
Coming Soon:
Newton Toolkit 1.5
by Tony Espinoza
Apple Computer, Inc.
The NTK Team learned a lot from Newton
developers during the past two years. Your
feedback at developer conferences and through
the on-line forums has helped in our efforts to
bring you a powerful, productive NTK. You can
expect NTK 1.5 later this Spring. For now,
here’s a quick look at some of the exciting new
features in 1.5.

PRODUCTIVITY ENHANCEMENTS

AND NEW CAPABILITIES

A primary goal for NTK has always been to
provide a high-productivity environment;
version 1.5 features improvements to streamline
the development process. For starters, the
browser is easier to navigate. The slot list now
responds to single clicks instead of double clicks,
and the pop-lists for Methods and Attributes have
been alphabetically ordered. NTK 1.5 browsers
now enable you to cut, copy, and paste views and
slots without having to open a layout window.

You can also build new kinds of packages.
NTK 1.0 focused on application packages.
With 1.5, developers can choose from a range
of different target output formats. For
example, you can easily create auto, store, and
dictionary parts. Perhaps the most exciting
change is the new ability to convert a desktop
font into a Newton font part and include it
with your application.

Tool News

Coming Soon: Newton Toolkit 1.5 1

NewtonScript Techniques

NewtonScript Performance Tuning 1

Developer Group News

Newton Developer Evening
Brings Newton Community
Up to Date 3

NewtonScript Techniques

Stepping Through Routing 5

Newton News

Apple Announces New Newton
MessagePad 120, Communications
and Software Solutions! 11

Advanced Techniques

Advanced Debugging 20

Licensee Specifics

Marco Software Architecture,
Version 1.0 22

continued on page 13 continued on page 14

Volume I, Number 2 April 1995

gy gy Newton Technolo
J O U R N A L

®

NewtonScript
Performance
Tuning
by Julie McKeehan and Neil Rhodes
Calliope Enterprises, Inc.

There are a number of areas within the Newton
system that affect Newton application
performance. The more important of these areas
are: NewtonScript, the view system, and Newton
data storage design (soups). This article will
cover the first area, NewtonScript. Optimizing
the view system is discussed in “Performance
and the View System,” by Mike Engber in PIE
Developer’s Magazine.

When you want to optimize the performance
of NewtonScript within your application you
need to address three important areas:

• Writing generally efficient code in the first
place.

• Knowing the speediest ways of doing things
within NewtonScript.

• Using memory correctly; this involves
knowing how to minimize your use of the
frame heap memory by maximizing the
amount of code you keep in ROM and
having code that allocates the correct
amount of memory to provide the fastest,
most efficient use of RAM when you do need
to use it.

EFFICIENT CODE –
OPTIMIZING THE HOT SPOTS

Let us address each of these issues in turn, starting
with some resources for writing efficient code.

Tool News NewtonScript TechniquesInside This Issue

© 1994, Apple Computer, Inc. and Calliope Enterprises, Inc.

April 1995 Newton Technology Journal

2

Newton platform news travels fast, and
with the recent series of Newton
announcements in the last few months,
news is traveling even faster with the
platform’s latest entrants. The newest
additions to the Newton product family
include two new hardware devices – one
from Motorola and one from Apple – and a
number of new communications devices.
With these new products come an infinite
number of wireless communication
solutions waiting to be built by developers
and delivered to consumers. The message
behind the recent Newton Developer
Evening at MacWorld focused on the
momentum that has been building around
the platform and the opportunities that
have now become so clear: Newton is the
leading platform in the PDA marketplace,
Apple’s licensees are delivering
differentiated hardware products to help
grow the market, and wireless oppor-
tunities are a growing reality. With all of
these resources at hand, there has never
been a better opportunity for developers to
step-up to the Newton platform and
become a part of this new market
development adventure.

The Newton Developer Evening pulled
together the latest news and successes on
the platform and offered a kaleidoscopic
view of the kinds of opportunities that await
developers with the Newton platform.
Motorola, one of Apple’s Newton Licensees,
showcased their new Newton device, the
Marco® Wireless Communicator. The
Marco device differentiates itself from

Apple’s MessagePad by focusing on built-in
wireless communications solutions.
Motorola has opened the door for
developers to deliver an unlimited number
of solutions to both consumer and
corporate marketplaces. Likewise, Apple
has delivered a number of communications
features for its MessagePad and other
Newton devices. Apple’s modem set-up
package, in conjunction with one of the
many cellular-ready PCMCIA cards available
on the market, provides developers with
the widest array of wireless
communications ever. The corporate
marketplace will most certainly look to
Newton devices to deliver up-to-the-minute
data and information from servers and
centralized databases to its field sales and
off-site work forces. Likewise, consumers
will embrace the technology as it readily
delivers their latest stock quotes, news and
e-mail straight to their fingertips, far away
from easy access to phone lines and desk-
top computers. Other technology
companies promise you’ll be able to fax
from the beach someday. Newton delivers
on that promise today.

In addition to the Marco device from
Motorola, Apple has also added a new
MessagePad to the product line. It offers
improved screen clarity and more memory
to the user. The MessagePad 120 delivers 2
MB of RAM, leaving the developer more
room to increase their applications’
capabilities and power. The MessagePad
120 Type II PCMCIA slot now offers up to

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Tony Espinoza • Coordinating Editor,Technical Tools
Marketing

David Glickman • Coordinating Editor, Business
Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Steve Strong, Bruce Thompson

Contributors
David Baum, Julie McKeehan, Neil Rhodes,
Patty Tulloch

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

Scott T Boyd • Editor

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1994 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of

gy gy Newton Technolo
J O U R N A L

®

Volume I, Number 2 April 1995

by Lee DePalma Dorsey, Managing Editor

Editor’s Note

continued on page 12

Apple Computer, Inc.
would like to thank Xplain Corporation (the publishers of MacTech™ Magazine)

for lending their expertise in producing the Newton Technology Journal.

Newton Technology Journal April 1995

3

In the midst of hectic MacWorld schedules and other related events,
more than 400 Newton developers gathered for the Newton Platform
Developer Evening on January 4th, 1995. Billed as an “update from
Apple’s Personal Interactive Electronic (PIE) Division and its Newton
licensees,” the event commenced with an address from Shane Robison,
VP and General Manager of the PIE division. Following Robison’s talk
were presentations on the recently introduced Newton Developer
Programs, demonstrations of the new Marco Communicator from
Motorola and other key wireless communications technologies, as well as
a recap of the PDA market for the past year.

Robison stressed the importance of the Newton developer base,
emphatically stating, “We’re here today because of you!” He emphasized
that the number of applications available for the platform continues to
grow and to contribute significantly to the platform’s long term success.
Today worldwide there are approximately 100 commercial applications,
another 300 vertical in-house applications in use or in pilot phases, and
600 shareware titles, ranging from utilities packages to BookMaker-based
reference materials.

Robison stressed his commitments to investing in PIE’s Developer
Relations infrastructure, listening to feedback from the developer
community, and continuing to deliver new tools. Elaborating about tools,
Robison sketched out developments past the current NTK, specifically
mentioning the addition by the Tools team of a new compiler and profiler
functionality, with the eventual goal of full C++ access for developers.

In an overview of the Platform Marketing goals of the division,
Robison outlined the wide variety of Newton-based products that Apple

and its Newton licensees will continue to produce. From intelligent
organizers like the MessagePad 120 to the wireless communicator, Marco
device, the Newton OS will continue to offer the flexibility necessary for
these new devices to evolve. As the diagram below illustrates, the Newton
platform is driven by solutions, with tools, cross-platform connectivity,
and hardware products combining to meet the demands of the
commercial and vertical markets.

Robison concluded his address with a call to action for developers.
As momentum for the platform builds and PIE’s commitment to
delivering more and better tools remains strong, opportunities open
for Newton developers.

MOTOROLA’S MARCO WIRELESS COMMUNICATOR

With the introduction of Motorola’s
Marco® Wireless Communicator, PIE’s
Newton licensee partners
continue to broaden the
Newton platform with highly
differentiated products. Rick
Lane, general manager of the
Personal Communicator
Product organization at
Motorola outlined the Marco
Communicator and Motorola’s
commitment to the Newton
platform. The Marco device is
based on the latest Newton OS
(1.3) and integrates an ARDIS two-
way wireless RF modem to deliver an
integrated solution for wide area
wireless data communications. Users
will have access to RadioMail services:
store and forward mail, gateway to the
Internet, sending faxes, and receiving stock quotes, news, and other
information. Marco Wireless Communicator users can also access the
ARDIS PersonalMessaging service and send or receive messages with
other PersonalMessaging users anywhere within the ARDIS network.

For more information about the Marco Communicator and
development opportunities, developers can contact Patrick Pahl, Business
Development Manager at Motorola, at the following Internet address:
Patrick_Pahl@msmail.wes.mot.com

Newton Platform

Intelligent
Organizers

Wireless
Communicators

Apple Products Licensees

Tools and
Desktop Connectivity

Solutions
Commercial, Vertical, Communications

Newton Developer Evening
Brings Newton Community Up to Date
by David Glickman, Apple Computer

Developer Group News

continued on page 4

April 1995 Newton Technology Journal

4

DEVELOPER PROGRAMS

Lee Dorsey, Manager of Developer Programs in PIE, described the expansion
of programs for Newton platform developers and laid out the road map
for these programs in 1995.

The recently introduced Newton Associates Program offers high
quality self-support for Newton developers with access to “developers-
only” Newton forums on AppleLink (at AppleLink discount rates), the
Newton monthly mailing, and hardware purchase privileges. The Newton
Associates Program costs $400 per year.

The Newton Partners Program has been revamped with new offerings
at the reduced yearly price of $2500. In addition to all Newton Associates
benefits, Partner members will receive expert-level technical support via
e-mail, opportunities to participate in select marketing opportunities, and
additional hardware purchasing privileges.

The Executive Partners Program is designed specifically for in-house
corporate developers. This program offers a designated technical lead
from the PIE team, design and code reviews, training, development tools,
and executive briefings. This program costs $25,000 per year and is
available to a small group of corporate customers.

In outlining Developer Programs plans for 1995, Dorsey announced
that support programs will be available
worldwide in the Spring of 1995. In
addition, Developer Relations is
creating new co-marketing
opportunities in areas such as solution
guides, trade show participation, and
press relations.

For more information on Newton
Developer Programs, contact Apple’s
Developer Support Center at
DEVSUPPORT@APPLELINK.APPLE.COM or
at 408-974-4897. In addition, a full
description of the Newton Associates
and Partners Programs is published in
the February 1995 issue of the Newton
Technology Journal.

WIRELESS COMMUNICATIONS DEMOS

Susan Schuman, Communications Product Manager in PIE, opened the
section of communications demonstrations with an overview of the
Newton Platform wireless communications strategy. In building upon
Newton’s built-in software communications capabilities – faxing and
NewtonMail – Schuman outlined the current efforts underway to
provide tools for the continued development of Newton-savvy
communication products.

The Communications group will deliver a modem-enabler package to
the entire Newton community (developers and users). In conjunction
with modem-setup packages for specific cellular-ready PCMCIA cards, the
modem-enabler technology will give users access to a myriad of PCMCIA
modem cards for wireless cellular faxing and e-mail.

In a demonstration of PIE’s commitment to opening up the Newton
platform for new communications developments, several wireless
communications demonstrations wowed the crowd. Schuman and Avi
Weiss, Communications Engineer in PIE, demonstrated cellular faxing

using the Motorola Cellect cellular-ready PCMCIA card. Weiss also sent a
page using Ex Machina’s Notify software and the Cellect card.

Dayna Communications demonstrated the Serial Roamer RF Packet
wireless LAN technology, using a prototype PCMCIA-based Serial Roamer
card with a MessagePad. Ed Colby, President of Wayfarer
Communications, demonstrated his company’s client/server technology
for “integrating Newton-based products into enterprise information
systems, enabling custom application development” in the areas of data
access, forms completion, and mobile communications. With a Windows
NT server as the backbone, Wayfarer’s technology allows Newton devices
to access host information in real time. Colby announced the availability
of the Development Kit for Wayfarer’s technology for February 1995.

NEWTON PLATFORM MARKETING

Ken Wirt, PIE’s Director of Marketing, discussed the marketing strategy
for the Apple MessagePad family of products and the current state of the
PDA market. The chart below outlines the two distinct markets for the
MessagePad: individual users looking for a complete solution for business
productivity needs; and vertical markets in which large businesses create
custom solutions for key areas such as sales force automation, outside

plant management, and healthcare.
Wirt also discussed analysts’ views of the projected PDA market

growth and Newton-based products within that industry. In general, the
PDA market is projected to increase approximately 40% in 1995 over 1994
figures, with an installed base estimated at 5 million units in 1999.
Currently, Newton-based products have a 60% market share, with a
projection to continue to lead the market in the year 2000 with a 40%
market share.

In 1995, Wirt sees the most significant growth for the Newton platform
in the vertical development area, driven by the emerging wireless
technologies, continued developments from Newton licensees, and the
increased interest in forms-based technologies for Newton-based devices.

BRINGING THE EVENING TO A CLOSE...
The Newton Developer Evening wrapped to a close with Wirt’s

positive market figures, a brief Q&A, and a few hours of mingling with
PIE’s staff over bountiful food, drinks and music. NTJ

IndividualIndividual VVerticalertical

What:What:

Who:Who:

Benefit:Benefit:

Advantage:Advantage:

Handheld device that
begins where Organizers end

Mobile Business
Professionals

• Instant Access to Critical Info
• Personal Productivity

• Breadth and depth of solutions
• Desktop Connectivity
• Communications solutions
• Hardware and Software Design

Mobile client for data
gathering and access

Mobile Workforce
(Sales Force, Healthcare…)

• Low Cost Solution
• Mobility

• Better tools
• Price / Performance
• Communications Solutions

Newton Technology Journal April 1995

5

INTRODUCTION

Routing presents a variety of complex implementation tasks. To help clarify
these tasks, this article first steps through the basic components of routing
and then shows the implementation of four routing elements: beaming,
printing, faxing and mailing. By the end of this discussion, the programmer
should have a clear understanding of the Newton routing architecture and of
what is required to implement routing in an application.

THE ROUTING FRAME

Your application’s routing frame indicates to the Newton operating system
which routing functions it supports, and also ensures that these functions
appear in the Action Button picker. The items that you find listed in a typical
routing button usually include: Duplicate, Delete, Print, Fax, Mail, and Beam.
Each of these items in turn corresponds to a slot in the routing frame:

routingFrame := {
print: …,
fax: …,
zap: …,
mail: …,
duplicate: …,
delete: …

}

Each of these routing frame slots is itself a frame containing two or three
slots of its own. To give you a better idea what this looks like, here is the
same routing frame with more of the detail filled in:

routingFrame := {
print: {
title: "Print Note",
routeForm: 'printSlip,
formats: [kFormatSymbol],

},
fax: {
title: "Fax",
routeForm: 'faxSlip,
formats: [kFormatSymbol],

},
zap: {
title: "Beam",
routeForm: 'zapSlip,

},
mail: {
title: "Mail",
routeForm: 'mailSlip,
formats: [kFormatSymbol],

},
separator: nil, // dotted line in picker
duplicate: {
title: "Duplicate",
routeScript: 'DuplicateActionScript,

},
delete: {
title: "Delete",
routeScript: 'DeleteActionScript,

},
card: ROM_cardAction,

};

The Newton operating system fills in the items in the action picker in
precisely the same order that it finds them in this routing frame (making this
the singular case in Newton programming where the order, not the names, of
the elements in a frame matters). As you can also see in the example above, a
slot with a nil value specifies a separator line. In this case, the first slot found is
print. The operating system then looks in the title slot or calls the
function in the GetTitle slot of the print frame to determine what text
string to put in the Action button list. Given the above title slots of each action
in the routing frame, you would end up with a Action button like this:

Now, starting with the print slot, here are the routing action’s slots and their
functions:

print: {
title: "Print Note",
routeForm: 'printSlip,
formats: [kFormatSymbol],

},

When the user picks the “Print Note” item in the action button, the symbol
in the routeForm slot is used to determine the slip to open. In this
case, the routeForm slot contains a reference to the system symbol
printSlip.

The formats Slot
The last slot in the print frame is a formats slot. This contains an array

of symbols that specify the formatting styles available to the user. In the example,
there is only one style, kFormatSymbol. These styles are displayed in
the format picker that the user sees when selecting an appropriate routing
function (for example, mailing, printing, faxing, and so on). Different format
pickers may have the same types of formats (see Figure 2) or ones that vary:

Stepping through Routing
© 1994, Apple Computer, Inc. and Calliope Enterprises, Inc.

NewtonScript Techniques

April 1995 Newton Technology Journal

6

Figure 2

The Other Slots

With the exception of the card slot, the rest of the slots in the routing
frame are quite similar in their construction. Here is an overview of the
contents of each:

fax routeForm: ‘faxSlip System slip

zap routeForm: ‘zapSlip System slip

mail routeForm: ‘mailSlip System slip

delete routeScript: ‘DeleteActionScript

A method you provide

duplicate routeScript: ‘DuplicateActionScript

A method you provide

THE APPLICATION AND ITS REQUIRED SLOTS

Because the routing frame is typically a slot in your base view template, you
will have to ensure that the system knows about your routing capabilities
even when the application is not open. Thus, at your application’s
installation time, its routing frame needs to be installed into the global
routing frame. The following line in your InstallScript will
accomplish this:

routing.(kAppSymbol) := packageFrame.theForm.routingFrame;

Some of the routing functions also require the addition of certain slots to
your application base view. These slots are: appSymbol, target,
targetView. These are now described in turn.

appSymbol
This slot contains your application symbol.

target
The target slot identifies the frame that is being acted upon by the
routing action. It is up to you to maintain the contents of this slot.

targetView
The targetView is used by several parts of the Newton system,
including routing and filing. When your application registers your routing
frame, your base view will actually get routing messages, which, in some
cases, include target and targetView as parameters. Generally,
the value of this slot will be your application base view. This view is passed as
a parameter to the routeScriptmethods.

IMPLEMENTING ROUTING

This section discusses the implementation of four routing actions: beaming,
printing, faxing, and mailing. (We assume that your application already
supports duplicate, delete, and card actions.) First, you will find a checklist
of items needed to support each particular routing action and then you will
step through the actual implementation. Note that implementing one
routing action makes the next easier; once you support beaming, you will
have less to do to implement printing. Let us begin with beaming.

ADDING BEAMING

To add beaming support to your application, you need to complete the

following steps:

The Checklist
1. Add “Beam” to the action picker.
2. Add a title for items that are routed to the In/Out Box.
3. Test sending and receiving an item.
4. Handle putting away an item on a receiving Newton.

1. Add Beam to the Action Picker
Add a new beam slot to the routing frame of your application. This slot

should be standard from application to application, so use this code:

zap: {
title: "Beam",
routeForm: 'zapSlip,

},

If Beam is the first routing action in the frame, then the title slot string
should be “Beam Object” (where Object stands for whatever is appropriate
for your application) instead of just “Beam.”

2. Add a Title for Items that are Routed to the In/Out Box
To support titles for items in the In/Out Box you need to add a

SetupRoutingSlipmethod to the application base template. Here
is an example of this method:

func(fields)
begin
fields.title := info from target && DateNTime(Time());

end

This method should create a title slot with a title that is descriptive to the
user. For instance, providing the date and information that identifies the
target will make it easier for the user to recognize a particular entry in the
In/Out box. The title should be no more than 44 characters long; it is used
both in the Out Box of the sender and in the In Box of the receiver. If neces-
sary, append an ellipsis character to handle the display of longer strings.

3. Testing Sending and Receiving an Item
After implementing routing in the action picker and adding your

SetupRoutingSlip, you should be able to beam an item. To test,
set the Beam preferences on the receiving Newton to those found in
Figure 3. IMPORTANT: Make sure the Inspector is not connected while the
beaming occurs.

Figure 3

Newton Technology Journal April 1995

7

4. Handle Putting Away an Item on the Receiving Newton

To handle putting away an item on a receiving Newton, there are several
conditions that you need to take into account:
• A beam can be received when your application is closed.
• A beam can be received before your application has ever been run, and

thus your soup may not exist on the receiving Newton.
• A received item may come from a non-existent folder.

Each of these conditions must be handled properly in your
PutAwaymethod. When a Newton receives a beam and the user
selects “Put Away” (or has “Put away beams immediately” set), the
PutAwaymessage is sent to the application with a matching application
symbol. For a trickier approach, a sending application could modify the
appSymbol slot in the fields frame (in the
SetupRoutingSlipmethod) and beam to a different application. For
instance, our application could beam a name to the Names application.

Now that you have an idea of the type of conditions you need to account
for in your method, look at a sample PutAway. Remember that
PutAway is a slot in your application base view:

func(item)
begin

local newEntry := item.body;
local theSoup := nil;
local appIsOpen := self.appSoup;

CheckThatFolderExists(newEntry);
if appIsOpen then

theSoup := appIsOpen ;
else begin

theSoup := call kRegisterCardSoupFunc with
(kSoupName, kSoupIndexes, kAppSymbol, kAppObject);

end;

theSoup:AddToDefaultStore(newEntry);
if not appIsOpen then

call kUnRegisterCardSoupFunc with (kSoupName);
BroadcastSoupChange(kSoupName);

end

Created in the InstallScript

routing:

…
|MyFormat:App:Signature|
…

…
|App:Signature|:
…

Globals
Routing frame

Root view

View
proto:
parent:

(using BuildContext)

_proto:
title: "aFormat"
mainFormat:

Format Frame

Print Format

ROM_coverPageFormat

protoPrintFormat
_proto:
printNextPageScript
stepChildren: […]

routingFrame := {
 print: {
 title: "Print item",
 routeForm: 'printSlip,
 formats: ['|MyFormat:App:Signature|],
 },
 fax: …,
 beam: …,
 mail: …,
}

{
 …
}

{
 …
}

Base Template Slot

Figure 4

April 1995 Newton Technology Journal

8

If your application uses soups, then the above method isfairly standard. It
is worth noting in this method that the item frame is roughly the same as
the fields frame from SetupRoutingSlip. Also, item.body
contains the target from the sending Newton.

The CheckThatFolderExistsmethod should only be used by
those applications that support folders. Further, it is used to handle a
particular type of condition, which is demonstrated by the following case: If
Jean sends an item from “Jeans Folder” to Fred’s Newton, what folder should
the item appear in if Fred doesn’t have a “Jeans Folder?” Answer: “Unfiled.”
The CheckThatFolderExistsmethod compares the labels
slot of its argument to the list of folders on this machine. If it finds it, it does
nothing, otherwise it sets the labels slot value to nil.

Now, look at how the sample PutAway code deals with the situation
in which the application is not open on the receiving Newton. This
application stores the open soup in a slot called appSoup which it nils
out in the application’s viewQuitScript. If the application is running,
PutAway uses that soup. If the application is not running,
PutAway calls kRegisterCardSoupFunc to create the soup
(if necessary) on all writable stores (including the default store). Notice that
if we called kRegisterCardSoupFunc, we must call
kUnregisterCardSoupFunc.

The BroadcastSoupChange function will call the
application’s SoupChangedmethod, which will redisplay the view if
the application is open. If you wanted to be robust in your programming, it
wouldn’t hurt to have an exception handler in this code as well:

try
theSoup:AddToDefaultStore(…)

onException |evt.ex| do begin
if not appIsOpen then

call kUnRegister…
Rethrow();

end;
if not appIsOpen then

call kUnRegister…

Unfortunately, AddToDefaultStore doesn’t currently throw an
exception, so the exception handler will not execute. In the future, though,
AddToDefaultStoremight throw exceptions and then this code
would correctly handle it.

ADDING PRINTING

The Newton implementation of printing is significantly different, though
easier, than typical desktop machines. Remember that, within the routing
global, your application’s routing frame is stored in a slot whose symbol is
our application signature. In the routing frame, there is a formats slot
that is an array. This array contains an entry for each item in the format
picker of the print slip. Also, each entry in this array is a symbol. In the root
view, each of these symbols is a slot that points to another view. The view
uses for its proto a format frame which you normally store in your base
template. This is illustrated in Figure 4.

THE CHECKLIST

Here is the entire set of steps needed to support printing:
1. Create a print format and add it to your project.
2. Create a format frame in your base template.

3. In your InstallScript, call BuildContext and create a slot
in the root view.

4. In your RemoveScript, remove the slot in the root view.
5. Add Print to the routing frame.
6. Modify SetupRoutingSlip to save data.
7. Modify printNextPageScript in the print format.

Here we describe each of these steps in greater detail.

1. Create a Print Format and Add it to your Project
You create a print format by using the special “New Print Format” layout

provided by NTK. The topmost template in this layout needs to use as its
proto a protoPrintFormat. This template not only has a proto slot
but a printNextPageScript slot as well. By default,
printNextPageScript only handles one page, but you can add
code to support multiple pages (see step 7).

Once you compile the application, the Print format layout is saved into
the package and is accessible by name (for example,
printFormat_nameOfLayoutFile) at compile time (in an
evaluate slot, for instance).

Create any children you wish to have on the printed page. The
protoPrintFormat view will be sized so that it is the size of the
printable area on the page (the page size inset by the margins). You can use
justification with child views to place them in appropriate places on the
page. For instance, you might want a header at the bottom-right of each
page. This could be done with a protoStaticText with parent
relative bottom and parent relative right justification.

2. Create a Format Frame in your Base Template
The next step is to add a format frame to the application base template.

Here is a typical format frame with italics showing the parts you might want
to customize:

{
_proto: ROM_coverPageFormat
title: "Bill", //text in the format picker
mainFormat: printFormat_billFormat,

}

The mainFormat slot points to the printFormat you
created in the last step. You’ll normally create this format frame as a slot in
the application base template. Note that you must proto to
ROM_coverPageFormat. In addition to providing the coverpage,
ROM_coverPageFormat also sets up many other slots that are required for
printing.

3. In your InstallScript, call BuildContext and Create a Slot in the
Root View

First, create a new constant that the will refer to the application’s new
print format:

constant kFormatSymbol := '|MyPrintFormat:App:Signature|;

It is possible for an application to have multiple print formats. They
should each have unique symbols. Then the InstallScript will write
code similar to the following to create a view based on the format frame

using BuildContext:

InstallScript(partFrame)
begin

local appBaseTemplate := partFrame.theForm;
local formatFrame := appBaseTemplate.myFormatFrame;
GetRoot().(kFormatSymbol) := BuildContext(formatFrame);
…

end;

Remember that BuildContext takes a template and creates a view
using as its proto that template (its parent is the root view). The view is
stored in the root view in a slot with a unique symbol.

4. In your RemoveScript, Remove the Slot from the Root View
Here is where you clean up and remove what is no longer needed.

RemoveScript(partFrame)
begin

…
RemoveSlot(GetRoot(), kFormatSymbol);

end

5. Add Print to the Routing Frame
Now that you have created the necessary layouts and instantiated them,

you need to add Print to the routing frame. After this step, “Print” will be
a choice in the action picker:

print: { title: "Print item",
routeForm: 'printSlip,
formats: [kFormatSymbol],

},

6. Modify the SetupRoutingSlip to Save Data

For beaming, the target is automatically stored in the fields frame. For
printing, this is not the case. You need to save whatever information you’ll
need when you actually print in the fields frame. This information may be
the target, it may be some information from the target, or something else
entirely. Save this information in the SetupRoutingSlipmethod:

func(fields)
begin

fields.title := kAppName &&
DateNTime(Time()) &&
distinctive info from target;

fields.body := information needed for printing/faxing...
end

Remember that you only want to save this information for printing; when
beaming or mailing, do not use it. You should always assign your data to
the body slot.

7. Modify printNextPageScript in the Print Format
The printNextPageScriptmessage will be sent to your

protoPrintFormat at the end of each page. If there are no more
pages, it should return nil. If there are more pages, it should prepare for
the next page and return true:

printNextPageScript : func()
begin

if moreToPrint then begin
send messages to children to update their data
create new children possibly
remove children possibly

end else
return nil;

end

When View Messages are Sent During the Printing Process

The way printing works differs depending on the type of printing. For
PostScript printers, each view on the page is converted to a PostScript
equivalent, and the PostScript representation of the printed page is sent to
the printer. For bitmap printers, the Newton images the page into an
offscreen bitmap and then sends those bits to the printer. Since there is not
enough memory to hold the entire page in an offscreen bitmap, the Newton
images the page in horizontal bands from top to bottom. All views that
intersect a band are drawn, and the bits for that band are sent to the printer.
The offscreen buffer is then used for the next band.

The views involved in printing receive a number of different system
messages. At the beginning of printing, the protoPrintFormat
view (and all of its descendants) receive these messages:

• viewSetupFormScript
• viewSetupChildrenScript
• viewSetupDoneScript

These present good opportunities for the programmer to do any one-
time initializations. At the end of each page, the protoPrintFormat
receives a printNextPageScriptmessage. During the processing
of each band, each view that intersects the band is also sent the
viewDrawScriptmessage.

From any of these methods, you can access the fields frame (via
parent inheritance). Thus, you can access any information you saved in the
fields frame in the SetupRoutingSlipmethod.

Supporting More Than One Print Format
If you want to support more that one type of print format, simply create

multiple print formats and add them to your project. Then create multiple
format frames in your application base template. Build these multiple format
views in your InstallScript instead of just the original one. In the
RemoveScript, remove the slots you created in the
InstallScript. Your last duty is to create special format symbols for
each of the format frames and then add the multiple symbols to the
formats slot in the routing frame.

Faxing
Here is the good news – once you’ve implemented printing, you have

already gone a long way towards supporting faxing. To support faxing, you
need a separate entry in the routing frame, and you need to make sure your
imaging is quick enough to avoid timing out. Here is a checklist for faxing:

Faxing Checklist
1. Add faxing to the routing frame.
2. Verify that your page images quickly.

Newton Technology Journal April 1995

9

April 1995 Newton Technology Journal

10

1. Add Faxing to the Routing Frame.

fax: {
title: "Fax item",
routeForm: 'faxSlip,
formats: [kFormatSymbol],

},

Any format frame that supports printing will also support faxing. For both
faxing and printing, a format frame must use as its proto
ROM_coverPageFormat. The name of this proto is somewhat
misleading since this proto is also necessary for printing.

2. Verify that Your Page Images Quickly.
Faxing requires careful attention because of the very real possibility of

timing out in the middle of a fax. It is imperative that the actual sending of a
fax be speedy. Fax machines will timeout if approximately 5 seconds elapse
without receiving information. Thus, once the connection has been made,,,
everything must proceed at a fairly brisk pace. Further, each band must
image quickly because all imaging occurs while the fax connection exists. As
a result, you will need to do the following:

• Use the viewSetupFormScript of the printFormat for
expensive operations–before calling
inherited:viewSetupFormScript().

• Make printNextPageScript& viewDrawScript quick.
• Consider using multiple views with height less than the entire page (only

views that intersect a band need to be drawn).

These considerations are especially necessary if you have complicated
pages to fax. For many applications, however, all that is required is some
testing that demonstrates that faxing doesn’t time out. Note that you should
test this on either a StyleWriter printer, a real Fax machine or some other
type of rasterizing device. When printing to a PostScript printer, the page is
imaged as one band, so this does not provide a good test.

MAILING

Mailing involves some additions to the format frame to support the creation
of text that will be sent.

The Checklist
1. Add mail to the routing frame.
2. Add a method to the application that will create text to send.
3. Add a text slot to the format frame that references this new method.
4. Support closures by adding an attachment slot to the format

frame.

To request information or an application on Apple’s Newton developer programs,
contact Apple’s Developer Support Center

at 408-974-4897
or Applelink: DEVSUPPORT

or Internet: devsupport@applelink.apple.com.

NTJ

To send comments or to make requests for articles in Newton Technology Journal,
send mail via internet to: piesysop@applelink.apple.com

Newton Technology Journal April 1995

11

Apple Computer, Inc. has announced the newest member of their
Newton MessagePad family of products, the MessagePad 120. This easy-
to-use, hand-held device provides convenient access to the information
you need, no matter where you happen to be — in a meeting, at home,
or on the road.

IMPROVED DESIGN AND SCREEN CLARIT Y

Like the MessagePad 110, the new MessagePad 120 has a slimline design, so
it fits easily into the palm of your hand. The protective lid is now
removable so that you can customize the MessagePad to fit your usage
pattern and the PCMCIA card lock has been moved to the side, to make it
more accessible when you have your lid attached. In addition, the new
MessagePad 120 screen offers reduced shadowing and better screen clarity.

MORE INTERNAL MEMORY

One of the most significant MessagePad 120 feature enhancements is the
new 2MB internal memory configuration. This offers users three times
more internal space than is available in the current MessagePad 110.
Users will be able to put more of their applications in internal memory,
thus freeing up their PCMCIA slots for add-on communications cards and
peripherals. In addition, the total configuration cost will be significantly
reduced, as most users will not have to invest in extra memory cards. The
new memory configuration offers a combination of RAM and Flash
storage, assuring that even if a user accidentally removes all the batteries,
their data will be saved.

SUPPORT FOR HIGH-POWERED PCMCIA CARDS

The MessagePad 120 Type II PCMCIA slot now offers up to 325 mA capacity,
making it better suited for development of high-powered communications
cards and peripherals. The PCMCIA slot accommodates a range of add-on
Newton software application cards including: LAN-line, cellular data and fax
modem cards; paging cards; memory cards; and others.

1.3 (344311) SYSTEM SOFT WARE IMPROVEMENTS

Improvements have been made to the current 1.3 version of system
software, making it more reliable and intuitive. Some of the more
significant enhancements are outlined here.

• Notification windows (alarms) are no longer closed when the Newton
goes to sleep. This will prevent users from missing notifications that
occur when the Newton is unattended.

• The ‘*’ and ‘#’ characters can be used when dialing phone numbers
from the call slip. For example, a user could set the dialing prefix to
‘*70’ to turn off call-waiting, if their phone system allows it.

• A recognition problem which could have caused the accuracy of
handwriting recognition to gradually degrade for some users has
been corrected.

• Switching to guest mode and back now restores the owner’s letter
styles settings, when the writing style is set to “Printed Only”.

• A modem-dialing problem for users with location set to a city in Japan
has been corrected. The Newton now sends the correct modem
initialization string “AT%J&P1”.

• A problem that could have put the Newton into a state in which PCMCIA
cards could be recognized without a soft reset has been corrected.

• The reliability of erasing flash PCMCIA memory cards has been
improved.

NEW COMMUNICATIONS SOLUTIONS

With the MessagePad 120, you can communicate in several ways. Using an
external modem or the PCMCIA modem, you can fax documents
anywhere, send and receive e-mail messages with people who subscribe to
services such as NewtonMail, CompuServe, and other Internet services.

With a cellular phone, software, cable and a new PCMCIA
FAX/modem, you can now also fax documents, and send and receive e-
mail messages wirelessly.

You can turn your Message Pad 120 into a paging device with the
optional Apple Mobile Messaging system bundle. This includes a PCMCIA
Paging Card from Socket, software from ExMachina and a subscription to
Apple’s notification service.

NEW SOFT WARE SOLUTIONS

Several business, information management, and reference software
packages have been announced in conjunction with the introduction of
the MessagePad 120. These include:
• ACT!, from Symantec, distributed by StarCore

This is contact manager software that puts vital, up-to-date client
information at your fingertips, organizes your schedule, automates
your record-keeping and correspondence, and synchronizes with
your Windows and Macintosh desktop ACT! applications.

• Berlitz Five Language Interpreter from StarCore
This application translates 20,000 words and 15,000 phrases between
English, French, Spanish, Italian and German

• Newton Utilities from StarCore

Apple Announces New Newton MessagePad 120,
Communications and Software Solutions!
by Patty Tulloch, Apple Computer, Inc.

Newton News

April 1995 Newton Technology Journal

12

This package includes four applications with unique features to
maximize memory, manage software and help you work faster. The
Shortcuts application allows you to create a customized floating
palette of your favorite features.

• PowerForms™ from Sestra, Inc.
This application turns your Newton into a mobile electronic briefcase
containing business and personal forms for professionals on the go.
Examples include purchase orders, invoices, sales quotations, shop
orders, sales records, employee personnel files, advertising analysis,
and so on.

• The Newton Enhancement Pack from StarCore
This bundle features three great applications on one 2 MB PCMCIA flash
card. The applications are Graffiti, Newton Utilities, and Action Names.

• PocketQuicken from Intuit
This facilitates tracking all your finances while you’re on the go. With
Pocket Quicken, you can instantly update your checking, savings,
credit card, and cash accounts. You can also track business expenses
by trip, project, and client.

• CIS Retriever from BlackLabs
The Newton client for CompuServe, this allows users to send and
retrieve mail, and to read and post Forum messages. This software
supports CIS Xtenders which provide access to stock quotes, airline
information, business databases, and so on.

325 mA capacity, making it better suited for high-powered communi-
cations cards and peripherals.

The message that is coming across about Newton is impossible to
ignore. With three major companies currently manufacturing and
selling Newton devices, the Newton platform continues to evolve.
More Newton licensees are gearing up to introduce even further
differentiated products to a growing customer base in 1995. Any
application written for the Newton platform will run on any of these
Newton devices, allowing developers to continually broaden the
potential customer base for applications.

As Newton devices proliferate in the corporate marketplace and find
their way into the hands of professionals on-the-go, the Newton

platform offers developers the opportunity for greater sales of existing
products, new business markets, and unlimited growth potential. As
Philip Ivanier, Manager of the Newton Developer Relations Group,
said, “we’re constantly improving the palette of paints available for
developers.” With such a palette at your disposal, our hope is that one
or more of you will be the developer who builds the next “killer
application” or broad-based solution that becomes an essential part of
every user’s Newton!

continued from page 2

Letter From the Editor

To request information or an application on Apple’s Newton developer programs,
contact Apple’s Developer Support Center

at 408-974-4897
or Applelink: DEVSUPPORT

or Internet: devsupport@applelink.apple.com.

NTJ

Create a variety of part types with the new Output Settings controls.

In addition to the standard files,
projects now support multiple text files and parts.

NTK 1.5 projects support layouts, resources, text files, book files, and
parts. This means your project can contain multiple text files. You can also
build multi-part packages and specify build order to suit your needs.

A new button bar in the Inspector offers controls of the new Profiler tool
and standard debugging functions.

INTRODUCING NEWTONSCRIPT PERFORMANCE TOOLS

To help developers study the performance of their applications, NTK 1.5
features a new performance profiling tool. The Profiler generates an analysis
of your functions and system calls. Using the new Inspector button bar, you
can upload results in the form of a table. The report includes useful
information such as time elapsed per function, number of times a function
was called, and size of each function in memory. This can often alert you to
bottlenecks in your code that may need to be reworked or optimized.

OPTIMIZE WITH THE NATIVE NEWTONSCRIPT COMPILER

For stand-alone code that does not interact with Newton subsystems (that is,
soups and views) you may consider optimizing to native ARM code. While
Native NewtonScript is much larger than interpreted NewtonScript, it retains
portability and can deliver higher performance. With NTK 1.5, you can make
this trade-off on a function-by-function basis.

Newton Technology Journal April 1995

13

continued from page 1

Coming Soon: Newton Toolkit 1.5

Quickly upload statistics to analyze the performance of your functions.

continued on page 14

Function Min Max Average % Entries Size

MainLayout.TopView.CalculateDistance 500 900 600 7 98 250

MainLayout.TopView.SortNames 300 10000 900 10 515 780

ReportLayout.Report View.CompareResults 600 988 948 10 43 2500

ProjectData.FindPath.func1 477 500 490 3 2 5680

April 1995 Newton Technology Journal

14

However, using the Native compiler is not a simple operation; you’ll want
to read the documentation carefully. There are many hints, such as explicit
typing, that you must consider to ensure that compilation results in a
performance boost. Native NewtonScript may not solve every application’s
performance problems, but it’s an important step. We are committed to
delivering both high-level and low-level tools to enable developers to fully
recognize Newton’s potential.

BEYOND NTK 1.5

Our goal is to provide great tools with which to build great applications.
Newton Toolkit 1.5 will deliver greater productivity as well as powerful new
capabilities. We look forward to bringing you even better Newton tools in
the future. Please send comments and feature requests to
NTKBUGS@NEWTON.APPLE.COM.

NTJ

Use the “native” keyword to optimize a particular function.

If you have an idea for an article you’d like to write for Newton Technology Journal,
send it via internet to: piesysop@applelink.apple.com

or AppleLink: PIESYSOP

Newton Technology Journal April 1995

15

Some Resources

There are two books that contain particularly good discussions of
optimizing code. The first is devoted solely to optimization, while the second
covers all aspects of programming:

Jon Bentley, Writing Efficient Programs, Prentice Hall, 1982,
ISBN 0-13-970244-X

Steve McConnell, Code Complete, Microsoft Press, 1993 ISBN 1-55615-484-4

Both books correctly point out that optimization should be done after
the code is written. You measure the performance of an application,
determine where the application is spending most of its time, and then
concentrate on optimizing those areas.

Measuring Performance of a Newton Application
For the Newton, the only real way to measure performance is to call

Ticks() before and after a piece of code. This lets you see how long the
code took to execute. The Ticks()function, however, returns a number in
60ths of a second, To measure quick operations, you may want to do them
repetitively in a loop.

The following is generally useful:

theRoutine := func(args)
begin

…
end;
frame := {result: nil, time: nil};
oldTicks := Ticks();
frame.result := call theRoutine with (theArgs);
frame.time := Ticks() - oldTicks;
frame

To do this from the Inspector, you will need to embed the timing code in
a function. This way the code can include loops (the Inspector doesn’t allow
loops at the top level).

Here’s an example of executing this:

theRoutine := func()
begin

local total := 0;
for i := 1 to 1000 do begin
end;
return total;

end;
frame := {result: nil, time: nil};
oldTicks := Ticks();
frame.results := call theRoutine with ();
frame.time := Ticks() - oldTicks;
frame
#441AEF1 {result: 0,

Time: 8}

theRoutine := func()
begin

local total := 0;
for i := 1 to 1000 do begin

total := total + i;
end;
return total;

end;
frame := {result: nil, time: nil};

oldTicks := Ticks();
frame.results := call theRoutine with ();
frame.time := Ticks() - oldTicks;
frame
#441AEF1 {result: 500500,

Time: 14}

Notice that there are two timings here. The first measured 1000 iterations
of an empty loop, and the second measured 1000 iterations of a loop with an
integer addition each iteration. The difference between the two is 6 ticks, or
1/10 of a second. Thus, a rough estimate of the speed of an addition of two
local variables is 1/10000 of a second.

SPEEDING UP YOUR NEWTONSCRIPT

Since NewtonScript is interpreted byte-code (at least until NTK provides a
NewtonScript compiler), the best way to increase NewtonScript speed is to
use raw NewtonScript as little as possible.

Use Built-in Functions in Preference to Writing Your Own.
For example, if you want to sort an array, rather than writing your own

sorting routine similar to:

call kMySortFunc(anArray)

you are better off calling the built-in Sort function. Since the built-in global
functions are written in C++, they run much faster than your custom
NewtonScript code. Using a built-in function also has the advantage of
reducing the size of your package.

You can see a continuation of this idea in how you handle certain
NewtonScript functions. Some functions themselves take functions as
parameters. For instance, Sort takes a function as the second parameter.
Assume you have an array of frames, each of which has a height slot,
and you wish to sort the frames in increasing order of height. One way to
do this is:

Sort(myArray, func(a, b) return a.height - b.height, nil);

However, the third parameter of Sort is a symbol specifying the slot on
which to sort. Therefore, the example can be rewritten as:

Sort(myArray, func(a, b) return a - b, ‘height);

This should be slightly quicker, since the two accesses of the height slot
are now made in C++ rather than in NewtonScript. A sample with 500
elements yielded 884 ticks for the first case, 810 for second).

Even better, however, is to avoid NewtonScript entirely (even return
a-b). This can be done with Sort by passing the symbol ‘|<| as the
second parameter:

Sort(myArray, ‘|<|, ‘height)

For the same sample, this is substantially faster, taking only 42 ticks, a 20
times speedup.

continued from page 1

NewtonScript Performance Tuning

ALWAYS DECLARE YOUR LOCAL VARIABLES

There are several reasons for this rule, not just performance implications.
One reason is code readability. If you define your locals using the
keyword, then readers of your code know what are local variables, and
what are globals or inherited slots. Additionally, at some point,
NewtonScript may require declaration of local variables, so you might as
well be prepared. The last reason for following this rule is that there is no
good reason not to.

Speed is the most important factor, however, for declaring locals.
When the NewtonScript compiler sees the use of a declared local
variable, it generates code that accesses the variable via a numeric stack
offset. On the other hand, the code to access variables not declared
locally requires a dynamic lookup based on the variable name. This
dynamic lookup is slower.

The situation when assigning to a variable for the first time is even
worse. If a variable isn’t declared local, the assignment requires a lookup,
starting first with a lookup as a local, then using both proto and parent
inheritance, and finally as a global. If the variable isn’t found at this point,
the interpreter creates the variable as a local.

The following code, called with an array of 1000 elements, takes 66
ticks:

SumArray := func(anArray)
begin

total := 0;
foreach elem in anArray do

total := total + elem;
return total;

end;

By simply declaring the local variables, the time is reduced to 31 ticks:

SumArray := func(anArray)
begin

local total := 0;
foreach elem in anArray do

total := total + elem;
return total;

end;

Loop Variables and Local Declarations

Loop variables are automatically declared as locals. In the following code,
the variables in bold need not be explicitly declared as locals:

for i:= 1 to 100 do
…

foreach elem in array do
…

foreach slotSymbol, value in frame do
…

Using foreach Correctly

It is quicker to iterate through the elements of an array with foreach
than it is with an explicit for loop. Here are two examples:

SumArray1 := func(anArray)
begin

local total := 0;
foreach elem in anArray do

total := total + elem;
return total;

end;

SumArray2 := func(anArray)
begin

local total := 0;
for i := 0 to Length(anArray) - 1 do

total := total + anArray[i];
return total;

end;

With foreach, you have a specialized NewtonScript construct which
the interpreter can handle quickly. It is also easier to use, since you can’t
accidentally get the starting or ending conditions wrong. In this case,
SumArray1 took 18 ticks, while SumArray2 took 32 ticks (for a
1000-element array).

Even with NewtonScript constructs like foreach, measurement is
important. There are times when using it is slower. For example:

ZeroArray1 := func(anArray)
begin

foreach index, elem in anArray do
anArray[index] := 0;

end;

ZeroArray2 := func(anArray)
begin

for index := 0 to Length(anArray) - 1 do
anArray[index] := 0;

end;

Although ZeroArray1 is easier to read, the interpreter sets the
value of elem (which is unused) as well as the value of index each
time through the loop. Here, ZeroArray1 took 42 ticks when called
with a 1000-element array, while ZeroArray2 took only 15 ticks.

Function calls are expensive
Compared to some other languages, the cost of calling a function in

NewtonScript is expensive.
The Newton can make not quite 1000 function calls per second (if the

functions do nothing, and no lookup is necessary to call them). The
following code took between 60 and 70 ticks to execute:

g := func()
begin

local f := func()
begin
end;

Print(Ticks());
for i := 1 to 1000 do

call f with ();
Print(Ticks());

end

Sending a message is somewhat more expensive, mostly due to the cost
of looking up the method in the frame to which the message is sent.

Cache expensive calculations
Currently, the NewtonScript compiler does no common sub-expression

elimination optimization. Every expression in your code will be evaluated.
This means that if you refer to an inherited variable many times in a method,
the lookup for that slot must occur many times. Consider caching the results
of operations.

April 1995 Newton Technology Journal

16

For instance, instead of:

Method := func(s)
begin

for i := 1 to 100 do
s := s + inheritedVar;

return s;
end;

use:

Method := func(s)
begin

local cachedVar := inheritedVar;
for i := 1 to 100 do

s := s + cachedVar;
return s;

end;

The latter code avoids 999 variable lookups.
Along similar lines, if you are accessing nested frames repeatedly,

consider caching the result of the dot lookup. Rather than:

for i := 1 to 100 do
a.b.c.d[i] := i;

use:

local arr := a.b.c.d;
for i := 1 to 100 do

arr[i] := i;

The latter code took 6 ticks while the former code took 7 ticks.

Eliminate loop Invariants
A common compiler optimization is to move expressions whose

values don’t change outside of a loop. At this point, however,
NewtonScript doesn’t do this optimization, so you must do it yourself.
For example, rather than:

for i := 1 to 100 do
:Method(x + y + 53 * z, 2 * i);

use:

local value := x + y + 53 * z;
for i := 1 to 100 do

:Method(value , 2 * i);

By making this change, the calculation of x + y + 53 * z is done only
once, rather than 100 times.

USING AND ALLOCATING MEMORY EFFICIENTLY

Efficiently handling memory within a NewtonScript application involves
both attention to memory allocation and to whether you are using RAM
or ROM. First, you must deal with the more simple issue of measuring
your memory use.

Measuring Memory Use
In order to measure space in your program, the best bet is to call

Stats(). This method returns the total amount of memory available.
Since Stats doesn’t take into account memory that needs to be garbage
collected, however, you should always call GC() first.

Here is some code to use to see how much memory a function takes:

theRoutine := func(args)
begin

…
end;
frame := {result: nil, space: nil};
GC();
oldSpace := Stats();
frame.result := call theRoutine with (theArgs);
GC();
frame.space := oldSpace - Stats();
frame

Here is an example of its use:

theRoutine := func()
begin

return [1, 2, 3, 4, 5, 6, 7, 8]
end;
frame := {result: nil, space: nil};
GC();
oldSpace := Stats();
frame.result := call theRoutine with ();
GC();
frame.space := oldSpace - Stats();
frame
Free: 38504, Largest: 50616
Free: 38472, Largest: 50568
#4414C39 {result: [#4414C51],

space: 48}

The above example shows that this eight-element array takes 48 bytes.
(See the NewtonScript Q&A for a detailed discussion of object sizes).

Efficiently Allocating Memory
Allocating memory takes time. In addition, it uses RAM – a very precious

resource on the Newton. For these reasons, it is best to avoid allocating
memory whenever possible. Here are some ways to do that:

Using Constant Frames and Arrays
If you use an array or frame that will not change at run time, make sure

that it is constant. For example, there is a substantial difference between:

myFrame := {a: 3, b: 4}

and:

kMyFrame := '{a: 3, b: 4}

The former is technically a frame constructor that allocates memory from
the frame heap for the frame at run time. The second frame is created at
compile time and is stored as part of your package. This trade of RAM for
ROM storage will always be a better programming method.

There is also a syntax you should use for defining constant arrays:

'[1, 2, 3]

You can also use DefConst to create constants:

DefConst('kMyFrame, {a: 3, b: 4 * 5});

In the current implementation of NewtonScript, strings literals are constant.
Therefore, the following code creates a string which is stored in the package,
rather than in the frame heap:

s := "abcd";

Newton Technology Journal April 1995

17

Newton Technology Journal April 1995

18

Sharing Frame Maps
As shown in the following diagram, frames created with the same frame

constructor share the same frame map. The frame map contains the
mapping from slot symbol to location within the frame.

To ensure that you use the same frame maps, create each frame with
the same frame constructor. For example, if you need to create a bounds
frame, don’t use:

{left: 10, top: 5, right: 30, bottom: 100}

Instead, call SetBounds

SetBounds(10, 5, 30, 100)

Further, with SetBounds, the frame map of the rectangle will be in the
Newton’s ROM, rather than in your package. You can also use other system
functions that return rectangles such as RelBounds.

On a similar note, you should ensure that your frame constructor
contains all the slots your frame needs, rather than adding new slots
dynamically. Adding a new slot not only requires allocating memory for the
slot value (an unavoidable four bytes), but also requires allocating memory
for the frame map entry. By making sure the initial frame constructor
contains the necessary slots, the frame map can be in the package, rather
than in the frame heap.

Here are two routines which each return a frame.
The first creates all the slots in the frame constructor: The second

creates each slot dynamically:

The first routine uses 32 bytes of the frame heap, while the second
uses 64 bytes. This first routine is not just smaller, it is also faster. It takes
17 ticks to call the first routine 100 times, while it takes 32 ticks to call the
second one 100 times.

Don’t Blindly use EnsureInternal, TotalClone, or DeepClone
Remember that NewtonScript is specifically designed to share

memory. When you use EnsureInternal, TotalClone, or
DeepClone, you are making copies so that memory is not shared.
Don’t do this unless you have a good reason. Generally speaking, it is
important to be aware of what these three routines do, and only use
them when necessary.

SUMMARY

It should now be obvious that, by optimizing a few key areas in your code,
you can both increase the responsiveness of your program and use memory
much more efficiently. Having good optimizing techniques in the first place
can only help. Beyond that, rely on built-in functions rather than creating
your own custom NewtonScript. Remember to define your locals, use the
right loop for the job, and define constants where ever possible.

You can save memory in your programs by paying attention to details
such as frame maps. You should also never blindly use the cloning functions
to do something that can be handled in another way. Finally, your awareness
of how operators use memory can help you determine when to change to a
more efficient method.

{ a: 3, b: true, c: $x, }

3
true
$x

frame frame map

'a

'b

'c

NTJ

'a
'b

'c

'd

MakeFrame := func()
begin
	 local frame :=
		 {a: nil, b: nil,
		 c: nil, d: nil};
	 frame.a := 1;
	 frame.b := 2;
	 frame.c := 3;
	 frame.d := 4;
	 return frame;
end;

RAM Package

Frame

Frame map

'a
'b

'c

'd

Frame
Frame map

RAM Package
MakeFrame2 := func()
begin
	 local frame := {};
	 frame.a := 1;
	 frame.b := 2;
	 frame.c := 3;
	 frame.d := 4;
	 return frame;
end;

Newton Developer Programs
Apple offers two programs for Newton developers—the Newton Associates Program and the Newton
Partners Program. The Newton Associates Program is a low cost, self-help development support
program. The Newton Partners Program is designed for developers who need expert-level
development support via electronic mail. Both programs provide focused Newton development
information and discounts on development hardware, software, and tools—all of which can reduce
your organization’s development time and costs.

Newton Partners Program
This expert-level development support program helps developers
create products and services compatible with Newton products.
Newton Partners receive all Newton Associates Program features, as
well as programming-level development support via electronic mail,
discounts on five additional Newton development units, and
participation in select marketing opportunities.

With this program’s focused approach to the delivery of Newton-
specific information, the Newton Partners Program, more than ever,
can help keep your projects on the fast track and reduce
development costs.

Expert Newton Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton development units

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton products

Marketing Activities
• Participation in select Apple-sponsored marketing and PR activities

All Newton Associates Program Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Newton Associates Program
This program is specially designed to provide low-cost, self-help
development resources to Newton developers. Participants gain
access to online technical information and receive monthly mailings
of essential Newton development information. With the discounts
that participants receive on everything from development hardware
to training, many find that their annual fee is recouped in the first
few months of membership.

Self-Help Technical Support
• Online technical information and developer forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal
• Newton Developer CD, which may include:

– Newton Sample Code
– Newton System Software
– Newton tools and utilities
– Marketing and business information

• Apple Directions—The Developer Business Report

Savings on Hardware, Tools, and Training
• Discounts on certain development-related Apple hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

For Information on All Apple Developer
Programs
Call the Developer Support Center for information or an
application. Developers outside the United States and Canada
should contact their local Apple office for information about
local programs.

Developer Support Center at (408) 974-
4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P

Apple Developer Group

®

April 1995 Newton Technology Journal

20

Advanced Debugging
by Julie McKeehan and Neil Rhodes, Calliope Enterprises, Inc.

Advanced Techniques

This article discusses several little-known debugging techniques which
should be part of the arsenal of all Newton programmers. These techniques
include:
• Replacing procedures on the fly
• Overriding global functions
• Overriding root view methods
• Making trace work the way you want it to on a particular piece of code

REPLACING PROCEDURES ON THE FLY

You are probably familiar with the common debug cycle on the Newton:
• You compile and download
• You run the application looking for an error
• You then debug the error using the Inspector or ViewFrame (or a

combination of both)

When a bug is found in a method, the straightforward approach is to fix
it, and then start the whole process over again: compile, download, run the
application, and test to make sure the fix is correct. The good news about
this approach is that this compile/download/run cycle is much quicker than
on many platforms (e.g., Macintosh Programmer’s Workshop). The bad
news, as any programmer will tell you, is that this cycle just never is quick
enough.

A speedier approach is available. You can use the Inspector to replace
the method that has the error while still running the application. For
example, let’s say you have a template named “myButton” which has a
method named Method1:

func(a, b, c)
begin

local x := 1;
local y := 1;
local z := 1;

if a then begin
y := y * 2;
z := :Method2(a, b, c, x, y);

end;
return x * y * z;

end

Imagine that you have a problem with Method1, and you would
like to print out its parameters. You can do this by executing the following in
the Inspector:

Debug("myButton").Method1 := func(a, b, c)
begin

Print(a);
Print(b);
Print(c);
inherited:Method1(a, b, c);

end

When you execute this method, it is compiled from the Inspector and
stored in the frames heap of the Newton. The Method1 slot is now
part of the myButton view, and now whenever the Method1
message is sent to myButton, the new overridden version will
execute instead. Since part of the new method is to print out the
parameters, it will do so and then call the old version.

Notice that you could even completely replace Method1:

Debug("myButton").Method1 := func(a, b, c)
begin

local x := 3;
local y := 3;
local z := 5;

if a then begin
BreakLoop();
y := y * 2;
z := :Method2(a, b, c, x, y);

end;
return x * y * z;

end;

The one requirement for this technique to work is that the view to which
you are adding a method must exist. Thus, you cannot add code to a closed
view (unless, of course, it is declared to a view that is still open).

You can use this approach to add code incrementally to a view — one
method at a time — thus making debugging much simpler. The only tricky
part is remembering to copy the finished product back into your project
once you’re satisfied that the code is correct. The best code in the world
won’t help your application if it is left sitting in the Inspector window.

OVERRIDING GLOBAL FUNCTIONS

There are times when you will find it useful to replace a global function. For
example, you may want to know when a particular function is called, or what
its parameters are. As an example of this, let’s say you want to find out when
(or even whether) a particular application calls
BroadcastSoupChange and what soup name it passes when
it does.

Here is how you perform this neat little trick. First, you create a global
function that references the old global function (usually, you’ll want to
augment the behavior of a function, not completely replace it). Remember
that all global functions are stored in the global variable functions
frame, which is itself a global variable. From the Inspector, execute this code:

functions.OldBroadcastSoupChange :=
functions.BroadcastSoupChange;

Second, create a new function that takes the same number of parameters
and that calls the old function:

© 1994, Apple Computer, Inc. and Calliope Enterprises, Inc

functions.BroadcastSoupChange := func(s)
begin

Print("BroadcastSoupChange called with" && s);
OldBroadcastSoupChange(s);

end;

OVERRIDING ROOT VIEW METHODS

Another technique that can be very useful is being able to override root view
methods for debugging purposes. Methods like Notify,
FindSoupExcerpt, Open, and Close are all root view
methods that at times might be useful to override for debugging purposes.

The technique is very similar to the one for replacing methods in your
own application. Simply add a slot to the root view that overrides the
method found in the root template. All you have to do is execute the
following code from the Inspector:

GetRoot().MethodToOverride := func(params)
begin

whatever you want to do
inherited:MethodToOverride(params);

end;

MAKING TRACE APPLY IMMEDIATELY

The trace global variable controls tracing and it would probably be very
useful if you could precisely control when it turns on and off. And as many
programmers have learned, simply setting it to true (or
'functions) for your whole program, only causes enormous amounts
of information to be printed to the Inspector. Given this bulky bitstream,
many programmers would like to be able to set the variable to true only
around a particular section of code and then be able to examine only that
output.

While you would like it to be, it’s not as easy as surrounding your code
with the following:

trace := true;
code to trace
trace := nil;

The reason this doesn’t work is that the NewtonScript interpreter only
occasionally looks at the value of the trace variable. Once you think
through the logic of it, you will realize that this is actually a good thing; if the
interpreter checked the value on every instruction, the speed of the
interpreter would be severely slowed for all Newtons. Since slowing the
Newton down is not a choice that anyone wants, the NewtonScript
interpreter irregularly checks the value of this variable when a function is
called (function calls are expensive enough that one check of a global
variable has no substantial impact). Of course, this does leave you with the
problem of how to trace around just a little bit of code.

Happily there is a nice solution to this problem. To cause tracing to
happen around a particular section of code, all you have to do is make sure
to call a function immediately after setting the trace variable:

trace := true;
Apply(func() nil, []);
code to trace
trace := nil;
Apply(func() nil, []);

Simply by executing an empty function using Apply, we’ve caused
the interpreter to check the trace variable and start tracing before the
code of interest is executed. Similarly, as soon as the code of interest
completes, we turn tracing off.

There is one small proviso that accompanies this trick and that is that you
can not depend upon it to work in the future versions. The particular
manner in which the trace global variable is checked may well be
different in the future.

SUMMARY

One or more of these techniques may be of use to you in your Newton
debugging. Remember that all the techniques that create functions in the
frames heap are only for debugging and will be lost when the Newton is
reset. If you want to keep the results of your carefully crafted code, then
copy it back into your project. These techniques are very useful, however,
when you want to quickly see the effect of different code without expensive
recompile and download cycles.

Newton Technology Journal April 1995

21

NTJ

To send comments or to make requests for articles in Newton Technology Journal,
send mail via internet to: piesysop@applelink.apple.com

April 1995 Newton Technology Journal

22

BASIC SYSTEM ARCHITECTURE

The Marco communications architecture is shown below in figure 1. Some
of the features provided for in the architecture include sharing the radio
among multiple clients, multiple mail transport services, wireless and
wireline mail applications, and several different developer APIs.

Figure 1: Marco Communications Architecture

The radio communications section of the architecture includes the radio
hardware, Shared Radio Tool and the Wireless Manager. Together, these
components provide all of the software required for wireless communication
on a DataTAC network. The Shared Radio Tool is completely responsible for
managing the radio hardware and provides two access points. The first
access point is via an endpoint used by the Wireless Manager, which is
responsible for providing the Wireless API to clients as well as any user
interfaces that deal directly with the radio (such as radio preferences). More
detail on these components is given later in the article.

The mail section of the architecture provides the software necessary to
support multiple mail transports, bundled mail transport engines, mailed
based/savvy applications and a mail editor application. The diagram contains
a single component labeled "Mail Transports,” which is actually multiple mail
transport implementations, all of which share a common structure. In the
initial release both Radio Mail and ARDIS Personal Messaging are provided as
Mail Transports. The relationship between the Universal Mail Service and
individual transport services is detailed later in the article.

The last section includes applications and services other than mail that
are provided by third parties. Three different APIs are provided to
developers and the choice of API will typically be based on the type of
communications service required.

Applications that use a mail based service are layered on top of the
Universal Mail Service (UMS). Such applications are shown as “Mail Based"
and “Mail Savvy” applications in the diagram. (Mail Based apps are
specifically designed to take advantage of the I/O box, Mail Savvy apps are
those that provide mail access as an option to communicate data. Examples

of Mail Savvy apps are the built-in NotePad and Calendar applications). The
UMS API is completely compatible with the existing Mail API in the Newton,
while providing additional mechanisms to get information about currently
available transports and/or register for receiving reply mail. Applications
using this sort of interface are the most generic since they will work across
multiple mail transports. In addition the host that is supplying the service
and/or data needs only be accessible through mail. The primary drawback
to this sort of application is that the store and forward paradigm of mail can
result in significant delays.

Some mail transports also provide value added network services (Radio
Mail's XMFS, for example). Applications that take advantage of these services
are "Transport Specific" applications. Since the exact nature and API of the
network service will vary between transports, these applications will only run
over the transport for which they were designed. It is difficult to discuss the
potential benefits or drawbacks to these types of applications since the value
added network service itself will vary considerably across transports.

The last type of application is one that talks directly to the Wireless
Manager ("Dedicated Host" applications). These applications use the
Wireless API to send and received data across the wireless network.
Applications of this type must communicate with a specific host on the
wireless network (ARDIS in the US). Since the process for getting access of
this type is potentially very expensive and time consuming, this type of
application is most likely to be used in vertical markets. Since mail
transports use the Wireless API, they can be considered as a special kind of
"Dedicated Host" application.

OVERVIEW OF THE COMMUNICATIONS ARCHITECTURE

The radio communications portion of the architecture is shown in more
detail in figure 2. The major components are the radio hardware, the Shared
Radio Tool, the Wireless Manager, and the Dedicated Radio Tool. As
mentioned before, these components work together to provide radio
communications over a DataTAC network (such as ARDIS).

Figure 2: Overview Communications Architecture

Wireless Manager

Shared Radio Tool

Shared Radio Tool Endpoint

Radio PrefsRadio Controls Virtual Endpoints

Wireless API

Radio Hardware

Universal Mail Service

Mail Based App. Mail Savvy App.

Wireless Mail Transports

Wireless Manager

Shared Radio Tool

Radio Hardware

Wireline Mail Transports

Modem Tool

Serial Port

Transport
Specific App.Dedicated

Host App.

Marco Software Architecture, Version 1.0
by Dave Baum, Motorola, Inc. Wireless Data Group

Licensee Specifics

© Copyright 1994 Motorola, Inc.

Newton Technology Journal April 1995

23

The radio provides the physical communications layer and the channel
access portion of the data link layer. The Shared Radio Tool (SRT) is a
communications tool that provides two separate interfaces. In the current
operating system, each communications tool may only be used by a single
client at any given time. To accommodate multiple radio clients, the wireless
manager has assumed the responsibility for multiplexing clients requests to
the radio. As a result, the Shared Radio Tool's normal interface has a data
format significantly different than a typical communications tool.

SRT is a dual mode protocol engine (MDC and RDLAP) suitable for use
on MFR and SFR DataTAC networks. It implements the portions of the data
link layer above channel access, the network layer, and connection
management functions.

The Wireless Manager uses an endpoint to communicate with the Shared
Radio Tool. All access to the radio from NewtonScript is made through this
endpoint. Internally, the Wireless Manager provides components for setting
the radio preferences and controlling the radio (on, off, etc.). Most
importantly, the Wireless Manager also implements virtual endpoints which
provide the Wireless API for clients to use. Multiple clients may instantiate
virtual endpoints simultaneously - the Wireless Manager coordinates use of
the real endpoint among the multiple virtual endpoints.

DETAILED MAIL ARCHITECTURE

The Mail Architecture is shown in detail in Figure 3. This document
describes each of the components briefly; more detailed information may be
found in Universal Mail Service. Three major components are involved in
the sending of mail: an application, the Universal Mail Service, and a mail
transport. The application sending the mail may be the Mail Application
itself, a third party application layered on top of mail services (mail based
applications), or any Newton application that supports the standard mail
routing service. The Universal Mail Service provides a consistent API for all
mail transports. Applications need not know the difference between the
individual mail transports supplied by third parties.

Figure 3: Detailed Mail Architecture

The Mail Application consists of a mail editor and a log overview. The
Mail Editor makes use of the Mail Slip and I/O Box provided by the Universal
Mail Service. Other applications that need to send or receive mail would
also use these interfaces. Universal Mail Service provides an extensible
logging capability, the results of which are stored in a Mail Log Soup. The
Log Overview provides the user with convenient access to the data in this
soup.

The user selects and configures mail transports through the Mail Prefs
component. Custom preferences may be optionally supplied by the
transport as "Extended Prefs". In addition, the transport may optionally
supply a registration view that allows the user to register that transport.

The Mail Slip allows the user to address and submit a piece of mail. It
uses the transports' Attributes to determine what features are available for
the specific transport. In addition, custom features can be supported by an
Extended Mail Slip optionally supplied by the transport.

The Universal Mail Service owns the Mail InBox/OutBox category and
makes calls to the transport’s I/O Functions to send mail. When receiving
mail, the transport should deliver it to the I/O box so that the Universal Mail
Service can dispatch it appropriately.

Logging of mail is supported by the Log Manager and the Mail Log Soup.
The Log Manager provides convenient functions to the transport to support
logging. The log is maintained as a soup whose format will be published.

Lastly, a mail transport may optionally provide a Custom API for
“Transport Specific” clients. The custom API is often a standard used to
provide access to several programming platforms (DOS, Windows,
Macintosh, Newton).

For more information about Marco Communicator development
opportunities, developers may contact Pat Pahl, Business Development
Manager at Motorola, at the following internet address:
Patrick_Pahl@msmail.wes.mot.com.

Marco Wireless Communicator, Motorola, InfoTAC and DataTAC are all registered trademarks of

Motorola, Inc. Newton, Newton Technology, Newton Script, MessagePad, Newton Toolkit (NTK)

and NewtonMail are all registered trademarks of Apple Computer, Inc. ARDIS, ARDIS MG,

ARDIS Personal Messaging, RadioMail, SprintNet, CompuServe, America Online, and MCI Mail

are all trademarks of their respective companies.

Mail Prefs

Log Manager

I/O Box

Universal Mail Service

Mail EditorMail App.

Mail Transport

Extended Prefs

Mail Slip

Registration View

Extended Mail Slip

Attributes Custom API

Mail Log Soup

I/O Functions

Mail Apps

NTJ

If you have an idea
for an article you’d like to write for Newton
Technology Journal, send it via internet to:

piesysop@applelink.apple.com
or AppleLink: PIESYSOP

Dear Newton Developer,

We’d like to introduce you to StarCore, the software publishing and distribution arm

of the Personal Interactive Electronics Division at Apple Computer, Inc. As a Newton

developer, you are already involved in creating products for this exciting technology.

There are many ways in which we can build relationships that will benefit you and the

Newton platform.

At StarCore, we are actively recruiting titles for the Newton. StarCore can provide

developers with a broad range of services and opportunities. The developer creates the

software, StarCore provides the packaging, manuals, testing, user studies, marketing

and end-user support.

We are anxious to talk with developers about products or concepts they would like to

see published or distributed. We are particularly interested in business-oriented

applications that would appeal to a mobile professional. We are also looking for

products that have connectivity to Macintosh and Windows desktop applications.

Please contact us at:

StarCore
Apple Computer, Inc.
5 Infinite Loop, MS 305-3C
Cupertino, CA 95014
Attn: StarCore

