed for data calls; the priority has
always been voice calls. The infrastructure, the technology of the switches,
and the tariff structures were all designed for voice service. The cost of
sending data is calculated on a per-minute basis, just as it is for voice.
Therefore sending a short burst of data (which make up most of today’s data
transactions), the user pays for a full minute that is not being used
completely. Sending data over analog cellular can be costly.

The term “circuit-switched” refers to the establishment of a dedicated
connection or circuit between two end points (modem to modem). Because
the connection remains fixed for the duration of the call, data sent this way is
often referred to as a connection-oriented transmission. Once the modem
connection is established, the channel is dedicated to the session until one
caller terminates the session.

Currently, to send data over a cellular network requires a device such as
Newton-based product (PDA) connected to a cellular phone via a cellular
capable modem (such as a PCMCIA cellular modem card plugged into the

PDA). This type of connection and the current tariff structure make the
network suitable for larger file transfers and for session-based dial-up
applications such as faxing and vertical applications, as well as for store-and-
forward applications, such as e-mail. In other words, whatever a user could
do with a standard landline modem, they can now do wirelessly.

The analog cellular technology and networks served well as a first
generation wireless technology. However, analog services are now straining
to keep up with user demand. Analog transmissions are less efficient than
digital transmissions in terms of spectrum utilization, and in areas with large
numbers of wireless users, analog networks can’t always meet demand.
Because these networks were developed for voice, connections can be
jeopardized by intracell hand-offs, fading and interference from other radio-
frequency signals. These mean that the modem may have trouble
establishing or even keeping a connection, and that most connections can
not accommodate speeds higher then 4,800 bps. Considerations like these
make analog networks less than ideal solutions for sending data, especially if
the device is in motion. In Europe and Asia, where international travel is
often required for the mobile market, roaming across borders is not possible
with analog services, except where neighboring countries have coordinated
transmission frequencies and standards.

To overcome these problems, efforts are now focused on upgrading the
current analog cellular networks to digital. In the US there are two
competing standards: Code-Division Multiple Access (CDMA) and Time-
Division Multiple Access (DMA). The Japanese have chosen their own
standard, Japan Digital Cellular (JDC). However, Europe and most other
countries in the Asia/Pacific region have moved forward, rapidly
implementing the GSM digital cellular standard and making it the most
widely accepted digital cellular standard throughout most of the world.

GSM was developed in Europe and digital cellular services began there in
July of 1992. The first European GSM network was opened by the Finnish
operator Radiolinja, and since that time almost all of the licensed operators
across Europe have begun service. GSM has been successful in Europe
because of its international roaming agreements and consistent
implementation. With the transmission being purely digital, the networks
benefit from improved security of communication, and full data and two-way
messaging capabilities. In the Asia/Pacific region, most countries are
beginning testing and implementation the European GSM standard.

Once again it is important to note that digital cellular standards were
designed primarily for voice. Much of the movement to digital cellular has
been to counteract the problem of limited capacity on existing analog
cellular networks. However, unlike analog cellular, GSM specifications do
include provisions for data transmission. These include circuit-switching data
services at rates up to 9,600 bps and Short Message Service (SMS), allowing a
GSM device to function as a two-way messaging (paging) device.
Specifications for packet-switching capability are also in the GSM definition.

Global Systems for Mobile Communications (GSM)
by Susan Schuman, Schuman Consulting, sschuman1@aol.com

State of Technology

June 1995 Newton Technology Journal

4

At this time, GSM voice services have been implemented in most of Europe
and in many parts of Asia/Pacific, but the data, fax and SMS services are still
being implemented in a process that will continue for the next few years.

One of the benefits of analog cellular networks was that they bridged to
the PSTN (Public Switched Telephone Network). Because GSM is based on
analog cellular networks, it also provides bridges to the PSTN, allowing a
GSM device to “talk” to a regular modem or facsimile machine, to access a
corporate network remotely and to access public information services.
Cellular networks cover more of the world then any other type of wireless
network. This wide coverage, the bridge to the PSTN, the large installed base
of cellular voice users, the international adoption of GSM and the fast
growing mobile market, position GSM as the dominant technology for
wireless data service in Europe and the Asia/Pacific region.

The GSM specification provides a digital, spectrum-efficient, cellular
architecture. GSM has clearly defined voice and data channels, including a
side channel for short, 2-way messaging. GSM operates in the 900 Mhz
frequency band which, compared to analog standards ,

• offers better signal quality, which translates to fewer transmission errors
• offers better security via encryption and encoding
• offers more efficient use of spectrum, which means higher network

capacity.

GSM is also compatible with ISDN (Integrated Digital Services Network – the
digital standard for the telephone network), and in fact some people would
describe GSM as the wireless ISDN implementation. Digital cellular is a

generally more robust technology because it addresses the issues of noise,
interference, unreliability and poor performance.

Recognizing the importance of GSM and its widespread acceptance,
Apple has put considerable effort into developing software for Newton-based
products that allow users to connect to the GSM networks via the Nokia
2110 and 2140 handsets and the Nokia PCMCIA Cellular Data Card. With this
combination, Newton-based GSM-capable products can wirelessly transmit
faxes and can communicate from remote locations at any time. In addition,
existing third-party applications can take advantage of the GSM connectivity
– any application that is based on a dial-up connection to transmit data can
now work seamlessly within the GSM environment. Third-party developers
can now write applications to take advantage of this new connectivity and
can provide a wireless element to their solutions.

Wireless communication for Newton-based products is clearly where the
PDA market is heading. This is an exciting moment in the GSM world,
because:

• the GSM standard has widespread acceptance
• implementation of the data portions of the GSM network has now

begun
• software and hardware solutions are already available for Newton-based

PDAs

This combination of advances begins to meet the needs of businesses
and individuals who want instant access to information and communication
services anytime, anywhere. It allows them to be truly mobile, while stayingNTJ

To request information on or an application for
Apple’s Newton developer programs,

contact Apple’s Developer Support Center
at 408-974-4897

or Applelink: DEVSUPPORT
or Internet: devsupport@applelink.apple.com.

Watch for continued coverage
on wireless products and technology

in future issues of the
Newton Technology Journal.

Next issue:
The Wayfarer Enterprise Server.

Newton Technology Journal June 1995

5

Until recently, the only modems that could be used with Newtons were those
sold and supported by Apple. This has now changed. The modem setup
capability described in this article provides an easy-to-implement mechanism
that allows many different kinds of modems to be used with Newton.

THE USER’S VIEW

When a developer- or manufacturer-supplied Newton modem setup package
has been installed on a Newton, a user can simply choose the desired
modem setup in the Modem Preferences view, as shown in Figure 1. The
Modem Setup item in this view is a picker (“Connect with…”), which when
tapped, displays all of the modem setups that are currently installed in the
system. The chosen modem setup is subsequently used by all applications.

Figure 1. Modem Preferences View

WHAT IS A MODEM SETUP PACKAGE?

A modem setup package is installed on the Newton as an auto-load package.
This means that when the package is loaded, the modem setup information
is automatically stored in the system soup and then the package is removed.
No icon appears for the modem setup in the Extras Drawer. Instead, modem
setups are accessed through a picker in the Modem Preferences view.

Modem setup packages can be supplied by modem manufacturers, or
can be created by other developers.

A modem setup package can contain two parts:
• A modem tool preferences option, to configure the modem controller
• A modem tool profile option, to describe the modem’s operating

characteristics

HOW THE MODEM SETUP SERVICE WORKS

All Newton communication applications that use a modem endpoint make
use of the modem setup service. When a modem endpoint
Instantiate call is made, but before the Bind and Connect are
done, the current modem setup is invoked. (For a description of endpoints,

comm tools, and other related details mentioned in this article, refer to the
“Newton Communications” article by Bill Worzel in Volume 1, Number 2 of
the Newton Technology Journal.)

Note: If the modem endpoint option list includes the modem profile
option (kCMOModemProfile), the modem setup is not invoked. This allows
modem applications to override the modem setup when configuring the
modem for special purposes.

When the modem setup is invoked, the Instantiatemethod sets
the modem preferences (kCMOModemPrefs) and modem profile
(kCMOModemProfile) options as defined in the modem setup.

DEFINING A MODEM SETUP

The various parts of a modem setup are specified in an NTK text file. The
modem preferences and profile options are specified simply by setting
constants. The setup methods are specified as functions. The following
subsections describe each part of the modem setup.

General Setup Information
The beginning of a modem setup contains general information about the

setup and the modem to which it corresponds. Here is an example:

constant kModemName:= "US Robotics Sportster";
constant kVersion:= 1;
constant kOrganization:= "Apple Computer, Inc.";

Table-1 describes these constants

TABLE 1. MODEM SETUP GENERAL INFORMATION CONSTANTS

Modem Preferences Option

This modem option configures the modem controller and specifies such
things as how the modem should determine if it is receiving the Carrier
Detect (CD) signal, whether the modem requires a configuration and dialing
option string, and what to do on disconnect. Here is an example:

constant kidModem := nil;
constant kuseHardwareCD := true;
constant kuseConfigString := true;
constant kuseDialOptions := true;

Constant Description

kModemName A string that is the name that shows up in the Modem
Preferences picker to identify this modem setup. Typically this is
the name of the modem.

kVersion An integer identifying the version number of this modem setup
package. The system prevents a modem setup package with an
equivalent or lower version number from overwriting one with a
higher version number that is already installed on a Newton.

kOrganization A string identifying the provider of the modem setup package.

Modem Setup Packages

Communications Technology

June 1995 Newton Technology Journal

6

constant khangUpAtDisconnect := true;

Table 2 describes the modem setup preference option constants.
Note: Where the backslash (\) is used in a configuration string, you must

specify two of them together (\\), since a single backslash is used as the
escape character in NewtonScript.

TABLE 2:. MODEM SETUP PREFERENCES OPTIONS

Modem Profile Option

This modem option describes the modem characteristics, to be used by
the modem controller. Here is an example: of the profile option constants
for a Hayes error correcting modem:

constant ksupportsCellular := nil;
constant ksupportsEC := true;
constant ksupportsLCS:= nil;
constant kdirectConnectOnly := nil;
constant kconnectSpeeds:= '[300, 1200, 2400, 4800, 7200,

9600, 12000, 14400];
constant kconfigSpeed:= 19200;
constant kcommandTimeout:= 2000;
constant kmaxCharsPerLine:= 40;
constant kinterCmdDelay:= 50;
constant kmodemIDString := "unknown";
constant kconfigStrNoEC:= "ATE0&C1S12=12W2&K3&Q6\n";
constant kconfigStrECOnly:= "ATE0&C1S12=12W2&K3&Q5S36=4\n";
constant kconfigStrECAndFallback :=
"ATE0&C1S12=12W2&K3&Q5S36=7\n";
constant kconfigStrCellular:= nil;
constant kconfigStrDirectConnect :=
"ATE0&C1S12=12W2&K0&Q0\n";

Table 3 describes the profile constants.

TABLE 3. MODEM SETUP PROFILE CONSTANTS

Constant Description

ksupportsEC Specify true if the modem supports any error correction
protocols such as V.42 or MNP, and the profile contains
configuration strings for error correction. Note that
kdirectConnectOnly must also be nil. Specify nil if the modem
does not support error correction.

ksupportsLCS Specify true if the modem supports LCS (Line Current Sense),
or nil otherwise. LCS is used for determining when a user has
lifted the phone handset off hook. Applications can take
advantage of this feature by allowing the modem to determine
when it should release the line for a voice call.

kdirectConnectOnly Normally this is set to nil. Set to true if the modem does not
support error correction or speed buffering.

connectSpeeds An array indicating the speeds (in bps) at which the modem can
connect. This array is not used, except by application programs
that want to use it to determine the modem capabilities.

kconfigSpeed Indicates the speed (in bps) at which to configure the serial
hardware communicating with the modem. You must specify a
speed greater than the fastest connection speed supported by
the modem. Must be set to at least 19200 for fax.

kcommandTimeout Indicates how long (in milliseconds) the modem tool should
wait for a modem response to a command before timing out. A
setting of 2000 ms. is usually sufficient, though some modems
may require 3000 or 4000 ms.

kmaxCharsPerLine Indicates the maximum number of command line characters
that the modem can accept, not counting the AT prefix and the
ending carriage return.

kkinterCmdDelay Indicates the minimum amount of delay required between
modem commands, in milliseconds. This is the time from the
last response received to the next command sent. A setting of
25 ms. is usually sufficient, (longer delays are not recommended
for fax operation.)

kmodemIDString Normally set this to the string “unknown”. This string is used if
the modem tool attempts to identify the modem using the ATI4
command. It should be set to the same string with which the
modem responds.

kconfigStrNoEC The configuration string used for non-error corrected data
connections when kdirectConnectOnly is true, and for FAX
connections. This configuration string must enable speed
buffering. The default string is as follows:

E0 Echo off (always required.)
&C1 DCD indicates the true state of the remote carrier.
S12=12 Escape guard time is 240 ms. (12*20). Modems usually set

S12=50.
W2 Report connection in “CONNECT bps” format. Not all modems

accept this command. An alternative is to use Q0 with X1 or X4,
and V1.

&K3 Enables bi-directional RTS/CTS flow control. The modem uses
CTS to control flow from the Newton, and the Newton uses RTS
to control flow from the modem. This does not work on all
modems. An alternate form is \Q3\X0. It is possible that &R0
and \D1 will be required as well.

&Q6 Use normal buffered mode. Again, this does not work on all
modems. An alternate form is to use \N0, or on some modems
\N7.
Without hardware flow control (kdirectConnectOnly is true),
software flow control should be used for FAX connections. In
this case, instead of &K3, use the following commands:

&K4 Enables bi-directional XON/XOFF flow control. The modem and
Newton halt data flow when they receive XOFF (DC3) and
resume data flow when they receive XON (DC1). This does not

Constant Description

kidModem Should be set to nil to prevent the modem tool from executing
a modem ID sequence and automatically setting the modem
profile.

ksupportsCellular Indicates if the modem supports cellular data connections. If
true, the configuration string defined by kConfigStrCellular is
used for cellular connections. If nil, the normal data mode
configuration string is used for cellular connections.

Constant Description

kidModem Should be set to nil to prevent the modem tool from executing
a modem ID sequence and automatically setting the modem
profile.

kuseConfigString Set this to true, unless the modem happens to be configured
exactly correctly when it is reset, which is very unlikely. A setting
of true means that a modem configuration string is to be sent to
the modem before initiating a connection. The modem
configuration string is defined in the modem profile option and
depends on the connection type. If nil, no modem
configuration string is sent.

kuseDialOptions Set this to true to send the default dialing configuration string to
the modem, following the configuration string. The default
dialing configuration string is:
ATM1L2X4S7=060S8=001S6=003\n. If you specify nil, the
dialing configuration string is not sent to the modem.

khangUpAtDisconnect Set this to true. This setting causes a “clean” hang-up sequence
to occur when the modem disconnects. If nil, no hang-up
commands are sent to the modem on disconnect.

Newton Technology Journal June 1995

7

When the modem tool establishes communication with the modem
through an endpoint, a configuration string is normally sent to the modem
(as long as kuseConfigString is true). There are several configuration strings
defined in a typical modem profile, and the one that is sent depends on the
type of connection requested and other parameters set in the modem profile.
Table 4 summarizes when each kind of configuration string is used:

TABLE 4. SUMMARY OF CONFIGURATION STRING USAGE

IMPORTANT: MODEM TOOL REQUIREMENTS

It is important that modem setup developers understand the basic
requirements and expectations of the Newton modem communications tool.
This tool expects a modem to have the following characteristics:

• The modem tool expects a PCMCIA modem to use a 16450 or 16550
UART chip.

• Hardware flow control is expected in both serial and PCMCIA modems.
In modems not supporting hardware flow control, direct connect
support is required, and the modem profile parameter
kdirectConnectOnlymust be set true. This means that the
modem tool and the modem must be running at the same bit rate,
allowing for no compression or error correction protocols to be used by
the modem. (When operating in direct connect mode, the data rate of
the modem tool is automatically adjusted to the data rate stated in the
“CONNECT XXXX” message.)

• The modem tool expects control signals to be used as follows:
• The modem tool uses RTS to control data flow from the modem

Configuration String When Used
kconfigStrNoEC The default configuration used for data connections when

kdirectConnectOnly is nil. Also used for FAX connections.

kconfigStrECOnly Used for data connections that require error correction.
This configuration string is used only if requested by an
application. The constant ksupportsEC must be true for
this configuration string to be used.

kconfigStrECAndFallback Used for data connections that allow error correction, but
can fall back to non-error corrected mode. This
configuration string is used only if requested by an
application.

kconfigStrCellular The default configuration used for cellular data
connections when ksupportsCellular is true.

kconfigStrDirectConnect The default configuration used for data connections when
kdirectConnectOnly is true.

Constant Description

W2 Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use Q0
with X1 or X4, and V1.

&K0 Disable serial port flow control. The Newton must be
dynamically configured to match speeds with the
modem’s negotiated speed. This does not work on all
modems. An alternate form is \Q0\X0.

&Q0 Use direct connect mode. Again, this does not work on all
modems. An alternate form is to use \N1.

%C0 Disable data compression. (Note that this can be
interpreted differently on different modems.)

Constant Description

&R1 Assume RTS is always asserted. This does not work on all
modems.

\D0 Force CTS on at all times. This does not work on all modems.

kconfigStrECOnly The configuration string used for data connections that require
error correction. This configuration string must enable speed
buffering and can be used only if hardware flow control can be
enabled. The default string is nil. Here is an example:

E0 Echo off (always required.)
&C1 DCD indicates the true state of the remote carrier.
S12=12 Escape guard time is 240 ms. (12*20). Modems usually set

S12=50.
W2 Report connection in “CONNECT bps” format. Not all modems

accept this command. An alternative is to use Q0 with X1 or X4,
and V1.

&K3 Enables bi-directional RTS/CTS flow control. The modem uses
CTS to control flow from the Newton, and the Newton uses RTS
to control flow from the modem. This does not work on all
modems. An alternate form is \Q3\X0. It is possible that &R0
and \D1 will be required as well.

&Q5 Use reliable mode. Again, this does not work on all modems. An
alternate form is to use &M4 or \N6.

\N6 Try to establish a reliable LAPM link, and if that fails, try to
establish an MNP link, and if that fails, disconnect. You could
also try \N4, especially for cellular connections.

%C1 Enable bilateral MNP 5 or V.42bis data compression. (Note that
this can be interpreted differently on different modems.)

\M1 Enable V.42 detection phase.

kconfigStrECAndFallback The configuration string used for data connections that allow
error corrected communication, and if error correction
negotiation fails, the modem falls back to a non-error corrected
connection. This configuration string must enable speed
buffering and can be used only if hardware flow control can be
enabled. The default string is nil. Here is an example:

E0 Echo off (always required.)
&C1 DCD indicates the true state of the remote carrier.
S12=12 Escape guard time is 240 ms. (12*20). Modems usually set

S12=50.
W2 Report connection in “CONNECT bps” format. Not all modems

accept this command. An alternative is to use Q0 with X1 or X4,
and V1.

&K3 Enables bi-directional RTS/CTS flow control. The modem uses
CTS to control flow from the Newton, and the Newton uses RTS
to control flow from the modem. This does not work on all
modems. An alternate form is \Q3\X0. It is possible that &R0
and \D1 will be required as well.

&Q5 Use reliable mode and fall back depending on the value in
register S36. Again, this does not work on all modems. An
alternate form is to use &Q9, &M4 or \N7.

%C1 Enable bilateral MNP 5 or V.42bis data compression. (Note that
this can be interpreted differently on different modems.)

\M1 Enable V.42 detection phase.

kconfigStrCellular If the modem supports cellular connections, set this constant to
the cellular configuration string, otherwise it should be nil. This
applies to data only. No FAX equivalent exists. Most modems
have an alternate default configuration that is used to set cellular
mode, although some sense the handset automatically. This
alternate default could be AT&F1 or AT&F5. At the very least, this
should be prefixed to the normal data configuration string. Some
manufacturers suggest using \N4 or \N5 instead of \N6 or \N7.

kconfigStrDirectConnect The configuration string used for data connections for
modems that have no speed buffering, and have no error
correction or compression built in (kdirectConnectOnly is
set to true). The default string is as follows:

E0 Echo off (always required.)
&C1 DCD indicates the true state of the remote carrier.
S12=12 Escape guard time is 240 ms. (12*20). Modems usually set

June 1995 Newton Technology Journal

8

• The modem uses CTS to control data flow from the modem tool.
• Support of the DCD signal is optional. In general, the modem tool

expects DCD to reflect the actual carrier state. The usage of this signal by
the modem tool is governed by the kuseHardwareCD
constant.

• The modem tool expects the CONNECT XXXX message to report the
modem-to-modem connect speed – not the computer-to-modem serial
interface speed.

• The modem tool expects non-verbose textual responses from the

modem.
• The modem tool expects no echo.
• The modem tool supports the Class 1 protocol for FAX connections. The

configuration string defined by the constant kconfigStrNoEC is
used for sending FAXs. Additionally, these other requirements apply to
the FAX service:

• Flow control is required. In modems not supporting hardware flow
control (where kdirectConnectOnly = true), XON/XOFF
software flow control must be enabled. NTJ

important to us. We knew that if data synchronization was a long slow
process, people would not take advantage of it; simplicity for the user was
another of our key concerns. Using the DILs allowed us to move data from
one platform to the other in a simple, quick way – much more easily and
rapidly, in fact, than we could have without them. Using the DILs also meant
that we would be able to add efficient synchronization to our product
without having to write our own code!

The typical ACT! user is not a computer expert, but what we like to
refer to as a “computer casual user.” People like these do not particularly
want to know how we are moving data from the Macintosh or Windows
machine to their Newton – just that it can be done without much thought.
With the DILs, we were able to create a one-button synchronization that is
extremely easy to use, but still provides a very sophisticated link between
desktop and Newton.

On the desktop, you select "Link to Newton" and on the Newton device
you select "Link", and all of your contact information, notes, histories, and
activities are synchronized intelligently — that is, the information is
exchanged between the machines in a two-way synchronization.

This is an ideal solution for Newton users who previously had to duplicate
their efforts. They might have scheduled an activity on their Newton and then
had to schedule that same event on their desktop machine as well. Not any
more! Whether they have added four new contacts to the Newton or five

new meetings to the desktop machine, the next time that they link, the two-
way synchronization exchanges the data for them automatically.

Of course, the user may want to select how much data is sent between
the Newton and the desktop; for this, we added a "More Choices" dialog.
Here, we let the user filter and select the information to meet their
individual needs. For example, some users might want to copy all their notes
from the desktop system to the Newton for reference information, or they
might want to copy just the history information on each contact from a
specific date.

From our early testing of ACT! for Newton, it has become clear that direct
connectivity offers the exact solution our users wanted. The simple "plug
and sync" solution has been a big hit with those who have used the product.

continued from page 1

Making the ACT! Connection

NTJ

INTRODUCTION

In this article we introduce several AppleTalk concepts and discuss the use of
AppleTalk on the Newton. We will then talk about a general solution to the
problem of Newton communications that includes the ability to support a
complex state machine.

APPLETALK

AppleTalk is an ISO-compatible network protocol. Figure 1 shows the AppleTalk
protocol stack with the protocols most significant to the Newton highlighted.

Figure 1: AppleTalk Protocol Stack

At the physical level you would use the LocalTalk format going out
through the Newton's SCC port. The LLAP (LocalTalk Link Access Protocol)
forms the packets that go out over the physical layer. These protocols are
not accessible on the Newton from NewtonScript.

DDP (Datagram Delivery Protocol) is a service built on top of LLAP. The
DDP provides "best effort" delivery of data packets. As with LLAP, DDP is
not accessible from NewtonScript.

NBP (Name Binding Protocol) is a protocol built using DDP. NBP allows
names to be assigned to network entities so that they can be referenced
without knowing their network addresses. Certain NBP functions are
available from NewtonScript as described later in this article.

ZIP (Zone Information Protocol) is a protocol that allows network entities
to get information about other local networks (called zones) in an internet.
There are a few ZIP routines available from NewtonScript.

ADSP (AppleTalk Data Stream Protocol) is a data stream protocol built

on DDP. ADSP guarantees delivery of data in the order sent. It is used
extensively on the Newton to send and receive data through a
NewtonScript endpoint.

The other protocols are not used or are not available from NewtonScript
and are not described here. For details on these, see Inside AppleTalk from
Addison-Wesley, or more recently, Inside Macintosh: Networks.

Sockets and Nodes
Each device on an AppleTalk network is a node and is given a unique ID

number on the local network. These devices can include Macintosh
computers, routers, Newtons and any other device capable of running
AppleTalk. Each network in its turn has a unique ID number, so the
combination of the network ID and the node ID uniquely defines a device.

Within each node there are as many as 127 virtual connections called
sockets. Sockets are software connections that are multiplexed through a
single physical connection. Usually, sockets are associated with a single use,
often a single application. For example, in machines running filing protocol
software, a socket is opened for all file transfers across the network.

Network Visible Entities
A Network Visible Entity (NVE) is a service that has made itself available

through a socket. For example, if a database on a Macintosh registers its
service on a node through a socket, other machines can select this service
and can connect and access the database through this NVE.

In order for an NVE to be visible to other nodes it must register a name on
the network. This is done using the Name Binding Protocol as described below.

NBP (Name Binding Protocol)
The Name Binding Protocol (NBP) allows a text name to be associated

with a service. Each NVE that wants to register its service must pass NBP the
name it wants to use.

Each name has three parts:
• The entity name, which is a string of as many as 31 characters
• The entity type, which usually describes the service, and is a string of as

many as 31 characters
• The name of the zone (local network) which is again a 31-character string

The colon character (:) separates the name from the type and the “at”
character (@) separates the type from the zone name. For example:
LlamaBase:LlamaShare@LlamaWorld describes an entity name
"LlamaBase", of type "Llama Share”, in the zone named "LlamaWorld".
Taken in its entirety this NBP name is called an NBP tuple.

In searching for a network visible entity on a local network there are
three special characters that are useful: the asterisk (*), the “equals” sign
(=), and the “about equals” sign (≈)(which is made by typing Option-x).
These special wildcard characters can be used when you don't know or don't
want to specify the exact name of an NVE. Note that these characters cannot

APPLICATION

SESSION

PRESENTATION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

AFP Post-

Script

Token

Ring Ethernet

ZIP ASP PAP

RTM AEP ATP

TLAP ELAP

ADSP

NBP

LLAP

Local

Talk

DDP

AppleTalk and Complex State Machines
by Bill Worzel, Arroy Software, ArroyoSeco@eworld.com

NewtonScript Techniques

Newton Technology Journal June 1995

9

June 1995 Newton Technology Journal

10

be used in giving yourself a name; they can only be used to for a search.
The asterisk (*) is used when specifying the zone to be searched. It means

that the default (local) zone should be used. So, LlamaBase:LlamaShare@*
looks for the NVE called "LlamaBase" of type "LlamaShare" in the local zone.

The “equals” (=) and “about equals” (≈) characters are used to specify
part or all of the entity name or type. The difference between them is that
the equals (=) character substitutes for an entire name or type, while the
“about equals” character (≈) is a partial substitution. For example the string
=:Llama≈ @* describes any NVE in the local zone whose type begins with
"Llama". So the NVEs LlamaBase:Llama Share@Llama World (assuming
Llama World was the default zone) and Fred:Llama Llama@Llama World
are both matched by the example string while Fred:ShareLlamas@Llama
World and Fred:LlamaShare@Another Zone would not be matched.

Figure 2 shows an example of a network with the local zone LlamaWorld
containing a Macintosh and a Newton, each with a node address and two
sockets open. On the Macintosh, the application LlamaBase has registered
as an NVE of type LlamaShare and an entity name of LlamaBase, and thus
should be visible to the Newton without specifying the zone name.

Figure 2: Example Network

ZIP (Zone Information Protocol)

The Zone Information Protocol (ZIP) is used to get information about
other networks or zones in an internet. Each router maintains a table of
information about networks that is dynamically updated as the internet
changes. A node may access this information using ZIP to find out about
other zones in the internet and, using NBP, other NVEs in other zones.

Newton Functions
When using AppleTalk functions on the Newton you must first open the

AppleTalk driver by calling the global function OpenAppleTalk(). This is
usually done at startup (for instance, in viewSetupDoneScript) or
when AppleTalk is chosen from a number of different communications options.

Similarly, when the communication code is finished, you should call
CloseAppleTalk(); this is usually in the viewQuitScript or
when the application is done using AppleTalk. If you forget to close

AppleTalk and then try to open it again, you will get an error (error ID = -
12014). In the future, the AppleTalk driver will not need to be opened or
closed at all from NewtonScript but for the moment the key thing to
remember is that you must always explicitly close the driver.

To get information about available zones, there are three global functions
you can use:

HaveZones() // returns true if there are zones
GetMyZone() // returns the Newton's zone
GetZoneList() // returns array of all zones

Note that to be compatible with AppleTalk on the Macintosh, all
AppleTalk functions on the Newton must return 0 if there is no error, as
opposed to returning the value nil that is usually used in NewtonScript.

The following NBP calls are available on the Newton:

NBPStartLookup(nve) // starts NBP search for entity
// described by 'nve'

NBPLookupCount() // number of matches found so far
NBPGetLookupNames() // Returns array of matches found
NBPStopLookup() // stops search for matches

An NBP lookup can take an arbitrary amount of time depending on the size of
the internet being searched, so the basic strategy for doing a lookup is to start a
search by calling NBPStartLookup() (perhaps in the
viewSetupFormScript)and then periodically checking (in a
viewIdleScript, for instance)to see whether the list of names returned
by NBPGetLookupNames() has stopped growing. If it has, then it is
probably the case that you have found all candidates across all networks within a
reasonable distance from your Newton, and you would then call
NBPStopLookup(). An example of this technique is shown below.

in viewSetupFormScript for base view...

nve:="=:LlamaShare@*"; // look for all LlamaShare's
NBPStartLookup(nve); // ...entities in local zone
:SetupIdleScript(1000); // call idlescript in 1 sec
gNumEntities:=0; // haven't found any yet

in viewIdleScript

local numberFound;

numberFound:=NBPLookupCount();
if numberFound =gNumEntities then

return nil; // no more idle calls
else
begin

gNVEList:=NBPGetLookupNames(); // use what's found
return (1000); // call again in a second

end;

One important thing to note is that, primarily because of battery
considerations, Newtons cannot register network-visible entities. While your
Newton application can connect to entities discovered in a lookup, it cannot
register an NVE to which other machines can connect. This is largely a question
of who initiates the connection. The Newton must start the connection;
thereafter, as we will see below, communication is bidirectional and full-duplex.

The next question is how to allow a Newton user to choose among NVEs. You
could take the array of names returned by NBPGetLookupNames(),
put up a floater to display the list, and allow the user to pick an entity from
the list — but it turns out that Apple has already provided this in the form of
a root object called NetChooser. TheNetChooser is the
Newton equivalent of the Chooser on the Macintosh. It is used to select
from among NVEs. Figure 3 shows the slip that NetChooser puts up
while it is looking for candidate NVEs:

Backbone

Other Zone

'LlamaWorld'

Zone

"LlamaBase:LlamaShare@LlamaWorld"

Node 63 Node 23

Socket 17

Socket 33

Socket 77

Socket 51

Newton Technology Journal June 1995

11

Figure 3: NetChooser Slip

After it has found all NVEs meeting the specified criteria, the box changes
to a list of choosable NVEs:

You invoke NetChooser by calling the following method:

GetRoot().NetChooser:OpenNetChooser(zone, name,
startselection, who, connect, header, lookfor);
// puts up slip that lists NVEs to choose from

The zone argument is the zone to look in for the entity specified by the
name argument. If zone is nil (not “*”) then the default (local) zone is
used.

The n a m e is the NVE name without the zone but with the “at” sign
(@) at the end of the name (for example, =:anyName@).

The startselection argument is an NVE name for the item that
will be highlighted when the NetChooser slip NVE list is displayed.

The w h o argument is a reference to the view to which
NetChooser will send a message when the user has chosen an item.

The connect argument is a string that is displayed in the button
below the selection list. (In Figure 3 it is the string "Pick this one".)

The header argument is a string that appears above the selection list
("Select a Llama Server:" in Figure 3.)

The look for argument is the string that appears in the selection box
while NetChooser is compiling the list of entities to display ("Looking
for Servers..." , in Figure 3.)

An example of the NetChooser call for the slip shown in Figure 3
would be:

GetRoot().NetChooser:OpenNetChooser(nil,
"=:LlamaShare@",nil,self,"Pick this one","Llama
Server","Servers");

After the user selects an item from the list displayed, NetChooser
sends the view specified by the w h o argument the message
NetworkChooserDone as shown here:

// method called in 'who' view after selection made
NetworkChooserDone(curSelection, curZone)

As with OpenNetChooser, the zone will be nil if the zone where
the selection was made is the local zone, so make sure that this is converted to
the asterisk (*) character if the NVE name is saved or used in your application.

ADSP
The Newton currently uses the ADSP (AppleTalk Data Stream Protocol) to

send and receive data through AppleTalk endpoints. As with other endpoints,

the implementation of these calls is hidden from the user; to the programmer
sending and receiving data once a connection is established looks very much
the same as it does for other endpoints. However, it is worth describing the
characteristics of ADSP briefly, so that you have an idea of how it will behave.

ADSP is a full-duplex, bidirectional protocol with guaranteed delivery of
data in the order sent. This means that you can send and receive at the
same time (no modes) and that what you send will either get to the receiver
in the exact byte-order you sent it, or you will get an error message back.
Data acts as if it is traveling down a pipeline with each byte in order
numbered, so that if data is received out of order, the receiver is able to ask
the sender for the missing data. This mechanism is implemented below the
ADSP client's API level, and thus is invisible to the caller.

To use an AppleTalk endpoint, you will first use NetChooser or
some other method of deciding what entity the user wants to connect with.
Then you define an endpoint using the NVE address as the endpoint
address, send the Instantiate and Connectmessages as before,
call the Send or SendFramemessages for outgoing data and use
InputSpec frames to receive.

An example of an ADSP endpoint definition is shown below:

ADSP Endpoint Definition

myADSPep:= {
_proto: protoEndpoint,
configOptions: [
{ label: kCMSAppleTalkID, type: 'service,
opCode: opSetRequired },

{ label: kCMSAppleTalkID, type: 'option,
opCode: opSetRequired,
data: kCMOAppleTalkADSP },

{ label: kCMDEndpointName, type: 'option,
opCode: opSetRequired,
data: kADSPEndpoint }

{ label: kCMARouteLabel, type: 'address,
opCode: opSetRequired,
data: {

addressType: kNamedAppleTalkAddress,
addressData: "LlamaFarm:LlamaServer@*"

}
}
] };

As of this writing, there are two bugs that you should know about. The
first bug is caused by the Newton's habit of always trying to open a socket
with the same ID when AppleTalk is first started. Normally this doesn't matter,
but in at least two instances it can cause problems. The first scenario in which
this socket ID can be a problem is if the Newton crashes and the user restarts
the application too quickly. In this case, machines that had been connected
to the Newton won't see the Newton crash; when the same socket ID is used
it will connect the "new" Newton socket with its "old" connection. The result
is usually an instance of cross protocols, because the Newton thinks it is a new
connection when the other machine does not. In other words, your Newton
state machine may be trying to log on to a server, while the server thinks the
Newton is connected and is waiting for the next request.

There is no simple solution to this other than to wait for about two
minutes, then the AppleTalk connection will time out and the other machine
will tear down the connection. Usually this problem occurs when you are
debugging your application, but of course if a user has a crash after the
product ships, this may affect him or her.

The second problem the socket ID causes is very similar to the first: if
the user quits an application that has an open connection and then restarts it
quickly, the same situation may arise, even if the application disconnected.

June 1995 Newton Technology Journal

12

This is because the disconnection may not have fully occurred, since it
happens in a different thread. Again, the other machine may think it is still
connected when the new connect request comes in.

In this latter case you have a little more control over matters. Here, you
can force the situation by not quitting the application until the connection
has actually been destroyed. This can be done in several ways; probably the
preferred way is to set up a delayed action to handle disconnecting and
disposing. The delayed action should then set a state variable in your root
view to reflect that you have disconnected. Then if the user restarts too
quickly, the state variable will still show the endpoint as being connected.

The second bug is more serious and to deal with it completely you must
control transmission speeds on the Newton. When an endpoint is
instantiated and connected, a direct link between the NewtonScript
endpoint and the Comms Tool is formed. Requests and responses pass
between them through a buffer, as shown in Figure 4 below.

Figure 4: Request Buffer

This situation can create a deadlock problem where the Comms Tool
wants to put a response into the buffer but cannot because the buffer is full,
and the Newton Task cannot take out a response, because it is busy trying to
put in a request. This is akin to the classic "Dining Philosopher's Problem"
posed so often in introductory computer programming classes.

For most endpoints this situation never occurs, as the requests and
responses are sparse enough and are handled quickly enough that the
respective tasks are able to keep the circular buffer from filling. However,
AppleTalk is a fairly "chatty" set of protocols, particularly in the version
currently in use on the Newton. Thus this situation can occur when there is
a lot of high-speed traffic between the Newton and another machine. Once
this occurs, communication becomes locked up and the Newton must be
restarted to clear the buffer.

The solution to this problem at the moment is to "throttle back" transmission
of data so that the respective tasks get a chance to clear the buffer before the next
request is sent. An example of this is shown in the LlamaTalk code included at
the end of this article. This code uses a viewIdleScript in the
protoLlamaTalk user proto to break outgoing data into 1K chunks and
to send chunks only every fIdleSpeedmilliseconds.

PROTOLLAMATALK

Theory of Operation
Jim Schram of Apple Computer's PIE DTS group developed a user

prototype called protoLlamaTalk. Because it handles so many
issues so well, we have included it here to give it additional distribution.

The protoLlamaTalk proto is a clView-based prototype with
no visual components in the layout (although it does draw some shapes to
show the state of a connection). It supports a binary data protocol in which
an object is sent with a header describing the type and length in bytes,
followed by a binary stream of data bytes. This protocol is used for both
input and output of data.

Output is transaction-based with the methods MBeginTransaction
starting an outgoing transaction and the methods MWrite and

MWriteObject being used to post data to the current transaction. A
transaction is closed with a call to MEndTransaction. The data is not
actually sent when MWrite and MWriteObject are called; instead the
data is queued in the fWriteQueue for later transmission. Each call to
these methods adds a new binary item to the queue.

All data is actually sent from LlamaTalk's viewIdleScript. Because
of the problem described above, ADSP data transmission is "throttled back"
as noted above by setting the time between idle calls to a larger value. This
avoids filling the request queue, and causing gridlock. Whether the ADSP
protocol selected is or not, data is sent in chunks of 1024 bytes (or fewer if
there is there are fewer than 1024 bytes remaining in the outgoing queue)
from viewIdleScript. The data being sent is actually moved from
the fWriteQueue to the fOutputQueue by queuing up the
transaction queue frame in the output queue. The viewIdleScript
then sends the data by removing the objects from this queue and sending
them a chunk at a time.

Input is controlled by two key input specs:
FInputHeaderComponent and
FInputDataComponent. The first input spec is set when new
data is expected starting with the protocol header information. Thereafter the
FInputDataComponent input spec is used until all data are
received in the incoming binary object. Data is received 512 bytes at a time
and is in turn put onto the fInputQueue. To remove data from this
queue, an application can simply define a script called:
MLlamaTalk_InputScript, That will be called in the
viewIdleScript if there is data in the queue. This application input
script will be passed the next chunk of data from the queue and may do with
it as it pleases since it is outside of the queue before being passed to the
application.

// Copyright © 1994 Apple Computer, Inc. All rights reserved

constant kAppSymbol := '|LlamaTalk:PIEDTS|;
constant kAppName := "Llama Talk 1.0a7";

constant kMaxAppWidth := 240; // original MP width
constant kMaxAppHeight := 336; // original MP height

// ---- End Project Data ----

File LlamaTalkMain.t
// Before Script for “vDali”
// This file and project is Copyright © 1994 Apple Computer, Inc. All rights reserved.

vDali :=
{viewFormat: 83951953,
viewBounds: {left: 2, top: 2, right: 242, bottom: 338},
title: "",
viewSetupFormScript:
func()
begin

// make view no bigger than the original MP
local b := GetAppParams() ;
viewBounds := RelBounds(b.appAreaLeft, b.appAreaTop,

MIN(b.appAreaWidth, kMaxAppWidth),
MIN(b.appAreaHeight, kMaxAppHeight));

end,
viewSetupDoneScript:
func()
begin
:DoUpdateButtons();
end,

DoConnect:
func()
begin
:DoMessage("Connecting…");
if not vLlamaTalk:MIsOpen() then

vLlamaTalk:Open();

Comms ToolCircle
BufferNewton Task

EnQ Reqs DeQ Reqs

EnQ RespDeQ Resp

Newton Technology Journal June 1995

13

if vProtocol.clusterValue = 1 then begin
vLlamaTalk:MSetProtocol('ADSP);
vLlamaTalk:MSetAddress("Echo Server:EchoLlama@*");

end
else begin

vLlamaTalk:MSetProtocol('MNP);
vLlamaTalk:MSetAddress(nil);

end;

vLlamaTalk:MSetQuietDisconnect(true);

local err := nil;
if vAsync.viewValue then

err := vLlamaTalk:MConnectAsync()
else if not err := vLlamaTalk:MConnect() then

:DoMessage("Connected, waiting for disconnect…");

if err then begin
:DoMessage("Ready for connect...");
vLlamaTalk:Close();

end;

:DoUpdateButtons();
end,

DoDisconnect:
func()
begin
vLlamaTalk:MDisconnect();
vLlamaTalk:Close();
:DoUpdateButtons();
:DoMessage("Ready for connect…");
end,

DoMessage:
func(message)
begin
SetValue(vMessage, 'text, Clone(message));
RefreshViews();
end,

DoUpdateButtons:
func()
begin
if vLlamaTalk:MIsOpen() then begin

if vLlamaTalk:MIsConnected() then
SetValue(vConnect, 'text, "Disconnect")

else if vLlamaTalk:MIsConnecting() then
SetValue(vConnect, 'text, "Stop Connecting")

else
SetValue(vConnect, 'text, "Connect");

SetValue(vOpenClose, 'text, "Close");

if vLlamaTalk:MIsVisible() then
SetValue(vShowHide, 'text, "Hide")

else
SetValue(vShowHide, 'text, "Show");

vShowHide:Show();
end

else begin
SetValue(vConnect, 'text, "Connect");
SetValue(vOpenClose, 'text, "Open");
vShowHide:Hide();

end;
end,

MLlamaTalk_InputScript:
func(data)
begin
local s := ExtractCString(data, 0);

// note: ExtractCString is currently undocumented. Some of the Extract/Stuff routines have special
// restrictions and workarounds. Read the PIEDTS “Utility Functions” Q&A for more information.

:DoMessage(s);
end,

MLlamaTalk_StdError:
func(messageText, errorNum)
begin
:DoUpdateButtons();
if errorNum = 0 then

local text := messageText
else

local text := messageText & "\n" & NumberStr(errorNum);
:DoMessage(text);
GetRoot():Notify(kNotifyAlert,

EnsureInternal(kAppName), EnsureInternal(text));

end,
fLlamaTalkState:

// this is a REQUIRED slot for use with protoLlamaTalk it MUST have the initial value of NIL
// when compiled it orchestrates the connect and disconnect process

nil,
MLlamaTalk_StateChanged:
func()
begin
:DoUpdateButtons();
end,

_proto: protoApp,
debug: "vDali"
};

File protoLlamaTalk
// Before Script for “LlamaTalk”
/* protoLlamaTalk

This layout file is copyright © 1994 Apple Computer, Inc. All rights reserved.

Modification Status
YY/MM/DD Name Comments
94/09/22 Jim Schram Released as 1.0a7 - removed power-off patch code

(install “MP110 Power Off Update.pkg” instead)
94/07/07 Jim Schram Released as 1.0a6 - modified to use kViewIsOpenFunc &

kLlamaTalkStuffCStringFunc
94/06/21 Jim Schram Released as 1.0a5 - added improved CloseAppleTalk support
94/06/10 Jim Schram Released as 1.0a4 - added dynamic GotoSleep patch code
94/05/13 Jim Schram Released as 1.0a3 - added support for typed transaction data
94/05/04 Jim Schram Released as 1.0a1
94/03/17 Jim Schram Initial Development

The LlamaTalk packet format is as follows:
1 byte packet type
3 bytes packet length (MSB -> LSB order)
N bytes packet data

Currently only packet type cLTPacketType_Simple (zero) is implemented.
Future packet types will include features such as compression and encryption.
All other packet types are reserved.

*/

DefConst('kDebugLlamaTalk, nil);
// true = print comms debugging statements on bunwarmers, nil = supress them
DefConst('kLlamaTalkState_Disconnected, nil);
// ready-to-go (default state)
DefConst('kLlamaTalkState_Connect, 1);
// preparation for (asynchronous) connect
DefConst('kLlamaTalkState_Connecting, 2);
// in-process of (asynchronous) connect
DefConst('kLlamaTalkState_Connected, 3);
// connected (requires disconnect)
DefConst('kLlamaTalkState_Disconnecting, 4);
// in-process of (asynchronous) disconnect

DefConst('kLlamaTalkType_nil, 0);
// transaction data item types, as used in :MWriteObject() -- DO NOT RENUMBER!
DefConst('kLlamaTalkType_true, 1);
DefConst('kLlamaTalkType_char, 2);
DefConst('kLlamaTalkType_integer, 3);
DefConst('kLlamaTalkType_real, 4);
DefConst('kLlamaTalkType_string, 5);
DefConst('kLlamaTalkType_binary, 6);

DefConst('kLlamaTalkError_IllegalOperation, -666);
DefConst('kLlamaTalkError_EndpointInUse, -667);
DefConst('kLlamaTalkMessage_EndpointInUse,"Another application
seems to be using the communications port.");

DefConst('kLlamaTalkNewBinaryFunc, func(size)
SetLength(SetClass(Clone(""), 'binary), size));

// Note: StuffCString is currently undocumented. Use it at your own risk. Some of the Extract/Stuff
// routines have bugs or special workarounds. A forthcoming item in the “Q&A - Utility Functions”
// document will discuss the workarounds.
DefConst('kLlamaTalkStuffCStringFunc, func(theObject, theOffset,
theString) begin // modifies and returns theObject

local len := StrLen(theString);
if len < 4 then begin // work-around for StuffCString bug

for i:= 0 to len - 1 do
StuffChar(theObject, theOffset + i, theString[i]);

StuffByte(theObject, theOffset + len, 0);
end

June 1995 Newton Technology Journal

14

else
StuffCString(theObject, theOffset, theString);

return theObject;
end

);

DefConst('kLlamaTalkQueueTemplate,
// create a new queue like this: kLlamaTalkQueueTemplate:MInstantiate('FIFO);
{

MInstantiate: func(queueType)
// currently 'FIFO (first-in-first-out) and 'FILO (first-in-last-out) queues are supported

begin
if queueType = 'FIFO or queueType = 'FILO then

return { _proto: self,
fType: queueType, // 'FIFO or 'FILO
fNbElem: 0, // 0 - N
fData: [],} // array [] of fNbElem enqueued items

else
return nil;

end,

MDispose: func()
begin

fType := nil;
fNbElem := nil;
fData := nil;
return nil;

end,

MReset: func()
// empties the queue, allowing potential garbage collection to occur

begin
if fType then begin

fNbElem := 0;
SetLength(fData,0);

end;
return nil;

end,

MEnQueue: func(data)
// adds a non-nil data item to a queue according to queue type

begin
if data then

if fType = 'FIFO or fType = 'FILO then begin
fNbElem := fNbElem + 1;
SetLength(fData, fNbElem);
fData[fNbElem - 1] := data;
return nil;

end;
return data;

end,

MDeQueue: func()
// removes a data item from a queue according to queue type

begin
if not fType or fNbElem <= 0 then

return nil;
if fType = 'FIFO then begin

fNbElem := fNbElem - 1;
local data := fData[0];
ArrayMunger(fData, 0, 1, nil, 0, 1);

end
else if fType = 'FILO then begin

fNbElem := fNbElem - 1;
local data := fData[fNbElem];
ArrayMunger(fData, fNbElem, 1, nil, fNbElem, 1);

end
else

local data := nil;
return data;

end,

MGetQueueSize: func()
// return the number of data items in the queue

begin
if fType = 'FIFO or fType = 'FILO then

return fNbElem
else

return 0;
end,

MGetDataSize: func()
// return the sum of the binary Length() of each data item in the queue

begin
local len := 0;

if fType = 'FIFO or fType = 'FILO then
foreach item in fData do

len := len + Length(item);

return len;
end,

});

// the following constants (kDA_StatusFrame, kDA_ActionFunc, kDA_AddDeferredAction) are used to
// implement “killable” deferred actions --> see MAddDeferredAction for more info

DefConst('kDA_StatusFrame,
{ fRunIt:true,

fRanIt:nil,
RanIt: func()

fRanIt,
KillIt: func()

begin
fRunIt := nil;
fRanIt;

end,
});

DefConst('kDA_ActionFunc,
func(fn, args, status)
begin

status.fRanIt := true;
if status.fRunIt then

Apply(fn, args);
end);

DefConst('kDA_AddDeferredAction,
func(fn, args)
begin

local status := {_proto: kDA_StatusFrame};
AddDeferredAction(kDA_ActionFunc, [fn, args, status]);
status;

end);

LlamaTalk :=
{
MWriteObject:
func(data) // WARNING: This func contains work-arounds and currently

// undocumented functions. Use at your own risk!
begin
if fLlamaTalkState <> kLlamaTalkState_Connected then

return;

IF kDebugLlamaTalk THEN LT_PRINT("Enqueueing data...");

local translation := nil;

if not data then begin // Note: if-then-else tree is structured for common-case efficiency
translation := :MNewBinary(1);
StuffByte(translation, 0, kLlamaTalkType_nil);

// object type = nil
end

else if IsInstance(data, 'string) then begin
local len := StrLen(data);
translation := :MNewBinary(len + 4);
StuffByte(translation, 0, kLlamaTalkType_string);

// object type = string
StuffByte(translation, 1, len >> 8); // MSB of length
StuffByte(translation, 2, len); // LSB of length
call kLlamaTalkStuffCStringFunc with (translation,

3, data); // N single byte chars (Mac encoding for chars 128-255)
SetLength(translation, len + 3);

// get rid of that zero terminator byte from StuffCString
end

else if IsInstance(data, 'int) then begin
translation := :MNewBinary(5);
StuffByte(translation, 0, kLlamaTalkType_integer);

// object type = integer
StuffLong(translation, 1, data);

// MSB -> LSB of 4 byte sign-extended value
end

else if IsInstance(data, 'char) then begin
translation := :MNewBinary(2);
StuffByte(translation, 0, kLlamaTalkType_char);

// object type = char

Newton Technology Journal June 1995

15

StuffChar(translation, 1, data);
// 1 single byte char (Mac encoding for chars 128-255)

end

else if IsInstance(data, 'boolean) then begin
translation := :MNewBinary(1);
StuffByte(translation, 0, if data then

kLlamaTalkType_true // object type = true
else

kLlamaTalkType_nil); // object type=nil (=false)
end

else if IsInstance(data, 'real) then begin
local s := NumberStr(data);
len := StrLen(s);
translation := :MNewBinary((len*2) + 2);

// workaround for bug in StuffPString (overwrites buffer by factor of 2)
StuffByte(translation, 0, kLlamaTalkType_real);

// object type = real (as an N-char string)
StuffPString(translation, 1, s);

// pascal string representation (length byte followed by chars)
SetLength(translation, len + 2);

// reduce the buffer to the correct size
end

else if IsInstance(data, 'binary) then begin
local len := Length(data);
translation := :MNewBinary(len + 5);
StuffByte(translation, 0, kLlamaTalkType_binary);

// object type = binary (bytes)
StuffLong(translation, 1, len);

// MSB -> LSB of 4 byte sign-extended length of object
BinaryMunger(translation, 5, len, data, 0, len);

// data bytes
end

else begin
IF kDebugLlamaTalk THEN LT_PRINT(

"Unsupported data class!!! Cannot enqueue...");
:?MLlamaTalk_StdError("Unsupported data class (" &

SPrintObject(ClassOf(data)) & "). Cannot
enqueue.", -48215);

end;

fWriteQueue:MEnQueue(translation);
// FYI :MEnQueue() won't enqueue a nil (this is good...)

return translation;
end,

MAddDeferredAction:
/* use this method like you would use AddDeferredAction the difference is that this routine

returns a frame containing closures which can be used to "cancel" the deferred action before it
executes and to query whether or not the deferred action has executed.
Example:

local x := :MAddDeferredAction(func() GetRoot():SysBeep(), []);
if x:RanIt() then print("already executed");

else print("waiting to run");
if x:KillIt() then print("already executed");

else print("canceled");

obviously you’ll keep x around in a slot if you ever want to cancel the deferred action...
*/

kDA_AddDeferredAction // (fn, args),
viewSetupDoneScript:
func()
begin
AddPowerOffHandler(SELF); // do not allow the Newton to sleep

// while we're connected
end,

MIsVisible:
func()
begin
if fBusyShapes then

true
else

nil;
end,

MRead:
func()
begin
if fInputQueue then

fInputQueue:MDeQueue()
else

nil;
end,

MIsOpen:
func() // this function will only work when 'self' is the protoLlamaTalk view!
begin // In other words, we're called using: if view:MIsOpen() then...
return call kViewIsOpenFunc with (self);
end,

viewFormat: nil,
MBeginTransaction:
func()
begin
if fLlamaTalkState <> kLlamaTalkState_Connected then

return;

IF kDebugLlamaTalk THEN LT_PRINT("Beginning write
transaction...");

fWriteQueue:MReset();
return true;
end,

fDisconnectSlip:
{
_proto: protoFloater,
viewBounds: { left: 0,

top: 0,
right: 108,
bottom: 44, },

viewJustify: vjParentCenterH + vjParentCenterV, // 80

powerOffScript: func(what) nil,
viewSetupDoneScript:func() AddPowerOffHandler(self),
viewQuitScript: func() RemovePowerOffHandler(self),

stepChildren: [
{ _proto: protoStaticText,

viewBounds: { left: 8,
top: 8,
right: 104,
bottom: 40, },

viewJustify: vjCenterH, // 2
text: "Disconnecting...\nPlease Wait...",
},

],
},

viewQuitScript:
func()
begin
:MDisconnect();

fInputQueue := fInputQueue:MDispose();
fOutputQueue := fOutputQueue:MDispose();
fWriteQueue := fWriteQueue:MDispose();

fEndPoint := nil;
fEndPointAddress := nil;
fEndPointConfig := nil;

fOutputData := nil;
fOutputPhase := nil;

fIsQuietDisconnect := nil;
fBusyShapes := nil;

RemovePowerOffHandler(SELF); // allow the Newton to go to
// sleep now we’re no longer connected

if kDebugLlamaTalk then
RemoveSlot(functions, 'LT_PRINT);

end,
MGetAddress:
func()
begin

if HasSlot(fEndPointAddress, 'data) and
HasSlot(fEndPointAddress.data, 'addressData) then

return fEndPointAddress.data.addressData
else

return fEndPointAddress;
end,

MNewBinary:
func(size)
begin
return call kLlamaTalkNewBinaryFunc with (size);
end,

viewDrawScript:
func()

June 1995 Newton Technology Journal

16

begin
if fLlamaTalkState = kLlamaTalkState_Connected then

:MDrawBusyIcon('IDLE)
else

:MDrawBusyIcon('DISCONNECTED);
end,

FInputHeaderComponent:
{
inputForm: 'raw,
byteCount: 4,
inputScript: func(ep, data)
begin

local size := ExtractByte(data, 1) << 16 +
ExtractByte(data, 2) << 8 + ExtractByte(data, 3);

IF kDebugLlamaTalk THEN
LT_PRINT("FInputHeaderComponent called,

byte count =" && NumberStr(size));

if ExtractByte(data, 0) = 0 then begin
ep.FInputDataComponent.fData := call

kLlamaTalkNewBinaryFunc with (size);
ep.FInputDataComponent.fDataIndex := 0;
ep.FInputDataComponent.fDataBytesToGo := size;
ep.FInputDataComponent.byteCount := if size < 512

then size else 512;
ep:SetInputSpec(ep.FInputDataComponent);

end
else begin

ep.FInputDataSkipper.fDataBytesToGo := size;
ep.FInputDataSkipper.byteCount := if size < 512

then size else 512;
ep:SetInputSpec(ep.FInputDataSkipper);

end;
end,

},
MConnect:
func()
begin
if not :MIsOpen() then // return an error if this view has not yet been opened!

return kLlamaTalkError_IllegalOperation;

if fLlamaTalkState <> kLlamaTalkState_Disconnected then
return kLlamaTalkError_IllegalOperation;

:MSetLlamaTalkState(kLlamaTalkState_Connect);

fEndPoint.fDeferredObj := nil;
return :MConnectAction(fEndPoint);
end,

fBusyShapes:
nil// holds an array of shapes to be drawn during I/O when this view is visible, nil otherwise
,

MDisconnectCompProc:
func(ep, state, slip) // this routine is called as a deferred action from MDisconnect
begin
if state = kLlamaTalkState_Connected then

ep:Disconnect();
ep:Dispose();
ep:MCloseNetStack();

if slip then
slip:Close();

ep:MSetLlamaTalkState(kLlamaTalkState_Disconnected);
end,

viewFlags: 32,
fEndPointConfigADSP:
{
fIODelay: if kDebugLlamaTalk then 7 else 2,
// must slow down I/O for ADSP to avoid RPC deadlock bug

// bunwarmers need extra slow I/O to handle all the LT_PRINT statements
configOptions:

[
{ label: kCMSAppleTalkID,

type: 'service,
opCode: opSetRequired},

{ label: kCMSAppleTalkID,
type: 'option,
opCode: opSetRequired,
data: kCMOAppleTalkADSP },

{ label: kCMOEndpointName,
type: 'option,

opCode: opSetRequired,
data: kADSPEndpoint},

],
},

MIsConnected:
func()
begin
return fLlamaTalkState = kLlamaTalkState_Connected;
end,

MConnectAsync:
func()
begin
if not :MIsOpen() then // return an error if this view has not yet been opened!

return kLlamaTalkError_IllegalOperation;

if fLlamaTalkState <> kLlamaTalkState_Disconnected then
return kLlamaTalkError_IllegalOperation;

:MSetLlamaTalkState(kLlamaTalkState_Connect);

fEndPoint.fDeferredObj :=
:MAddDeferredAction(MConnectAction, [fEndPoint]);

return nil;
end,

viewIdleScript:
func()
begin
if fLlamaTalkState <> kLlamaTalkState_Connected then begin

// if not connected, turn off idle handler
:Dirty();
return nil;

end;

if :MGetState() < 3 then begin // if connection has dropped,
// disconnect and turn off idle handler

:MDisconnect();
if not fIsQuietDisconnect then

// avoid calling the error method if we’re supposed to keep quiet about it
:?MLlamaTalk_StdError("The connection has

closed unexpectedly.", -1);
return nil;

end;

local outputDone := nil;
// this idle script can be turned off when outputDone and no pending input

IF kDebugLlamaTalk THEN LT_PRINT("Idle Speed" &&
NumberStr(fEndPoint.fIdleSpeed));

if fInputQueue:MGetQueueSize() > 0 then begin
// if there is any input data available, call input script if defined

:DoDrawing('MDrawBusyIcon, ['INPUT]);
:?MLlamaTalk_InputScript(:MRead());

end;

if fOutputPhase = 0 then
// if there is any data to output, start the output state machine

if fOutputQueue:MGetQueueSize() > 0 then begin
IF kDebugLlamaTalk THEN LT_PRINT(

"Beginning output phase...");
fOutputData := fOutputQueue:MDeQueue();

// fOutputData = the transaction to be output
local len := fOutputData:MGetDataSize();
// len = total bytes of this transaction
IF kDebugLlamaTalk THEN LT_PRINT(

"Total length to be written =" && NumberStr(len));
fEndPoint:Output([0, len >> 16, len >> 8, len],nil);

// output the transaction length
fEndPoint:FlushOutput();

fOutputPhase := 1; // go to next state (outputting transaction data)
end

else
outputDone := true;

else if fOutputPhase = 1 then
// output chunks of the transaction until all bytes have been output

if fOutputData:MGetQueueSize() > 0 then begin
:DoDrawing('MDrawBusyIcon, ['OUTPUT]);

local buffer := :MNewBinary(0);
// concatenate transaction data items into a single binary object

repeat
local data := fOutputData:MDeQueue();

Newton Technology Journal June 1995

17

if data then begin
local dataLen := Length(data);
local bufferLen := Length(buffer);
SetLength(buffer, bufferLen + dataLen);
IF kDebugLlamaTalk THEN LT_PRINT(

"bufferLen = " & NumberStr(Length(buffer)));
BinaryMunger(buffer, bufferLen, dataLen,

data, 0, dataLen);
end;

until Length(buffer) >= 1024 or
fOutputData:MGetQueueSize() = 0;

if Length(buffer) > 0 then begin // output the transaction data chunk
fEndPoint:Output(buffer,nil);
fEndPoint:FlushOutput();

end;
end

else begin
fOutputData := nil; // allow garbage collection on this transaction (queue)
fOutputPhase := 0; // go to next state

end;

if outputDone and fInputQueue:MGetQueueSize() = 0 then begin
// if no more data to process turn off idle handler

:DoDrawing('MDrawBusyIcon, ['IDLE]);
return 15000

// slow idle handler (check for dropped connections every 15 seconds)
end

else
return fEndPoint.fIdleSpeed;// number of milliseconds to delay until next idle

end,
MIsQuietDisconnect:
func()
begin
return fIsQuietDisconnect;
end,

MSetProtocol:
func(protocol) // returns the endpoint configuration frame, or

// nil if protocol symbol is unsupported or view is not open
begin
if not :MIsOpen() then

return nil;
if IsFrame(protocol) then

fEndPointConfig := EnsureInternal(protocol)
else if protocol = 'MNP then

fEndPointConfig := fEndPointConfigMNP
else if protocol = 'ADSP then

fEndPointConfig := fEndPointConfigADSP
else

return nil;

:MResetConfig();

return fEndPointConfig;
end,

fEndPointConfig:
nil // contains the “live” endpoint config frame used during endpoint instantiation
,

viewBounds: {left: 100, top: 100, right: 116, bottom: 116},
MCountPendingOutputTransactions:
func()
begin
return if fOutputQueue then

fOutputQueue:MGetQueueSize()
else

0;
end,

MEndTransaction:
func()
begin
if fLlamaTalkState <> kLlamaTalkState_Connected then

return;
IF kDebugLlamaTalk THEN LT_PRINT("Transferring transaction

to output queue. Enabling idle handler.");

fOutputQueue:MEnQueue(fWriteQueue);
fWriteQueue := kLlamaTalkQueueTemplate:MInstantiate('FIFO);

:SetUpIdle(100);
return nil;
end,

MDrawBusyIcon:
func(state)
begin
if fBusyShapes then begin

:DrawShape(fBusyShapes[0].fShape,
fBusyShapes[0].fStyle);

// erase the background, then draw the appropriate icon
if state = 'DISCONNECTED then

:DrawShape(fBusyShapes[1].fShape,
fBusyShapes[1].fStyle)

else if state = 'IDLE then
:DrawShape(fBusyShapes[2].fShape,

fBusyShapes[2].fStyle)
else if state = 'INPUT then

:DrawShape(fBusyShapes[3].fShape,
fBusyShapes[3].fStyle)

else if state = 'OUTPUT then
:DrawShape(fBusyShapes[4].fShape,

fBusyShapes[4].fStyle)
else

:DrawShape(fBusyShapes[1].fShape,
fBusyShapes[1].fStyle)

end;
end,

MCountPendingInputTransactions:
func()
begin
return if fInputQueue then

fInputQueue:MGetQueueSize()
else

0;
end,

MResetConfig:
func()
begin
fEndPoint.configOptions := fEndPointConfig.configOptions;
fEndPoint.fIdleSpeed := (fEndPointConfig.fIODelay + 1)*100;
fEndPoint.MOpenNetStack := func() nil;
fEndPoint.MCloseNetStack := func() nil;

if fEndPoint.configOptions then
foreach option in fEndPoint.configOptions do

if option.type and option.type = 'service and
option.label and
option.label = kCMSAppleTalkID then begin

fEndPoint.MOpenNetStack :=func() OpenAppleTalk();
fEndPoint.MCloseNetStack := func() CloseAppleTalk();
break;
end;

end,
fOutputPhase: nil // holds phase of output state machine during execution,
MResetQueues:
func()
begin
fInputQueue:MReset();
fOutputQueue:MReset();
fWriteQueue:MReset();
end,

powerOffScript:
func(what)
begin
if what = 'okToPowerOff and fLlamaTalkState =

kLlamaTalkState_Disconnected then
TRUE

else
NIL;

end,
fEndPointConfigMNP:
{
fIODelay: 0, // MNP has no RPC deadlock bug, so it can run full-speed comms
configOptions:

[
{ label: kCMSMNPID,

type: 'service,
opCode: opSetRequired},

{ label: kCMOSerialIOParms,
type: 'option,
opCode: opSetNegotiate,
data: { bps: k38400bps,

dataBits: k8DataBits,
stopBits: k1StopBits,
parity: kNoParity } },

{ label: kCMOMNPAllocate,
type: 'option,
opCode: opSetRequired,
data: kMNPDoAllocate },

June 1995 Newton Technology Journal

18

{ label: kCMOMNPCompression,
type: 'option,
opCode: opSetRequired,
data: kMNPCompressionNone },

// also works with kMNPCompressionV42bis (but that uses lots more memory)

{ label: kCMOMNPDataRate,
type: 'option,
opCode: opSetNegotiate,
data: k38400bps },

],
},

MSetAddress:
func(address) // returns the address, or nil if view is not open
begin
if :MIsOpen() then

if address then
if IsFrame(address) then

fEndPointAddress := EnsureInternal(address)
else

fEndPointAddress :=
{

label: kCMARouteLabel,
type: 'address,
opCode: opSetRequired,
data: { addressType: kNamedAppleTalkAddress,

addressData:EnsureInternal(address), },
}

else fEndPointAddress := nil
else nil;
end,

MNewQueue:
func(queueType)
begin
return kLlamaTalkQueueTemplate:MInstantiate(queueType);
end,

MDisconnect:
func() // NOTE: this method may also be called from

// :MEndPointExceptionHandler in which case SELF is the endpoint frame
begin
if fEndPoint
and fEndPoint.fDeferredObj
and not fEndPoint.fDeferredObj:KillIt() then

:MSetLlamaTalkState(kLlamaTalkState_Disconnected);

if fLlamaTalkState <> kLlamaTalkState_Connected
and fLlamaTalkState <> kLlamaTalkState_Connecting
then return;

IF kDebugLlamaTalk THEN LT_PRINT("Disconnecting endpoint");

local currentState := fLlamaTalkState;
:MSetLlamaTalkState(kLlamaTalkState_Disconnecting);

local slip;
if slip := BuildContext(fDisconnectSlip) then

slip:Open();

fEndPoint.nextInputSpec := nil; // kill future input
fEndPoint:SetInputSpec(nil); // kill current input
fEndPoint:Abort(); // kill pending input

:MResetQueues(); // blow away all queued data

AddDelayedAction(MDisconnectCompProc, [fEndPoint,
currentState, slip], 2500); // we must do this as a delayed action!

:Dirty();

return nil;
end,

fEndPoint:
nil // contains the “live” endpoint while we’re connected, nil otherwise,
,

MSetLlamaTalkState:
func(newState)
begin
local appBaseView := GetRoot().(kAppSymbol);
appBaseView.fLlamaTalkState := newState;
if call kViewIsOpenFunc with (appBaseView) then begin

fLlamaTalk:?MLlamaTalk_StateChanged();
if call kViewIsOpenFunc with (fLlamaTalk) then

fLlamaTalk:Dirty();
RefreshViews();

end;
end,

MAbortPendingTransactions:
func()
begin
fInputQueue:MReset();
fOutputQueue:MReset();
return nil;
end,

MToggle:
func()
begin
if :MIsOpen() then

if :MIsVisible() then :Hide()
else :Show();

return nil;
end,

fOutputData:
nil // queue of outgoing transaction data items (transaction is sent in chunks)
,

MWrite:
func(data)
begin
if fLlamaTalkState <> kLlamaTalkState_Connected then

return;

IF kDebugLlamaTalk THEN LT_PRINT("Enqueueing data...");

local translation := nil;

if IsInstance(data, 'string) then
translation := call kLlamaTalkStuffCStringFunc with

(:MNewBinary(StrLen(data) + 1), 0, data)

else if IsInstance(data, 'binary) then
translation := data

else begin
IF kDebugLlamaTalk THEN LT_PRINT("Unsupported data

class!!! Cannot enqueue...");
GetRoot():SysBeep();

end;

fWriteQueue:MEnQueue(translation);
// Note :MEnQueue() won’t enqueue a nil (this is good...)

return translation;
end,

declareSelf: 'fLlamaTalk,
viewSetupFormScript:
func()
begin
if kDebugLlamaTalk then

functions.LT_PRINT := func(data) // This is VERY dangerous,
// but since we only do it for a PRIVATE debug build...
begin

Print(data);
// Sleep(10);

end;

self.fEndPointAddress := TotalClone(fEndPointAddress);
// ADSP address frame must be in RAM so we can modify it

self.fEndPointConfig := fEndPointConfigADSP;
// ADSP is the default configuration for this endpoint proto

self.fEndPoint :=
// the endpoint frame must be in RAM so we can modify it

{
_proto: protoEndpoint,
_parent: self,
ExceptionHandler: MEndPointExceptionHandler,
FInputHeaderComponent: FInputHeaderComponent,
FInputDataComponent: Clone(FInputDataComponent),

// shallow clone because top level slots must be modifiable
FInputDataSkipper: Clone(FInputDataSkipper),

// shallow clone because top level slots must be modifiable
configOptions: nil,

// these nil slots defined here to help reduce the number of
fIdleSpeed: nil,

// frame map entries, their values are set in :MResetConfig()
MOpenNetStack: nil,

// bug fix for endpoints that use network protocols
MCloseNetStack: nil,

// bug fix for endpoints that use network protocols
fDeferredObj: nil,

Newton Technology Journal June 1995

19

// holds a “magic frame” that allows us to cancel deferred actions(!)
};

self:MResetConfig(); // initialize the endpoint frame’s configuration slots

self.fInputQueue := :MNewQueue('FIFO);
self.fOutputQueue := :MNewQueue('FIFO);
self.fWriteQueue := :MNewQueue('FIFO);

self.fOutputPhase := 0;
end,

FInputDataSkipper:
{
inputForm: 'raw,
byteCount: 0,
fDataBytesToGo: 0,
inputScript: func(ep, data)

begin
IF kDebugLlamaTalk THEN LT_PRINT("FInputDataSkipper

called...");
fDataBytesToGo := fDataBytesToGo - byteCount;

if fDataBytesToGo > 0 then begin
byteCount := if fDataBytesToGo < 512 then

fDataBytesToGo else 512;
ep:SetInputSpec(ep.FInputDataSkipper);

end
else

ep:SetInputSpec(ep.FInputHeaderComponent);
end,

},
MEndPointExceptionHandler:
func(exception)
begin
IF kDebugLlamaTalk THEN LT_PRINT(

"MEndPointExceptionHandler called!");

if exception.data exists
and exception.data <> -16005

// exception generated by ep:Abort() while connected -- really not an error
and exception.data <> -16013

// exception generated by ep:Abort() during connect -- really not an error
and fLlamaTalkState<>kLlamaTalkState_Disconnecting then

begin
if exception.data = -20003 // the other end has torn down its connection
or exception.data = -16009 then

// wouldn’t it be nice if all endpoints used the same error codes?
if fIsQuietDisconnect then

nil // avoid calling the error method if we’re supposed to keep quiet about it
else

fLlamaTalk:?MLlamaTalk_StdError("The connection
has closed unexpectedly.", exception.data)

else
fLlamaTalk:?MLlamaTalk_StdError("A communications

error has occured.", exception.data);

AddDeferredAction(func(context) context:MDisconnect(),
[fLlamaTalk]);

end;

return true;
end,

MSetQuietDisconnect:
func(quiet) // returns true or nil
begin
fIsQuietDisconnect := if quiet then true else nil;
end,

fEndPointAddress:
nil // contains the connection address frame, or nil if not required
,
fWriteQueue:
nil // queue of outgoing transaction data items (entire queue is a transaction)

,
MIsConnecting:
func()
begin
return fLlamaTalkState = kLlamaTalkState_Connecting;
end,

MConnectCompProc: // this routine is called from MConnectAction SELF is the endpoint frame
func(ep, err)

begin
if not err then begin

:MSetLlamaTalkState(kLlamaTalkState_Connected);
:SetInputSpec(FInputHeaderComponent); // kick-off the receive

end;

else if err <> -10039 then begin
fLlamaTalk:MDisconnect();

IF kDebugLlamaTalk THEN
LT_PRINT("ERROR in MConnect Connect,

error code =" && NumberStr(err));
fLlamaTalk:?MLlamaTalk_StdError("Could not

connect.", err);
end;

return err;
end,

FInputDataComponent:
{
inputForm: 'raw,
byteCount: 0,
fDataBytesToGo: 0,
fDataIndex: 0,
fData: nil,
inputScript: func(ep, data)

begin
IF kDebugLlamaTalk THEN LT_PRINT(

"FInputDataComponent called...");
BinaryMunger(fData, fDataIndex, byteCount,

data, 0, byteCount);
fDataIndex := fDataIndex + byteCount;
fDataBytesToGo := fDataBytesToGo - byteCount;

if fDataBytesToGo > 0 then begin
byteCount := if fDataBytesToGo < 512

then fDataBytesToGo else 512;
ep:SetInputSpec(ep.FInputDataComponent);

end
else begin

ep._parent.fInputQueue:MEnQueue(fData);
ep:SetInputSpec(ep.FInputHeaderComponent);
ep._parent:SetUpIdle(100);

end;
end,

},
viewHideScript:
func()
begin
fBusyShapes := nil;
end,

viewclass: 74,
fOutputQueue:
nil // each entry holds an outgoing transaction (a queue) until it can be processed

,
MConnectAction:

// this routine is called normally from MConnect, but as a deferred action from MConnectAsync
// therefore, we cannot depend on the context of SELF, so give everything the ep frame context

func(ep)
begin

local err := kLlamaTalkError_EndpointInUse;
ep:MOpenNetStack();

try
err := ep:Instantiate(ep, NIL)

onexception |evt.ex| do
begin

if HasSlot(CurrentException(), 'error) then
err := CurrentException().error;

ep:MCloseNetStack();
IF kDebugLlamaTalk THEN

LT_PRINT("ERROR in MConnectAction Instantiate,
error code =" && NumberStr(err));
ep:?MLlamaTalk_StdError
(kLlamaTalkMessage_EndpointInUse, err);
ep:MSetLlamaTalkState
(kLlamaTalkState_Disconnected);

return;
end;

ep:MSetLlamaTalkState(kLlamaTalkState_Connecting);
err := ep:Connect(ep._parent.fEndPointAddress, nil);
ep:MConnectCompProc(ep, err);
end,

debug: "LlamaTalk",
MAbortTransaction:
func()
begin
IF kDebugLlamaTalk THEN

LT_PRINT("Aborting current transaction...");
return :MBeginTransaction();

June 1995 Newton Technology Journal

20

end,
fInputQueue: nil,// holds incoming data until it can be processed
viewShowScript:
func()
begin
local r := :LocalBox();
local s := MakeOval(0, 0, r.right - 1, r.bottom - 1);
fBusyShapes :=

[
{ fShape: [MakeShape(r)], // used to erase the view

fStyle: { transferMode:modeCopy,
penPattern: vfNone,
fillPattern: vfFillWhite, } },

{ fShape: [s, // 'DISCONNECTED phase
MakeLine(0,0,r.right-1, r.bottom-1),
MakeLine(0,r.bottom-1, r.right-1,0)

],
fStyle: { transferMode:modeCopy,

penSize: 1,
penPattern: vfBlack,
fillPattern: vfFillWhite, } },

{ fShape: [s], // 'IDLE phase
fStyle: { transferMode:modeCopy,

penSize: 1,
penPattern: vfBlack,
fillPattern: vfFillWhite, } },

{ fShape: [s], // 'INPUT phase
fStyle: { transferMode:modeCopy,

penSize: 1,
penPattern: vfBlack,
fillPattern: vfFillGray, } },

{ fShape: [s], // 'OUTPUT phase
fStyle: { transferMode:modeCopy,

penSize: 1,
penPattern: vfNone,
fillPattern: vfFillBlack, } },

];
end,

MGetState:
func()
begin
local state := -1;

if fLlamaTalkState = kLlamaTalkState_Connected then
try

state := fEndPoint:State();
onexception |evt.ex| do

state := kLlamaTalkError_IllegalOperation;

return state;
end,

fIsQuietDisconnect: nil,
};

Back in File LlamaTalkMain.t
vLlamaTalk := /* child of vDali */
{viewBounds: {left: 8, top: 141, right: 24, bottom: 157},
_proto: LlamaTalk,
debug: "vLlamaTalk"
}; // View vLlamaTalk is declared to vDali

vMessage := /* child of vDali */
{text: "Ready for connect\u2026",
viewBounds: {left: 9, top: 25, right: 229, bottom: 125},
viewJustify: 0,
viewFormat: 524624,
_proto: protoStaticText,
debug: "vMessage"
}; // View vMessage is declared to vDali

vStatus := /* child of vDali */
{text: "",
viewBounds: {left: 32, top: 136, right: 224, bottom: 168},
viewIdleScript:
func()
begin
SetValue (vStatus, 'text,"In =" &&

NumberStr(vLlamaTalk:MCountPendingInputTransactions())
& " " /* six blank spaces */ & "Out =" &&
NumberStr(vLlamaTalk:MCountPendingOutputTransactions())

& "\n" & "State =" && NumberStr(vLlamaTalk:MGetState())
& " " & (if fLlamaTalkState then

NumberStr(fLlamaTalkState) else "nil") & " " &
"Ticks =" && NumberStr(Ticks()));
1000; // ‘idle one second’: return the number of milliseconds

// to wait before calling IdelScript again
end,
viewSetupDoneScript:
func()
begin
:SetUpIdle(100);
end,

viewJustify: 0,
_proto: protoStaticText,
debug: "vStatus"
}; // View vStatus is declared to vDali

vConnect := /* child of vDali */
{text: "",
buttonClickScript:
func()
begin
if vLlamaTalk:MIsConnected() then

:DoDisconnect()
else

:DoConnect();
:DoUpdateButtons();
end,

viewBounds: {left: 122, top: 210, right: 222, bottom: 230},
_proto: protoTextButton,
debug: "vConnect"
}; // View vConnect is declared to vDali

vOpenClose := /* child of vDali */
{text: "",
buttonClickScript:
func()
begin
vLlamaTalk:Toggle();
:DoUpdateButtons();
end,

viewBounds: {left: 122, top: 242, right: 166, bottom: 262},
_proto: protoTextButton,
debug: "vOpenClose"
}; // View vOpenClose is declared to vDali

vShowHide := /* child of vDali */
{text: "",
buttonClickScript:
func()
begin
vLlamaTalk:MToggle();
:DoUpdateButtons();
end;,

viewBounds: {left: 178, top: 242, right: 222, bottom: 262},
viewFlags: 515,
_proto: protoTextButton,
debug: "vShowHide"
}; // View vShowHide is declared to vDali

vSendPings := /* child of vDali */
{text: "Start Ping Test",
buttonClickScript:
func()
begin
if fIsActiveIdle then begin

fIsActiveIdle := nil;
SetValue(self, 'text, "Start Ping Test");
:SetUpIdle(0);

end
else begin

fIsActiveIdle := true;
SetValue(self, 'text, "Stop Ping Test");
:SetUpIdle(100);

end;
end,

viewBounds: {left: 122, top: 274, right: 222, bottom: 294},
viewIdleScript:
func()
begin
if vLlamaTalk:MCountPendingOutputTransactions() < 1 then

// let’s try to not explode our Newton, okay?
if vLlamaTalk:MBeginTransaction() then begin

vLlamaTalk:MWrite("How very like the future this place

Newton Technology Journal June 1995

21

might be. It is a tiny world just big enough to support the
chemicals of one knowledge worker. I feel a wave of loneliness
as I head back down. Am I going too fast?");

vLlamaTalk:MWrite("I plunge right on in through the
office door and into the bottomless sea below. Suddenly I can't
remember how to stop. Turn around. Look. Point behind myself.
Do I have to turn around and point? I flip into a burning fit.");

vLlamaTalk:MEndTransaction();
end

else begin
fIsActiveIdle := nil;
SetValue(self, 'text, "Start Ping Test");
return nil;

end;

return 1000; // idle rate at which to send, in miliseconds, or nil to turn off idle handler
end,

fIsActiveIdle: nil,
_proto: protoTextButton,
debug: "vSendPings"
}; // View vSendPings is declared to vDali

vProtocolLabel := /* child of vDali */
{text: "Transport Protocol:",
viewBounds: {left: 8, top: 176, right: 112, bottom: 192},
viewJustify: 8388609,
_proto: protoStaticText,
debug: "vProtocolLabel"
}; // View vProtocolLabel is declared to vDali

vProtocol := /* child of vDali */
{viewBounds: {left: 120, top: 178, right: 216, bottom: 192},
clusterValue: 1,
_proto: protoRadioCluster,
debug: "vProtocol"
}; // View vProtocol is declared to vDali

vADSP := /* child of vProtocol */
{buttonValue: 1,
viewBounds: {left: 0, top: -5, right: 48, bottom: 11},
text: "ADSP",
_proto: protoRadioButton,
debug: "vADSP"
}; // View vADSP is declared to vDali

vMNP := /* child of vProtocol */
{buttonValue: 2,
viewBounds: {left: 48, top: -5, right: 96, bottom: 11},
text: "MNP",
_proto: protoRadioButton,
debug: "vMNP"
}; // View vMNP is declared to vDali

vS := /* child of vDali */
{text: "Str",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject("Hello");
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 66, top: 234, right: 94, bottom: 246},
_proto: protoTextButton,
debug: "vS"
}; // View vS is declared to vDali

vC := /* child of vDali */
{text: "Char",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject($A);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 26, top: 234, right: 54, bottom: 246},
_proto: protoTextButton,
debug: "vC"
}; // View vC is declared to vDali

vT := /* child of vDali */
{text: "True",
buttonClickScript:
func()

begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject(true);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 66, top: 210, right: 94, bottom: 222},
_proto: protoTextButton,
debug: "vT"
}; // View vT is declared to vDali

vI := /* child of vDali */
{text: "Int",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject(1234567);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 26, top: 258, right: 54, bottom: 270},
_proto: protoTextButton,
debug: "vI"
}; // View vI is declared to vDali

vR := /* child of vDali */
{text: "Real",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject(1234567.89);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 66, top: 258, right: 94, bottom: 270},
_proto: protoTextButton,
debug: "vR"
}; // View vR is declared to vDali

vN := /* child of vDali */
{text: "Nil",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
vLlamaTalk:MWriteObject(nil);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 26, top: 210, right: 54, bottom: 222},
_proto: protoTextButton,
debug: "vN"
}; // View vN is declared to vDali

vB := /* child of vDali */
{text: "Binary",
buttonClickScript:
func()
begin
vLlamaTalk:MBeginTransaction();
local b := SetLength(SetClass(Clone(""), 'binary), 4);
StuffLong(b, 0, 1234567);
vLlamaTalk:MWriteObject(b);
vLlamaTalk:MEndTransaction();
end,

viewBounds: {left: 34, top: 282, right: 86, bottom: 294},
_proto: protoTextButton,
debug: "vB"
}; // View vB is declared to vDali

vAsync := /* child of vDali */
{indent: 4,
text: "Connect Asynchronously",
viewBounds: {left: 112, top: 192, right: 234, bottom: 208},
viewSetupFormScript:
func()
begin
self.indent := self.indent + StrWidth(self.text);
inherited:?viewSetupFormScript();
end,

viewValue: nil,
_proto: protoRCheckbox,
debug: "vAsync"
}; // View vAsync is declared to vDali

// After Script for “vDali”
thisView := vDali;

NTJ

June 1995 Newton Technology Journal

22

(API) and the documentation for the platform-specific desktop
communications code. Developers could let Newton devices communicate
with other devices using either the serial port, modem, infrared transmitter,
or AppleTalk/ADSP connections. With the Newton Toolkit (NTK) application,
developers can design Newton applications to talk to the outside world, but
that does not mean that it is easy for desktop applications to talk to a
Newton device.

Differing communications APIs between Windows and MacOS, as well as
complex communication APIs on each platform force a steep learning curve
on many desktop application developers who hope for Newton connectivity.
Some of these solutions are still incomplete without custom error-
correction, like that required for infrared connections to a desktop receiver.
To compound the problem, objects in the unified data model of the
NewtonScript language – called “frames” – are often too richly defined to
translate easily to the rigid memory structures found in traditional
programming languages on the desktop. Desktop developers interested in a
robust cross-platform solution must implement multiple types of
communication mechanisms for both MacOS and Windows; developers
must also deal with the perils of translating frames between the Newton
world and the desktop world.

The Newton team has thus created libraries for both MacOS and
Windows computers that will enable third-party developers to more quickly
integrate Newton connectivity into their desktop applications . These
libraries are called the Desktop Integration Libraries.

ABOUT THE NEWTON DESKTOP INTEGRATION LIBRARIES

The Newton Desktop Integration Libraries (DILs) come in several layers,
with each layer building upon the functionality of the other layers. These
are:
• the communications layer

The Communications DILs (the CDILs)
• the Newton object layer

The Frames DILs (the FDILs)
– This layer contains the CDILs

• the synchronization & package layer
The Protocol DILs (the PDILs)
– This layer contains the FDILs and CDILs

The communications layer is the basic layer of the Desktop Integration
Libraries. The accompanying functions and classes allow a desktop
computer and Newton to easily configure a transport-independent
connection. On top of that connection, the frames layer translates complex
Newton frames to the desktop world. The highest layer, the Protocol DIL,
consists of libraries intended to reproduce the essential parts of the
“connection protocol” used by the Newton Connection Kit . This layer
currently requires that the desktop-stored data be stored on disk in a format
similar to the NCK synchronization files, so that synchronization can proceed
almost automatically.

All of these libraries are designed to work on the MacOS platform in the

major C and C++ development environments and on the Windows
platforms via Dynamic Linked Libraries (DLLs). Note that the calling
conventions in C and C++ versions differ, with the C versions containing
an extra argument representing the target object, encapsulated with the
behavior in the C++ version. In this article, examples will be shown using
the C++ syntax.

Making the Connection
The Communication DILs provide a simple cross-platform transport-

independent communications API on the desktop. Current connection
types implemented are serial, modem/MNP, AppleTalk/ADSP, and infrared.
(Straight serial and ADSP connections are not yet available for Windows
DILs.) When other local or network transports are supported on the
Newton, all that will be required to support them on the desktop is a new
version of the DILs and modifications to the desktop user interface for
choosing the new connection type.

From the Newton world, using the Communications DILs is simply a
matter of configuring a standard Newton communications endpoint. You
must set the endpoint's configOptions appropriately to determine
the connection type. For instance, this could be serial, serial-MNP, modem,
infrared, or AppleTalk. All the standard read and write functions are
supported through the Newton endpoint.

On the desktop side, you communicate to the Newton device through a
connection object called a “pipe”. A pipe is a virtual bi-directional stream of
data that automatically handles data conversions such as byte-swapping (a
touchy issue for cross-platform integer manipulation), ASCII-to-Unicode
conversion, low-level handshaking, and encryption. Note that encryption
algorithms are not built in to the CDIL libraries. The hooks are available to
the CDIL developer for implementing encryption on the data stream itself,
so that the higher level CDIL, FDIL, and PDIL interfaces work independent

Communications DIL

DIL Pipe

Existing Communications

Serial IR ADSP

Platform Communications Tools

continued from page 1

Welcome to the Desktop Integration Libraries

Newton Technology Journal June 1995

23

of encryption.
You will initialize the CDILs once in your application via

CDInitCDILs() and then obtain a virtual pipe via
CreateCDILObject(). This pipe is not yet tied to a particular
connection type or port; to tell the CDILs how to find the Newton, use the
CDPipeInit routine. Here is an example of how to use this function to
initialize a pipe with a standard serial connection.

fErr = CDInitCDILs();
if (fErr) return(fErr);
ourPipe = CreateCDILObject();
fErr = ourPipe->CDPipeInit("Serial","", "Baud 38400
dataBits 8 Parity None Port ", Port);

Note that the connection-type-specific arguments are presented in a
string so that each connection type can define as many arguments for
initialization as necessary. In this example, the Port variable is used to
specify which serial port the user has selected. If CDPipeInit returns
no error, you should complete the pipe connection using PipeListen
and PipeAccept, which are required, but are only interesting for
transports like ADSP and MNP that demand bilateral arbitration of the
connection before data can flow. Note that you must define your own time-
outs for completing the connection.

Once connected, you can send data using the straightforward
CDPipeRead and CDPipeWrite functions. If you need to know
the details of the pipe, functions are available to check the pipe state, to
return the number of bytes in the pipe, and to flush the outgoing data from
the pipe. Even if you are using the higher level DILs, you will still use the
CDILs to instantiate the pipe, to send simple data, and to receive simple
data. Note that from the Newton side, normal endpoint states and the
endpoint:Output() function are used to send simple data and
commands, perhaps as a prelude to frame sending/receiving. For instance,
your desktop code might initiate its conversation like:

fErr = ourPipe->CDPipeWrite("LLMA\4", &len, true);
if (fErr) return(kNoDataSent);
fErr = ourPipe->CDPipeRead(str, &length, &eom, 0, 0);
if (!fErr && strcmp(str, "OK") == 0)
StartGettingMyData(ourPipe);

Sending Newton Frames
Desktop developers who want to communicate with Newton devices

must eventually deal with the complexity of the Newton data model. While
structure design and size in C are specified at compile time, the dynamic
NewtonScript language can accommodate complex objects (frames) whose
data and field names (slots) are created at run time. For instance, a Newton
application might receive the following object without prior knowledge of its
structure:

// 1. frame within a frame
// 2. array of symbols
// 3. simple string
// 4. integer

t := {name: { first: "J. Christopher", last: "Bell", },
neighbors: ['Jim, 'Bruce],
company: "Apple Computer"
RDbuilding: 5,
}

This level of structure is common for a NewtonScript object. Even if a
desktop application is designed to work only with built-in Newton
applications, the desktop application must expect the unexpected –
particularly user- or developer-created objects stored in new slots. For this

reason, the Frames DILs are designed to accommodate data that is not
bound to a predictable structure. If the incoming data is not predictable by
the desktop application, it is called “unbound data”.

For some applications, all data is in a predictable format that is stored on
the desktop side as a simple C struct and stored on the Newton in simple
frames like:

e := {height: 345, notes: "Reg"};

For this class of desktop applications, the primary concern is high-
performance data transfer to and from the Newton via its native C structs. In
these applications, developers probably want to specify the mapping
between the Newton world and the C world, because this will boost
performance. For this type of application, high performance is achieved by
specifying the structure as “bound data”.

When describing Newton data on the desktop, several basic distinctions
apply. The basic class, DILObject, is used to represent basic object
behavior. The simplest instances of this class are objects defined on the
Newton in 32 bits, objects that are known as “immediates”. These include
nil, true, single characters with automatic ASCII-Unicode translation, and
NewtonScript’s signed 30-bit integers. Other classes that build on this
behavior are DILArray and DILFrame, both of which implement a
list whose elements map to different desktop memory locations. Based on
top of DILObject are binary objects and strings; strings use automatic
Unicode-ASCII conversion if specified as bound data.

Bound Data – The Basics
Here’s an example of how to bind a slot in a frame so that you can send

Newton frames or receive frames as fast as possible. For each slot in the
frame, which corresponds to a C structure, you can create a binding
specifying the type, size, and the corresponding memory location. For
instance, a desktop application could specify that it is expecting a slot called
height that should contain an integer; this integer should be stored in
memory location &myStruct.height. To do this using the FDILs,
you would create an DILFrame (in C++) using the code
myFrame = new DILFrame;. Binding is done through the
FDbindSlotmethod using code like:

// tell the FDILs how to map the Newton slot 'height.
// args = slot name, memAddress, object type, length (not used
// for immediates like integers)
myFrame->FDbindSlot("height", &myStruct.height, kDILInteger, 0)
myFrame->FDbindSlot("notes", &myStruct.note, kDILString, 256)

Binding: any type, anywhere
Note that in the above example, the target frame is flat in the sense that it

contains no imbedded structures. You can send or receive much more
complex objects if you know their structure and data types. For instance, if
you wanted to bind the data in the Newton frame {name: {...}, ...} –
a frame within a frame – you could bind it with code like:

outerFrame = new DILFrame;
subFrame = new DILFrame;

// define the sub frame slots
subFrame ->FDbindSlot([...]);

// the subframe is within outerFrame
outerFrame->FDbindSlot("name",

subFrame , kDILFrame, 0);

June 1995 Newton Technology Journal

24

Note that this structure-within-a-structure ability also applies to arrays.
To define an array of three elements, create a DILArray object and use
FDbindSlot to bind three “slots” (in this case, array positions) within it.
For example, let’s use the name example and bind all its data for highest
performance when receiving:

/* prepare to receive a frame like:
t := {name: { first: "J. Christopher", last: "Bell"},

neighbors: ['Jim, 'Bruce],
company: "Apple Computer"
RDbuilding: 5,
}

*/
mainF = new DILFrame;
subF = new DILFrame;
subA = new DILArray;

// Bind the "substructures" (1 subframe, 1 subarray)
subF ->FDbindSlot("first", &Fname, kDILString, len);
subF ->FDbindSlot("last", &Lname, kDILString, len2);
subA ->FDbindSlot(NULL,&symString1, kDILSymbol, 0);
subA ->FDbindSlot(NULL,&symString2, kDILSymbol, 0);

// Bind slots in outer frame
mainF->FDbindSlot("name", subF, kDILFrame, 0);
mainF->FDbindSlot("neighbors", subA, kDILArray, 0);
mainF->FDbindSlot("company", &comp, kDILString, 0);
mainF->FDbindSlot("RDbuilding", &b_num, kDILInteger, 0);

Once you have defined your bindings, you can send and receive data using
FDPut and FDGet with code like the following:

outFrame->FDput(myCDILPipe);
myFrame->FDget (myCDILPipe,
0 /* for byte swapping */,
0 /* for char encoding */,
15 /* for timeouts */,
NULL /* for a completionHook */);

Note that the argument for the completionHook callback function
permits you to implement your frame reading asynchronously or
synchronously, depending on the value of that argument.

You might be asking, “But what if I don't know the exact structure of the
data beforehand?” Since NewtonScript is so dynamic, the FDILs are designed
to handle this without much trouble. After using FDGet to receive a
frame, calling myFrame->FDGetUnboundList() will return a
tree structure that you can navigate to obtain information about unexpected
slots, array data, subframes, or any data not predictable enough to bind
explicitly. Note that you can obtain this tree of information whether or not
any slots are bound. If you bind some slots, but extra slots are received, they
are banished to the unbound list – which you are not required to check. On
the other hand, you could decide to bind no data, and then recursively
investigate all incoming data solely through the unbound list.

You can traverse this tree via references like
arrayOrFrame->children[i] and you can get data from entries
by checking their var and varType fields. Entries in this structure are
tagged with a type; if their varType is kDILFrame or
kDILArray, you will probably want to recursively check their children in
the tree, copying the contents of the frame or array. For other objects, the
data is stored in each entry's var field. For instance, the following code
looks for a string to copy from the current entry:

if (entry->varType == kDILString)
strcpy(destString, entry->var);

A sample included with the DILs shows how to recursively print out one of

these trees of unbound data. You can capture and store all this information
if you wish or you can disregard it, depending on the type of application.
After you are done with the unbound list, call
FDFreeUnboundList() to dispose of the structure before receiving
the next frame.

On the Newton side, the transfer of frames is relatively simple. After
establishing the Newton endpoint, use endpoint inputForms with the
'frame value to receive frames and the
endpoint:OutputFrame()method to send frames from the
Newton. This might seem surprisingly easy in comparison to the desktop
version. Most of the energy expended on the desktop side is to manipulate
the robust data structures and the run-time data tagging that are taken for
granted in NewtonScript.

Synchronization and Packages
The Protocol DIL (PDIL) libraries are a higher level of connectivity

between Newton devices and the desktop. One feature that appeals to
desktop application developers wishing to manipulate built-in soups is the
ability to connect to the desktop via the Connection icon in the Extras
Drawer; there is no need for an additional Extras Drawer icon or a Newton
installer. This is because the PDILs can permit your desktop application to
speak the protocol similar to the one used by the Newton Connection Kit
and the Newton Package Installer.

Although package installation is an option in both of those applications,
automatic soup synchronization facilities in the PDILs are appealing to many
desktop developers. To do this, the PDILs emulate the basics of the Newton
Object Store on the local desktop file system. This facilitates new
applications wishing to maintain API consistency across platforms, but is less
likely to be used for new applications because of the dependency on the
PDIL’s native “store” file format for “soup” storage. We will not go into detail
in this article on the API for the Protocol DILs, but it is an extension of the
FDILs and will be released soon after the FDILs. As part of these libraries,
desktop developers will receive suites of data type translation functions.

Powerful and Easy to Port
With the APIs described above, you have the basic knowledge of how to:

• Set up virtual connections between a desktop application and a Newton.
• Port your communications code easily between MacOS or Windows.
• Enable other connection types easily after writing code for one of them.

(current connection types are serial, modem/MNP, infrared, and
AppleTalk)

• Send and receive simple data over these basic connections.
• Send and receive complex NewtonScript frames from a desktop

application.
These are the basic skills necessary to take a desktop application and

turn it into an integrated desktop solution using the DILs. Whether you plan
to upload a single Newton user’s data, or to distribute marketing data to a
team of mobile Newtons, the Desktop Integration Libraries open the doors
to high-performance desktop-to-Newton applications. Most important, you
can port your communications code to new platforms and new connection
types easily. In addition to this flexibility, the robust DIL APIs will lighten the
burden of learning the MacOS CommToolbox and Windows communication
tools, and let you focus instead on the data you want to send and receive.
Good luck with your desktop-to-Newton solution and welcome to the DILs!NTJ

