
Newton Delivers
for Vertical
Markets
By Jane Curley,
Apple Computer, Inc.

Apple’s Newton platform delivers powerful
new technologies that can help create entire-
ly new markets for developers. The combina-
tion of power, ease-of-use and personal
portability makes it a great vehicle for attack-
ing and solving problems whose solution can
not only open up new business opportuni-
ties, but also make a real difference in how
people can do their work. Recently, we came
across a project in Boston that provides an
excellent example of this process.

Health care professionals have a unique
need for access to the resources of massive
amounts of information at their fingertips,
often immediately. Much of the information
they reference daily in life or death situations
is not only clinical data, but also educational
resources, decision aids, and other profes-
sional and practical information. Many times,
health care professionals do not consult ref-
erence materials when making clinical deci-
sions. This is due, in part, to the fact that
there is a lack of availability of resource infor-
mation in areas where it is needed most. But
Apple’s Newton MessagePad in the health care
environment is changing some of that.

Boston’s Brigham and Women’s Hospital
will begin a joint pilot program with the
Massachusetts General Hospital using Apple’s

Business
Opportunities

Newton Delivers for Vertical Markets 1

Communications

Newton Communications 1

Developer
Group News

New Developer Support Programs
For Newton Developers 3

NewtonScript
Techniques

Exception Handling in NewtonScript 4

Understanding
NewtonScript

NewtonScript Functions 7

Newton
Communications

Beam Me Up, Newt! 10

continued on page 14 continued on page 15

Volume I, Number 1 February 1995

Newton
Communications
by Bill Worzel, Arroyo Software
ArroyoSeco@eworld.com

Newton communications programming is
often viewed with a mixture of awe and fear.
Somehow the notion of programming a PDA
to connect to everything from wireless
devices to infrared to networks seems slightly
unreal.

Once you begin to explore the communi-
cations chapter in the Newton Programmer’s
Guide (NPG), astonishment may give way to
puzzlement. The situation often becomes
worse when a programmer begins to write
and debug code.

This article is intended to make things
easier for the programmer by giving more
details, code examples and inside looks at the
architecture of the communications side of
the Newton. This article first discusses the
architecture and fundamentals of creating,
connecting and using Newton endpoints.
Next, it talks about serial and modem connec-
tions. Lastly, a related article (Beam Me Up
Newt!) discusses use of the infrared link for
connection both to other Newtons and to
remote home appliances such as televisions,
VCRs, CD players, and so on.

This article assumes you are familiar with
the Newton, NewtonScript and the Newton
Toolkit (NTK). Because unusual programming
techniques and constructs will be discussed,
it also helps if you have some experience in
doing communications programming. This
article is designed to cover much the same
ground (though not in as much detail) as is

Business Opportunities CommunicationsInside This Issue

February 1995 Newton Technology Journal

2

Welcome to the premier issue of
Newton® Technology Journal! The
Personal Interactive Electronics (PIE) divi-
sion at Apple Computer, Inc. is pleased to
be able to bring you this new, bi-month-
ly publication. From its first conception,
this journal has been designed and tai-
lored specifically for you, the Newton
platform developer. Our intent is to make
Newton Technology Journal your primary
resource for the latest information on
Newton platform technology, Newton
development tools, and PDA business
and market news from Apple Computer
and our licensees. While our focus will
be primarily technical, we also want to
provide our developers with a well-
rounded picture of the opportunities
that the Newton platform is building for
the developer community.

As Managing Editor of Apple’s Newton
Technology Journal, I know I speak for
the entire publishing team when I say I’m
thrilled to be able to provide such a sup-
port resource to Newton developers.
With our recent introduction of a full
range of Newton Developer Programs in
December, 1994, we’re really filling out
our range of services to assist develop-
ers in creating and publishing winning
Newton applications. I hope Newton
Technology Journal will go a long way in
making those support services indis-
pensable to you.

In this premier issue, you’ll find arti-
cles on Newton communications, excep-

tion handling, and function objects,
written by expert Newton programmers
Bill Worzel, Neil Rhodes, and Julie
McKeehan. You’ll also get a recap of the
recently introduced Newton Partners and
Newton Associates Developer Programs.
On the business side, we’ll give you a
look at a vertical market success story in
the medical arena.

We’ll look forward to bringing you
the latest in technical and business news
on the Newton platform in future edi-
tions. We also invite you to send your
comments, suggestions, and article ideas
to us via Internet at
piesysop@applelink.apple.com. The
Newton Technology Journal is the perfect
forum to share your tips, tricks, and pro-
gramming expertise. The Newton platform
is growing fast, and we hope to grow
our community of authors and contribu-
tors equally fast with your help. Do you
have an article you’d like to write and
have published in Newton Technology
Journal? Just let us know.

For those of you currently developing
for Newton, congratulations on your
accomplishments and successes thus far.
For readers just beginning their Newton
development experience, I’m happy to
welcome you aboard this exciting plat-
form. The Newton Technology Journal is
for all of you, and the great products
you’re going to create!

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Tony Espinoza • Coordinating Editor,Technical Tools
Marketing

David Glickman • Coordinating Editor, Business
Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Steve Strong, Bruce Thompson

Contributors
Jane Curley, Steven E. Labkoff, Julie McKeehan,
Neil Rhodes, Bill Worzel

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

Scott T Boyd • Editor

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1994 Apple Computer, Inc., 1 Infinite Loop, Cupertino,
CA 95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard, Light
Bulb Logo, Mac, MacApp, Macintosh, Macintosh Quadra,
MPW, Newton, Newton Toolkit, NewtonScript, Performa,
QuickTime, and WorldScript are trademarks of Apple
Computer, Inc., registered in the U.S. and other countries.
AOCE, AppleScript, AppleSearch, ColorSync, develop,
eWorld, Finder, OpenDoc, Power Macintosh, QuickDraw,
SNA•ps, and Sound Manager are trademarks, and ACOT is a
service mark of Apple Computer, Inc. NuBus is a trademark
of Texas Instruments. PowerPC is a trademark of International
Business Machines Corporation, used under license there-
from. Windows is a trademark of Microsoft Corporation and
SoftWindows is a trademark used under license by Insignia
from Microsoft Corporation. UNIX is a registered trademark
of UNIX System Laboratories, Inc. All other trademarks are
the property of their respective owners.

Mention of products in this publication is for information-
al purposes only and constitutes neither an endorsement nor
a recommendation. All product specifications and descrip-
tions were supplied by the respective vendor or supplier.
Apple assumes no responsibility with regard to the selection,
performance, or use of the products listed in this publication.
All understandings, agreements, or warranties take place
directly between the vendors and prospective users.
Limitation of liability: Apple makes no warranties with respect
to the contents of products listed in this publication or of the
completeness or accuracy of this publication.Apple specifical-
ly disclaims all warranties, express or implied, including, but
not limited to, the implied warranties of merchantability and
fitness for a particular purpose.

Volume I, Number 1 February 1995

by Lee DePalma Dorsey, Managing Editor

Editor’s Note

Apple Computer, Inc.
would like to thank Xplain Corporation (the publishers of MacTech™ Magazine)

for lending their expertise in producing the Newton Technology Journal.

Newton Technology Journal February 1995

3

Apple Computer, Inc.’s Personal Interactive Electronics Division (PIE)
and the Apple Developer Group are pleased to announce the introduc-
tion of the Newton Associates Program for Newton MessagePad and
Newton platform developers, as well as several enhancements to the
Newton Partners Program (formerly the PIE Partners Program). Effective
December 1, 1994, Newton developers now have a range of support ser-
vices from which to choose to meet all of their development needs.

“Answering the developers’ call for affordable, quality support, the
establishment of the Newton Associates Program further reinforces
Apple’s ongoing commitment to the Newton platform and its develop-
ers.” said Shane Robison, Vice President and General Manager of Apple’s
Personal Interactive Electronics Division. “Developers are crucial to the
platform’s success and viability and we are very pleased to be able to
expand support to a broader developer community.”

Newton Associates Program
The Newton Associates Program is a low cost, high quality, self-help

development support program. It is available for a US$400 annual fee
and includes the following features:

• Support services from Apple’s Developer Support Center
• Discounted rates for online technical information
• Access to a technical Q&A reference library
• Discounts on Newton and Macintosh hardware
• Receipt of regular Newton developer mailings which include the

Newton Developer CD and the Newton Technology Journal

• Use of Apple’s third party compatibility lab
• Discounts on Newton development classes
• Automatic invitation to the Newton and Worldwide Developer

Conferences
• Eligibility to participate in StarCore’s Affiliate Label Program

Newton Partners Program
The Newton Partners Program (formerly called the PIE Partners

Program) includes all the features of the Newton Associates Program
plus services such as expert-level programming support via e-mail, free
updates to Newton development tools and participation in select Apple
marketing and PR opportunities. The price has been reduced from
US$2850 to US$2500 annually. In addition, the Newton Partners Program
has been enhanced with new features such as a Newton-focused
monthly mailing, a Newton orientation kit, regular delivery of the
Newton Developer CD, and the Newton Technology Journal, a new tech-
nical publication for Newton developers.

Both the Newton Partners Program and Newton Associates Program
are only available to developers in the US and Canada at present.
Developers outside of the US and Canada should contact their local
Apple office for details on current or planned Newton support options
in their region.

For more information on joining the Newton Associates or
Newton Partners Program, you may contact the Apple Developer
Support Center at (408)974-4897, Internet:
devsupport@applelink.apple.com or AppleLink: DEVSUPPORT.

New Developer Support Programs For Newton Developers

To request information or an application on Apple's Newton developer programs,
contact Apple's Developer Support Center

at 408-974-4897
or Applelink: DEVSUPPORT

or Internet: devsupport@applelink.apple.com.

N

Developer Group News

February 1995 Newton Technology Journal

4

AN OVERVIEW OF EXCEPTIONS

Exceptions are a way of dealing with errors. An exception is a report of
an abnormal condition. It terminates the execution of the current func-
tion and of the function that called it, and so on up the call chain until
an exception handler is found to respond to the error. The exception
handler in turn is usually responsible for cleanup and for reporting the
error/exception to the user. Exceptions are an alternative to returning
error codes.

Figure 1 shows how this whole mechanism operates. Here we have
function A calling B calling C calling D calling E. Function B has the
exception handler and function E throws the exception. At this point,
Function E terminates followed likewise by D and C. Function B’s normal
flow is stopped and execution continues within B’s exception handler.

Figure 1.

THE ADVANTAGES OF USING EXCEPTIONS

In your programming, there are a couple of clear advantages to using
exceptions as opposed to returning error codes. The first advantage is
that functions that do not generate exceptions (like C and D), but
which call functions that do, don’t need to do anything special.
Without any extra work, the exception will be propagated to calling
functions (like B). On the other hand, if you relied only on error codes,
C and D would need to return error codes as well, since they call the
function with the error in it.

The second advantage is the simplification of functions. Since the
execution of a function terminates as soon as an exception occurs,
you can be sure that the statements prior to the exception executed
successfully. Conversely, functions which use error codes commonly
look like this:

X := func()
begin

error := A();
if error == noErr then begin

error := B();
if error == noErr then begin

error := C();
end;

end;
return error;

end;

It’s clear that the logic of the functions can get lost in the error-check-
ing. With exceptions, however, X could be neatly written as:

X := func()
begin

A();
B();
C();

end;

WORKING WITH EXCEPTIONS

Having a fairly good idea why programming with exceptions makes
sense, note the type of code that would profit from it use. Code that
typically follows this pattern will be of interest:

set some state
code which could cause an exception
restore the state

Of the types of states that benefit from exception handling, it is
worth reviewing those states you might be familiar with from other
types of machines, and then looking at the situation with the Newton.

EXCEPTION HANDLING IN OTHER ENVIRONMENTS

On desktop machines using traditional languages, exception handlers
are common. Here are some examples of common states that require
exception handlers:

• Allocate some memory
Do something with the memory that could cause an exception
Deallocate the memory

• Lock some memory
Do something with the memory that could cause an exception
Unlock the memory

• Open a file
Write to the file
Close the file

• Create a temporary file
Use the temporary file
Delete the file

Each of these requires an exception handler. When a resource has
been acquired, it must be given up in the event that an exception
occurs.

Exception Handling in NewtonScript
© 1994, Apple Computer, Inc. and Calliope Enterprises, Inc.

NewtonScript Techniques

Newton Technology Journal February 1995

5

EXCEPTION HANDLING IN THE NEWTON ENVIRONMENT

Because of NewtonScript’s superior handling of memory, the need for
exception handlers is minimized. Since NewtonScript has garbage col-
lection, explicitly deallocating memory is not necessary. Likewise, the
Newton has no memory locking, making unlocking unnecessary as well.
Another nice point is the Newton’s lack of files; if you don’t have a file
open, you don’t have to close it.

As you can see then, none of the typical states on other platforms
are a problem on the Newton. So what is? In applications, two common
places you will need exception handling are when calling the
EntryChange method and the PutAway method used for
beaming and mailing. A rarer situation involves the creation of a tempo-
rary soup on the Newton; in this case you would use exception han-
dling to ensure its deletion.†

The Structure of Exceptions
This section describes how you would write an exception handler

using
proper NewtonScript syntax. Next, it looks at the hierarchical relation-
ship
of exceptions.

Exception Handling Syntax
The actual syntax for exception handlers in NewtonScript is:

try
code which could generate an exception

onException exceptionSymbol do
code to handle this type of exception

onException exceptionSymbol2 do
code to handle this type of exception

To propagate an exception from within an exception handler, use
the Rethrow function:

Rethrow();

The Hierarchy of Exceptions

There is a hierarchy of exceptions (Figure 2 shows a small subset of
the whole tribe). This hierarchy exists so that you can write exception
handlers for a specific exception, a group, or for all of them.

Figure 2.

Every exception symbol contains an evt.ex part (since the sym-
bols contain embedded periods, they must be surrounded by ||).
Portions after the . part signify lower levels in the hierarchy. For exam-
ple, the exception |evt.ex.fr.intrp| is a kind of |evt.ex.fr|

exception. You use semicolons (as shown in Figure 2) to separate
multiple exception types.

So, if you wish to catch all exceptions use:

onException |evt.ex|

You can also use more specific exception types. For instance, to catch
only type.ref exceptions, use:

onException |type.ref|

It is also possible to cascade exception handlers. In this case, the first
one that matches the current exception is the one that gets called. For
example:

try
code

onException |evt.ex.div0|
deal with divide-by-zero error

onException |type.ref|
deal with a type error

onException |evt.ex|
deal with all other errors

Using Exceptions in Newton Applications
There are two typical problems you might encounter on the Newton

that could benefit from the use of exceptions. The first involves using
EntryChange, and the second involves the PutAway
method.

Exception Handling and EntryChange
The EntryChange method is the mechanism used on the

Newton to allow an application to save a modified entry back into its
soup. Although the view system will provide a reasonable notification
to the user (see Figure 3), you will see that more is needed.

Figure 3.

Here is why. These code snippets handle saving a modified entry when
the user scrolls up:

viewScrollUpScript: func()
begin

…
:SaveModifiedEntry(currentEntry);
:DisplayPreviousEntry();

end;

SaveModifiedEntry: func()
begin

…

February 1995 Newton Technology Journal

6

EntryChange(currentEntry);
…

end;

If EntryChange throws an exception, the notification shown in
Figure 3 will be presented by the view system. A problem remains, how-
ever. The user is stuck viewing the current entry and any effort to save
it (like closing the application), causes SaveModifiedEntry to
throw an exception (because of EntryChange). Thus, no
progress can be made.

The solution is to change the behavior of SaveModifiedEntry .
Rather than having it swing between successfully saving or throwing an
exception, modify its behavior to successfully save or to notify the user of
the error. You can also rename the function to describe more accurately its
new responsibilities:
viewScrollUpScript: func()
begin

…
:HandleModifiedEntry(currentEntry);
:DisplayPreviousEntry();

end;

HandleModifiedEntry: func()
begin

…
try

EntryChange(currentEntry)
onException |evt.ex.fr.store| do
begin

:Notify(kNotifyAlert, EnsureInternal(kAppName),
EnsureInternal(“There is not enough space to
save the modified item”));

EntryUndoChanges(currentEntry);
end;
…

end;

The call to EntryUndoChanges is necessary; that is how
you wipe out modifications made to the entry. Otherwise, the soup
holds the unmodified entry, while the entry cache contains a modified
entry. The right course of action is to have the view reflect the fact that
you were unable to save the entry. Thus, you must revert to the saved
entry and then display that version.

WARNING

The union soup method AddToDefaultStore does not throw

an exception when a store is full, although the documentation says
that it does. In reality, AddToDefaultStore shows that it fails by
returning nil and by calling Notify to alert the user. This failure to
follow documented behavior can create problems for applications that
do not check to ensure that AddToDefaultStore succeeds.

You might want to consider writing a wrapper around the
AddToDefaultStore method that will throw an exception in the
event that the AddToDefaultStore method returns nil :

DefConst('kMyAddToDefaultStore, func(unionSoup, frame)
begin

result := unionSoup:AddToDefaultStore(frame);
if not result then

Throw('|evt.ex.fr.store|, '{error: 10617});
return result;

end);

Exception Handling and PutAway

The other place where exception handling is commonly needed is in
the PutAway method, used for beaming and mailing. Remember
that PutAway calls kRegisterCardSoup , adds an entry to
a soup, and then calls kUnregisterCardSoup . Since adding an
entry may throw an exception, an exception handler is needed to call
kUnregisterCardSoup . Here is a stripped-down PutAway
method that shows the problem:

PutAway := func(item)
begin

local soup;

soup := call kRegisterCardSoupFunc with (kSoupName,
kSoupIndexes, kAppSymbol, kAppObject);

soup:AddToDefaultStore(item.body);
call kUnregisterCardSoupFunc with (kSoupName);

end

The Sample Code with Exception Handling

Now, look at how to fix the problem with exception handling:

PutAway := func(item)
begin

local soup;

soup := call kRegisterCardSoupFunc with (kSoupName,
kSoupIndexes, kAppSymbol, kAppObject);

try

To send comments or to make requests for articles in Newton Technology Journal,
send mail via internet to: piesysop@applelink.apple.com

N

Newton Technology Journal February 1995

7

FUNCTION OBJECTS IN NEWTONSCRIPT

In NewtonScript, function objects (sometimes called closures) are first-
class objects that can be manipulated and stored just like other values.
For example, you can store a function object in:

• a local variable
• an array
• a slot in a frame
• a soup entry

You can use function objects in a variety of ways as well: you can
pass a function object as a parameter, make a Clone , or
DeepClone of it. This consistency between function objects and
other values makes NewtonScript very flexible.

These aspects of function objects are usually well understood by
NewtonScript programmers. There is another aspect to a NewtonScript
function object, however, that is less clear:

When a function object is created, by executing a func statement, it
saves the environment that exists at that time.

By doing so, the function object can have access to local variables,
parameters, and inherited variable lookup that existed at its creation
time.

The term “function object,” rather than just “function,” is used to
emphasize the fact that one func statement can give rise to many dif-
ferent function objects. These functions will differ based on the envi-
ronment that exists at the time the func statement is executed.

Function Environment
To understand how you can use this aspect of a function in your

applications, it’s good to review the environment of most NewtonScript
functions. Usually, you create a function object at compile time. These
could be slots in a template, edited using a slot browser, or they could
be functions created in a Project Data file. In either case, the environ-
ment that exists is the top-level environment of NTK. Thus, there are no
local variables, parameters or inherited variables available when that
function object is created.

Now, look at a different way to create a function object. In this case
the environment in which it is created will matter. This will be a run-time
function object. Note that by definition, these will be nested functions
(ones created inside other functions).

For example:

outerFunction := func(aParameter)
begin

local aVariable := 3;

local nestedFunction := func(nestedParameter)

begin
local nestedlocal := 5;
Print(aParameter);
Print(aVariable);
Print(nestedParameter);
Print(nestedFunction);
Print(nestedlocal);

end;
…

The function object, nestedFunction , is created as
outerFunction is executing. At the run-time point when
nestedFunction is actually created, the environment includes a
local variable, aVariable , and a parameter, aParameter . Since
nestedFunction has access to that environment, it can access
both its own parameters and local variables, as well as those of the
function in which it is nested.

How Function Objects Are Used – Call/Perform/Apply
Before talking about how you can use function objects in your pro-

gramming, it’s necessary to address the manner in which you call a
function object. There are four ways to do this:

With a compile-time argument list (Call):

Call functionObject with (argumentList)

With a run-time argument list (Apply):

Apply(functionObject, argumentArray)

By sending a message with a compile-time argument list (: and :?):

frameExpression.message(argumentList)

By sending a message with a run-time argument list (Perform):

Perform(frameExpression, messageSymbol, argumentArray)

Here is some sample code that uses these four ways:

local Pow := func(num, iterations)
begin

for i := 1 to iterations do
total := total * num;

return total;
end;
Call Pow with (2, 3) ☞ 8
local argArray:= [2, 3];
Apply(Pow, argArray) ☞ 8
local account := {

balance: 0,
Deposit: func(amount)

return balance := balance + amount,
};
account:Deposit(50) ☞ 50
Perform(account, 'Deposit, [75]) ☞ 125
Print(account) ☞ {balance: 125,

NewtonScript Functions
© 1994, Apple Computer, Inc. and Calliope Enterprises, Inc.

Understanding NewtonScript

February 1995 Newton Technology Journal

8

Deposit: <CodeBlock, 1 args #4419361>}

Abstract Data Types

One use of function objects is to implement Abstract Data Types.
These are types that can only be modified procedurally; their actual
data is hidden. Frames with methods don’t provide the same functional-
ity, though it might appear they do. In a frame, the data values in the
slots are visible and can be modified, even when not using the appro-
priate methods.

Consider the following account generator:

MakeAccount := func()
begin

local balance := 0;
local Deposit := func(amount) begin

return balance := balance + amount;
end;
return Deposit;

end;

Calling MakeAccount returns a function object:

myAccount := call MakeAccount with ()

This function object references the balance local variable from
MakeAccount . Though MakeAccount is no longer execut-
ing, the nested function Deposit references balance , and so the
balance variable continues to exist. Thus, calling myAccount
modifies the hidden variable balance :

call myAccount with (50) ☞ 50
call myAccount with (75) ☞ 100

Notice also that one function object can return multiple function
objects, each of which references shared data. For instance, suppose
you want both Deposit and Clear capabilities in your account:

MakeAccount := func()
begin

local balance := 0;
local Deposit := func(amount) begin

return balance := balance + amount;
end;
local Clear := func() begin

balance := 0;
end;
return [Deposit, Clear];

end;

Because MakeAccount needs to return two values (two func-
tion objects), it returns them in an array:

myAccount := call MakeAccount with ();
myOtherAccount := call MakeAccount with ();
call myAccount[0] with (50) ☞ 50
call myOtherAccount[0] with (40) ☞ 40
call myAccount[0] with (75) ☞ 125
call myAccount[1] with () ☞ 0
call myOtherAccount[1] with () ☞ 0

Using an array for the two function objects is somewhat inconve-
nient, however, since the numbers 0 and 1 don’t describe the
Deposit and Clear functions in a very useful manner. To fix this
problem, you rewrite MakeAccount to return the two function
objects in a frame rather than in an array. This way, the function objects
can be referenced by name, rather than by array location.

MakeAccount := func()
begin

local balance := 0;
local d := func(amount) begin

return balance := balance + amount;
end;
local c := func() begin

balance := 0;
end;
return {

Deposit: d,
Clear: c,

};
end;
myAccount := call MakeAccount with ();
call myAccount.Deposit with (50) ☞ 50
call myAccount.Deposit with (75) ☞ 125
call myAccount.Clear with () ☞ 0

Remember, however, that the frame above is used only as a way to
store two named values. No object programming has started, however,
as no messages are being sent.

Admittedly, this use of function objects to create Abstract Data Types
is not common. There are cases, however, where function objects are
necessary in your Newton programming. One of the most common
examples occurs when an application is supporting Date Find.

Using Function Objects to Support Date Find
Here is an excerpt of code from DateFind:

func(comparison, time, …)
begin

cursor := Query(…, {
type: 'index,
validTest: func(e)
begin

if comparison = 'dateBefore then
return e.date < time

else
return e.date > time;

end
});
return cursor to caller

end;

Even though the validTest function is embedded in the cursor,
it is called from the Find results slip to display the found entries. Notice
how DateFind ’s comparison and time parameters are used by the
nested function validTest . Keep in mind that the validTest is
called after the DateFind function has finished executing.

Here is another example of how you might use function objects.
Imagine that you want to count the number of entries in a particular
query. In such a case, you might use a function object to count the
number of entries in a cursor using MapCursor :

CountEntries := func(cursor)
begin

local total := 0;
MapCursor(cursor, func(e)

begin
total := total + 1;
nil;

end);
return total;

end

The function object passed to MapCursor increments a variable

in CountEntries . Notice that the function object returns nil , and
thus MapCursor will end up returning an empty array.

Stack Frames/Activation Records
In most programming languages, when a function is entered, an

activation record (also called a stack frame) is pushed on the stack. This
activation record contains the parameters to the function and local
variables. When the function returns, the activation record is popped
from the stack.

In NewtonScript, some allowance needs to be made for variables that
are closed over; that is, variables that are accessed by nested functions.
Since nested functions may need to access variables from outer func-
tions even after the outer function has exited, a stack-based system
which always pops outer references from the stack could not help but
fail.

One possible implementation could be to allocate activation records
in dynamic memory (the heap). Like all other allocated memory, when
no more references are made to the memory, it can be garbage-collect-
ed. Thus, the activation record is not freed when a function object exits
if any nested functions still exist. Only when all nested functions are
freed is the activation record available for garbage collection.

Another implementation might store part of an activation record on
the stack, and part on the heap (only those variables referenced by
nested functions need be on the heap).

Message Context
A function object has access to more than local variables and para-

meters from enclosing functions. It also has inheritance lookup based
on the value of self at the time the function object was created. This
means that a function object has access to all variables, including
inherited slots, that are available to the code that created the function
object.

This inheritance lookup is implemented by storing a message con-
text as part of a function object. This message context contains the
value of self at the time a function object is created. Calling a func-
tion object uses the value of self stored in its message context.

The major difference between calling a function object and sending a
message is that sending a message sets the value of self to the frame
where the message is sent. Thus, sending a message causes the mes-
sage context of the function object to be ignored.

There are times, however, when you need to use inheritance in a
function that has not been executed in response to a message send. A
common case of this in Newton programming is found in the implemen-
tation of filing. Filing is usually implemented by creating a cursor that
contains a validTest . The cursor is usually created when the appli-
cation opens:

app.viewSetupFormScript := func()
begin

…
self.theCursor := Query(…, {type: 'index,

validTest: func(e)
begin

return labelsFilter = '_all or
labelsFilter = e.labels;

end,
});

…
end

The cursor saves the validTest function object and calls it every
time the cursor is moved. When the validTest is called, the
labelsFilter variable is looked up first as a local, and then using
inheritance based on the value of self at the time the validTest
function object was created. Since self was the application view
when the validTest was created, self is set to the application
base view when the validTest is called.

SENDING A MESSAGE CHANGES THE MESSAGE CONTEXT

Sending a message changes the message context, thus the major differ-
ence between sending a message and calling a function has to do with
the value of self . When a message is sent, self is set to the frame
that was sent the message. When a function is called directly, self is
based on the message context of the function object.

Function Objects Created at Compile Time Have No Lexical
Environment or Message Context

When a top-level function object is created at compile time – either
as a slot in a template editor, or in the top-level of the Project Data file –
the lexical environment and message context are empty. (Technically,
the lexical environment and message context exist, but are nil ’ed out
after the function is created). This is important to remember when you
are creating standalone function objects (those that have no references
to your package). Examples of such function objects are those that will
be copied to a soup, or the one used as a postParse routine for
Intelligent Assistance. If you use a function object that has a non-
empty message context here, the whole message context will be copied
into the soup (or into memory in the case of Intelligent Assistance). Not
a good idea, in most cases. Thus, for function objects which need to
execute independently of your package, make sure they are created at
compile time, rather than run time.

SUMMARY

In NewtonScript, function objects are first-class objects which have
access to the environment that exists at the time they are created. They
have access to variables in enclosing functions, as well as to inherited
slots based on the value of self at the time the function object was
created. Because of these characteristics, you can do things with func-
tion objects that can not be done in most other languages.

If you have an idea for an article you'd like to
write for Newton Technology Journal, send it via

internet to: piesysop@applelink.apple.com
or AppleLink: PIESYSOP

Newton Technology Journal February 1995

9

N

February 1995 Newton Technology Journal

10

INTRODUCTION

The infrared (IR) beaming device that is embedded in the head of the
Newton can be used to send messages between Newtons. You may
have already used this facility to "Beam" a note or card from your
Newton to another. This article will show how to send messages and
data directly from your application. Another use of the IR beam is to
control remote devices such as a VCR or TV. You will learn how to set
up a control pattern that will control a CD player.

IR Beaming Protocol
Beaming between Newtons requires a half-duplex, asynchronous

framed protocol. This means that only one Newton can send messages
at a time. Delivery of the message to the receiver cannot be not guar-
anteed. If the Newtons are not pointed correctly, the data can't be
passed between them. However, if the data does arrive, the message is
guaranteed to be complete and correct. The sending Newton will try
for about two minutes to complete a transmission before giving up and
throwing an exception.

The IR Endpoint
As is the case with the other Newton communication tools, the focal

point is the endpoint through which NewtonScript links to the outside
service. The IR Beaming endpoint service is defined as follows:

myEndPoint:= { _proto: protoEndpoint,
configOptions: [

{label: kCMSSlowIR,
type: 'service,
opCode: opSetRequired }

],
}

Although two Newtons passing IR information define the endpoint
in the same way, they connect the endpoint differently. The passive
receiver must set the endpoint to wait for a connection using:

myEndPoint:Listen(nil);

while the active sender must connect the endpoint using:

myEndPoint:Connect(nil,nil)

If the two Newtons are unable to make a successful connection within
2 minutes, an exception error -38001 is created. To avoid this error condi-
tion, and to allow a user to abort the connection in a more reasonable
time frame, like 10 seconds, you may want to connect using
AddDeferredAction and AddDelayedAction . The
AddDeferredAction method happens almost immediately, but
runs in a separate Newton task thread, allowing you to continue with

your own code at the same time that the connection attempt process is
being handled. For the active sending Newton, the complete endpoint
creation and connection functions are as follows:

TryToConnect: func() begin
err := myEndpoint:Instantiate(myEndPoint,nil);
if err then begin

:HandleError();
return:
end;

AddDeferredAction(func(ep) ep:Connect(nil,nil),[myEndPoint]);
AddDelayedAction(func(ep) begin

if ep:State() < 5 then begin // Not Connected
ep:Abort(); // Kill the connection attempt
AddDelayedAction(func(ep) ep:Dispose(), [ep], 500 ;

// Remove the endpoint
GetRoot():Confirm("","Try Again?", base,

'ConnectAgain);
end;

end,
[myEndPoint], 10000);

end,
ConnectAgain: func(OK) begin

if OK then
TryToConnect();

end,

The Confirm method, which is accessed through the root,
throws up a dialog with a message (TryAgain?) in which the user can
tap on OK or Cancel. It then sends a message (ConnectAgain) to your
base view with an argument of true or nil .

Message Sending Between Newtons
Because of the half-duplex nature of the IR beam, a Newton must

alternate between being a sender and a receiver. This must be part of
the high-level protocol established between the two Newtons by your
program.

To change from being a receiver to a sender, you must kill the cur-
rent inputSpec and set the next inputSpec to nil :

myEndPoint.nextInputSpec := nil;
myEndPoint:SetInputSpec(nil);

Only then can you begin to output data. IR output must specify the
start and end of the data using system defined flags:

the kFrame flag indicates a low-level data frame (not a Newton
frame)

the kMore flag indicates more data to come

These flags are used as arguments to the Output and
OutputFrame messages passed to the endpoint.

myEndPoint:Output("the beginning", kFrame+kMore);
myEndPoint:Output(" and almost end", kFrame + kMore);

Beam me up, Newt!

Newton Communications

Newton Technology Journal February 1995

11

myEndPoint:Output(unicodeCR, kFrame);

The receiver must match the framing flag by setting the recvFlags
slot in the endpoint to kFrame :

myEndPoint:= { _proto: protoEndpoint,
configOptions: [

{label: kCMSSlowIR,
type: 'service,
opCode: opSetRequired }

],
recvFlags: kFrame,

}

Since Newtons know about frames that can hold a lot of information, it
makes good sense to build a transaction of data as a frame, such as:

trade := { action: "Buy",
security: "appl",
quantity: 11000,
price: 85.25,
trader: "SJ",
allocation:[{client:"XYZ Co", quantity:1000},

{client:"ABC INC", quantity:5000},
{client:"NewtDTS", quantity:5000}

],
}

and then transmit the entire transaction as a frame using
OutputFrame :

myEndPoint:OutputFrame(trade, kFrame);
myEndPoint:FlushOutput(); // good idea with frames to flush

Using frames, the state machine can be quite complex, but easy to fol-
low.

The complexity lies within the content of the frame, not in the external
state machine. A single inputSpec can handle all incoming messages
and decide what to do, based on the value of a single key slot such as
'action .

It should be noted that for the time being, you must use Output
at least once before using OutputFrame . Failure to do so causes
an error.

TRACKING THE ELUSIVE NEWTON

Earlier, it was noted that the IR endpoint cannot guarantee delivery of a
message if the Newtons lose IR contact with one another. If this loss of
contact occurs during a transmission, the receiving Newton will wait
happily forever, while the sending Newton will either freeze, or time out
with an error after about two minutes.

To avoid this error condition, the sending Newton needs to use an
AddDeferredAction method and an
AddDelayedAction method similar to the ones described for
connecting. The difference will lie in determining whether the message
did or did not get through, and what resulting action to take. Ideally,
the action should be to allow the two Newtons to search for each
other, and when contact is reestablished, to resend the original mes-
sage.

The following code example is a description of how to conduct such
a search for that elusive Newton. The sender tries to output a repeat-
ing message at regular intervals, in this case, every second. The mes-
sage contains the delay in 1/60 of a second since the last time the mes-
sage was sent. If the last message got through successfully, this would

be a value of 60.

viewIdleScript: func() begin
if quitSearch then return nil;
:SendTest();
1000;
end,

SendTest: func() begin
local thisTick := Ticks(); // a clock time in 1/60 second
if NOT lastTick then // lastTick is initialized to nil

local delay := 60;
else

local delay := thisTick - lastTick;
:SetNextValue(thisTick); // set new value for lastTick
myEndPoint:Output(UnicodeSTX,kFrame + kMore);
myEndPoint:Output(NumberStr(delay),kFrame + kMore);
myEndPoint:Output(UnicodeETX,kFrame);
myEndPoint:FlushOutput();
end,

The receiving Newton decodes the sender's delay between mes-
sages and compares this with the delay at the receiving end. The
InputScript method computes a value for a gauge meter, based on
the difference between the two delays.

waitForTest: {
inputForm: 'string,
endCharacter: unicodeETX,
discardAfter: 10,

InputScript: func(endpoint, s) begin
local thisTick := Ticks();
local meterVal := 0;
local stx := "\u0002\u";
local startStx := StrPos(s,stx,0);

if startStx then // did we get whole message?
begin
// extract sender's delay between messages
local txt:=SubStr(s,startStx+1,StrLen(s)-

startStx-2);
local val:=StringToNumber(txt);

local expected := endpoint:GetLastTick();
if expected then begin // not the first?

expected := thisTick - expected; // receiver's delay
// compare sender delay & receiver delay
meterVal := Max(10,100-(val-expected));

end;
else

meterVal := 70; // first test message
end;

else
meterVal:=50; // only part of message

endpoint:UpdateGauge(meterVal);
// update gauge meter

endpoint:SetNextValue(thisTick); // set new
// value for lastTick

end,

},

The receiver uses a gauge view to display the degree of contact
between the two Newtons. The gauge is pushed up as the difference
between the sender's delay and the receiver's approaches zero, and is
pushed down a small amount at intervals of half a second.

SearchGauge := {
viewValue: 0,
minvalue: 0,
maxvalue: 100,
...,
viewIdleScript: func() begin

local newValue := Max(0, self.viewValue - 5);
SetValue(SearchGauge, 'viewValue, newValue);
500;

February 1995 Newton Technology Journal

12

end,
}

When the gauge stabilizes at a high value, the receiver gets a mes-
sage that contact has now been reliably established.

UpdateGauge: func(newValue) begin
if (newValue >= 80) AND
(SearchGauge.viewValue >= 80) then

:PutDataInStatusArea(
"Locked on target\nYou can Stop Search ");

else
:PutDataInStatusArea("Searching...");

SetValue(SearchGauge, 'viewValue, newValue);
end,

At this point, the sender and receiver would cancel the search and
return to normal operation. If this type of code is included in an applica-
tion, the user will feel much more in control and a good deal less frustrat-
ed. Forcing the user to press the reset button is an option of last resort
and much to be avoided.

AN EXAMPLE OF IR USING A BOARD GAME

An excellent way to develop your IR skills is to build a simple game in
which moves and results are passed back and forth as frames of informa-
tion. This game contains: a board view, in which the game is played; a
status view, to tell the player what is expected next; a glance view, to
provide transitory messages on the success of the last move; and some
buttons to set the game in motion.

The 'Arena' is the Board view. The space below the buttons is a
protoGlance view for transient information.

The game is very simple:
Each player places five pieces (spots) on their board
The players decide who goes first, and tap either Play First or Play
Second
Each player takes a turn to tap once on the board, to try to locate
the other player’s pieces
The game continue until one player has located all five pieces on
the other player’s board

The state machine breaks down into four parts:
1. Setup

Get taps on Board and create playing pieces
Connect players and handshake for proper connection
Change to My Turn if Play First,
Change to Their Turn if Play Second,

2. My Turn
If all pieces hit, send win message and change to end of game
Display history of my shots: misses as O and hits as X
Get tap on board and send shot
Wait for a hit or miss message and display the result
Change to Their Turn

3. Their Turn
Display my pieces and history of opponent's shots
Wait for next message (shot or win)

If a win message, change to end of game
Else Display new shot,

Determine if a hit,
Send hit or miss message

Change to My Turn

3. End of Game
Disconnect
Prepare for new game setup

This scenario describes the fundamentals of almost all board games,
including Chess, Checkers and Go.

REMOTE IR
Remote IR is using the IR beam to control a VCR, TV, CD Player or

other device.
It is a one-way broadcast of an IR signal. The Newton filters incom-

ing remote signals at the hardware level, so there is no way to receive
input from a remote device.

There is also no particular listener specified and no guarantee of
good delivery, even if the sender points the beam in the right direction.
As with other remote controllers, this means that if the device doesn't
respond the first time, a user must press the button again. Given the
number of times this happens in daily life when all that is being trans-
mitting is about 2 bytes of command, you can appreciate why a three-

Newton Technology Journal February 1995

13

to-four-foot limit is required for Newton-to-Newton IR communications,
in which you are transmitting hundreds or thousands of bytes, with
guaranteed integrity.

Setting up, Using and Disposing the Connection
There is no endpoint defined as yet for remote IR. The methods to

control remote IR are not built in to the Newton system, but are avail-
able through an upgraded version of the Message Pad file.

cookie := :OpenRemoteControl(); //call once.if error,
// return nil.

:CloseRemoteControl(cookie); //after all sending
// finished. always returns nil

:SendRemoteControlCode(cookie, command, count); //the 'command' is
// sent count times. returns nil after commands have been sent

The cookie is a reference object, but not a Newton object to
which messages can be sent.

Command Codes
Each command wave form has the following structure:

The code structure to produce this command wave form is currently
implemented as a Macintosh resource:

struct IRCodeWord {
unsigned long name; // identifier for ref only
unsigned long timeBase; // the clock cycle in microseconds
unsigned long leadIn; // duration in timeBase units of the lead bit cell
unsigned long repeat; // duration in timeBase units of the

// last bit cell for loop commands
unsigned long leadOut; // duration in timeBase units of the last bit cell for non-loop
unsigned long count; // count of transitions following (origin 1)
unsigned long transitions[]; // array of transition durations in timeBase units

}

Note that the repeat time is used only when the code is sent multiple
times.

The transitions array carries the wave form for a particular command
to a particular device, such as “CD Play”. Life would be too simple if all
manufacturers used the same standard to define the wave form.
Instead, there are several standards, each with their own values for the
timeBase , leadIn and other variables.

Further, each manufacturer has different codes for devices and com-
mands, and finally, they have different ways of encoding their com-
mands into the wave transitions to be sent by the IR beam.

If this all begins to sound a little too complicated, things can be sim-
plified by sticking with one manufacturer for an example. Sony encodes
each command as an AGC burst (2400 µs) followed by a 7-bit command
field and a 5-bit device field, transmitted leastSignificantBit
(lsb) to mostSignificantBit (msb).

Example:
Using device 17 (CD player) and command 50 (Play).
The "CD play" instruction is therefore:
M M M M 1 0 0 0 1 0 1 1 0 0 1 0

AGC CD Play
but the device/command field is sent lsb to msb, so
really the bit stream to be sent looks like:

M M M M 0 1 0 0 1 1 0 1 0 0 0 1

To convert this into a wave form, you need the following rules
The timebase is 600µseconds.
A "M" bit is the mark condition:
This gives us a LeadIn of 4 units
A "0" bit is encoded as 600 µs idle followed by a 600 µs pulse.
A "1" bit is encoded as 600 µs idle followed by a 1200 µs pulse.

This is interpreted as follows to give the transition waveform.

The transition waveform for the command "CD Play"

Returning to our Macintosh resource definition, we can now define
a Sony CD Play resource as:

{
'cdpl', // reference name
600, // timeBase, in microseconds
4, // leadIn, in timeBase units
74, // repeat, in timeBase units (~44 ms)
833, // leadOut, in timeBase units (~500 ms)
24, // count or number of transitions
[// array of transitions
1, 1, 1, 2, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 2,
1, 1, 1, 1, 1, 1, 1, 2] }

DEVELOPING A REMOTE IR APPLICATION

The following is some sample code which would allow you to build
your own remote controller.

//--------------Project Data File
// constants
kSonyCD := 0;
kSonyTV := 1;

// Get commands from resource file
rf:= OpenResFileX(Home & "Sony.rsrc");
sonyCDPlay:=GetNamedResource("IRCD","SonyCDPlay",

'resource);
sonyCDStop := GetNamedResource("IRCD", "SonyCDStop",

'resource);
...
CloseResFileX(rf);

//---------------------Main.t file
baseView:= {
// constants defined in platform file
OpenRemoteControl: kOpenRemoteControlFunc,
SendRemoteControlCode: kSendRemoteControlCodeFunc,
irCodes: {

sonyCD: [sonyCDPlay,sonyCDStop, ...],
sonyTV: [sonyTVOn,sonyTVOff, ...],
},

SendCode: func(device, code, count) begin
if device = ksonyCD then

N

February 1995 Newton Technology Journal

14

Newton® MessagePad™ to put evidence-based, background and
portable content into the hands of its residents for the purpose of
facilitating patient evaluation and management in a project called
Constellation.

The goal is to provide residents with immediate access to general
background information on disease processes. A collection of specially
developed tools assist professionals in navigating this content. The
Constellation project will put information tools at the touch of a resi-
dent’s fingertips, giving him or her immediate access to general disease
and management descriptions, references to the recent and relevant
medical literature, and access to a selected set of medical guidelines —
all in order to apply this content to their patients. Traditionally, to
access this information, the resident relies on a library, textbooks, com-
puters or fellow residents and must take the time to go and research
the needed information. Now with the Newton, physicians can tap into
the equivalent of over 1,500 pages of medical and drug information in
the hospital corridor or at a patient's bedside. In less time than it
would take to do any kind of research, a doctor can flip open his or her
Newton and with a few stylus taps on the screen, learn about the ramifi-
cations of prescribing a particular drug, research a rare congenital dis-
ease, or browse through a series of medical journal articles.

Dr. Steven Labkoff, an internist and head of the Decisions Systems
Group at Brigham, is also head of the Constellation Project and is
responsible for some of the custom programming of the units. He cred-
its Sandeep Shah, President of K2 Consultant, Inc. with devising the
data compression and search strategy programs.

Shah and Labkoff chose the Newton MessagePad for the project at
the hospitals for a number of reasons. Among them, the Newton form
factor provided the right size with the appropriate amount of comput-
ing power to provide for the physicians needs. While there were smaller
form factors available in other products, none were as flexible.

Newton’s touch input technology appealed to a physician’s keyboard
shyness. Additionally, the ease of programming with Newton Book
Maker was very appealing. Shah needed to reference information from a
variety of sources in a number of different formats. The fact that he
could deliver everything from outlines to full chapters on specific sub-
jects, with full search and find capabilities, and with fonts embedded in
data, allowed delivery of a fast, user friendly interface that doctors are
comfortable using.

Currently, the Newtons contain an electronic version of the
American College of Physicians’ (ACP) Medical Knowledge Self
Assessment Program, the American College of Physicians’ Journal Club,
the Electronic Monthly Prescribing Guide, handbooks and residency
phone books for both Brigham and Women’s and Massachusetts
General hospitals, and the Intensive Care Unit/Cardiac Care Unit Dru g
Reference Book. All of these publications are being referenced on a
regular basis by residents in the Constellation program.

Shah commented that “Newton has the technology that we need
today in order to deliver on the product we want, without relying on
the promise of future technologies”. He views the Newton as provid-
ing great opportunities for developers interested in bringing technol-
ogy into a number of vertical markets.

The Constellation project has delivered a wide variety of informa-
tion into the fingertips of doctors at Brigham and Women’s Hospital
and at Massachusetts General Hospital. It has been a success at
demonstrating how Newton technology can be used to solve previ-
ously unsolvable problems while creating new markets for develop-
ers to explore and own in the process.

Developers interested in creating and conquering new markets
should rethink the way problems are solved today. The first step is to
think about what would a “perfect world” solution be if you didn’t have
to keep any technical or computer related considerations in mind. The

continued from page 1

Newton Delivers for Vertical Markets

N

To request information or an application on Apple's Newton developer programs,
contact Apple’s Developer Support Center

at 408-974-4897
or Applelink: DEVSUPPORT

or Internet: devsupport@applelink.apple.com.

Newton Technology Journal February 1995

15

covered in Apple PIE’s class: Newton Programming: Communications.

HARDWARE

The first and most commonly used piece of communications hardware
in the Newton is an SCC (Serial Controller Chip), identical to the one
used on most Macintoshes. This is what is used for serial connections,
modem connections and AppleTalk. While the SCC chip can be pro-
grammed to run at a variety of speeds without specialized hardware or
cabling, it cannot normally be used at speeds of over 19,200 to 38,400
bps (bits per second).

The Newton also has a built-in infrared transceiver. This can be used
to communicate between Newtons and can also be programmed to
interact with remote IR devices such as TVs, VCRs, and so on.

The last hardware interface is the PCMCIA slot, which can be used to
add such things as fax modems, cellular communications cards, and so
on. These cards must have specialized drivers written for them; to date
there have been no documents or tools related to this available from
Apple. However, as this article is being written, the Driver Developer’s
Kit (DDK) is being put into Alpha testing by Apple for release sometime
down the road. Drivers will be written in C++ using the DDK.

ARCHITECTURE

Figure 1 shows how the Newton is organized. The top layer shows sys-
tem software written in NewtonScript. This mostly consists of prototypes
and other NewtonScript interfaces to the various services. The next layer
down shows the OS software, which is primarily written in C++. The
last layer is the Newton hardware including the SCC and the IRDCU
(infrared controller).

Figure 1

For communications, the important thing is that there is a high-
level communications interface written in NewtonScript – the end-
points – and a low-level communications interface – communica-
tions tasks, tools and drivers – written in C++, which talks directly
to the hardware.

The NewtonScript interface provides a common interface to all
types of communications hardware via a virtual connection called an
endpoint. To create and use an endpoint, appropriate connection
parameters must be established to describe the endpoint. For exam-
ple, for a serial connection you must specify baud rate, stop bits,
parity, and so on, before you can connect to the service. Once a
connection is established, an endpoint acts as a pipeline down
which bytes are sent or received.

The steps necessary to create and use an endpoint are as follows:

1. Define the endpoint frame, including the type of communications
service, the particular connections options (baud rate, error cor-
rection, and so on), the methods for receiving data through the
endpoint, and any other slots and methods you may want to
access from the endpoint.

2. Instantiate the endpoint. This creates a NewtonScript object and
notifies the low-level communications code of the existence of

continued from page 1

Newton Communications

February 1995 Newton Technology Journal

16

the endpoint.

3. Open a connection to the hardware through which communica-
tions can take place.

4. Send and receive data through the endpoint. Sending is done by
calling the Output method. Receiving is done by establishing
a frame describing expected input format and containing an
inputScript method or other input methods.

5. Disconnect the endpoint. When you are done, disconnect after
first aborting any pending incoming transfers.

6. Destroy the endpoint. Having disconnected successfully, the
endpoint may now be destroyed. This destroys the NewtonScript
object and the connection to the low-level communications
code.

Details and code examples for each of these steps will be dis-
cussed in depth in this article.

The Newton has a true multi-tasking micro-kernel-based architec-
ture. Figure 2 shows several of the tasks which commonly run under
direction of the micro-kernel task scheduler.

Figure 2

There are several things here that have an impact on communica-
tions programming. The first and most obvious point is that there

are separate tasks for the low-level Communications Manager and for
the Communications Tool that is currently active. An equally impor-
tant though less obvious factor is that there is only one
NewtonScript task. This means that all NewtonScript code runs in the
same task space, though not necessarily within the same application
context.

For example, in doing communications programming you may
provide an exception handler that deals with communications prob-
lems that occur after an endpoint is connected. This exception han-
dler will be called from the root view and so may not have access to
your application’s slots, frames and methods. Because of this, it may
be necessary to find your application from the root view. For exam-
ple,

GetRoot().|MyApp:MyCompany|:AMethod

Figure 3a shows the relationship between the NewtonScript task
and the low-level communications tasks when an endpoint is instan-
tiated. A message is sent from the NewtonScript task to the
Communications Manager task to open a communications connec-
tion.

Figure 3a - During Instantiation of Endpoint

Figure 3b shows the response of the Communications Manager to
this request. It has launched the appropriate communications tool
for the type of connection specified in the endpoint frame, which in
turn has established the appropriate connection with the hardware.

Figure 3b: Response From Instantiation

Figure 3c shows the next step of connecting an endpoint to the
device. Here the Newton endpoint sends a connection request to

Newton Technology Journal February 1995

17

the Comm Tool which was launched when the endpoint was instanti-
ated. In response, the Comm Tool sends a response to the Newton
task describing the success of the request.

Figure 3c: Connection

The significance of this sequence is primarily to point out that
communications with hardware is done through a separate task from
the NewtonScript task. This means that all communication to the
device is truly asynchronous to your code. You cannot be certain
when a communications action occurs or of the status of the connec-
tion represented by the endpoint, without explicitly checking the
status of the endpoint. It is for this reason that in certain code you
must check the status after you have sent a message to the endpoint
but before you do something drastic to it.

An example would be to abort ongoing data transfers prior to dis-
connecting and destroying the endpoint. This also means that in
debugging the endpoint you must take care not to make assump-
tions about when an error might occur, as it is possible that the last
command sent to the endpoint has not yet executed.

Another less obvious implication of the sequence of instantiation
described in the preceding figures is that at any time only one end-
point can be active. Otherwise the separate NewtonScript endpoint
methods collide. This means that when an endpoint is instantiated
there can be no other instantiated endpoints.

For example, you should not have an IR endpoint and a serial
endpoint active at the same time. From a programming point of view
this is particularly important, as it means that you cannot use NTK’s
Inspector to debug endpoint code, because it uses a serial endpoint
to talk to the Newton.

ENDPOINTS

As mentioned before, endpoints are virtual connections created
in NewtonScript. What this means is that in theory, once an end-
point is created in NewtonScript and a service is connected, the
same code could be used in all cases to send and receive data. In
practice, this is almost true.

Creating an Endpoint
To create an endpoint you must first define a NewtonScript frame

which describes the endpoint you wish to create. You do this by cre-
ating a frame which has a _proto slot with a value of
ProtoEndpoint, and a series of other slots that define the char-

acteristics of the endpoint. This is typically done in the
viewSetupFormScript method of the base view, so that the
endpoint is defined the entire time an application is running.

For example, below is an endpoint definition you might use for a
serial endpoint:

mySerialEndpoint := {
_proto:protoEndpoint,
configOptions: [

{ label: kCMSAsyncSerial,
type: 'service,
opCode: opSetRequired },

{ label: kCMOSerialIOParms,
type: 'option,
opCode: opSetNegotiate,
data: { bps: k9600bps,

databits: k8DataBits,
stopBits: k1StopBits,
parity: kNoParity } },

{ label: kCMOInputFlowControlParms,
type: 'option,
opCode: opSetNegotiate,
data: { xonChar: unicodeDC1,

xoffChar: unicodeDC3,
useSoftFlowControl: true,
useHardFlowcontrol: nil } },

{ label: kCMOOutputFlowControlParms,
type: 'option,
opCode: opSetNegotiate,
data: { xonChar: unicodeDC1,

xoffChar: unicodeDC3,
useSoftFlowControl: true,
useHardFlowcontrol: nil } },

],
}

Note that configOptions is an array of frames, each of which
defines some aspect of the endpoint. The configOptions
frames contain different data depending on what they are setting, but
they all have a frame with a type slot whose value is the symbol
'service. This identifies that this option describes the kind of
endpoint being established (for example, SlowIR, Serial, AppleTalk, and
so on). The label slot of this option frame names the service. In the
example above, this is the value kCMSAsyncSerial , a system
constant defining a serial connection.

Each configOptions array also has an opCode slot which
describes whether the particular option must have the value set
(opCode:opSetRequired) or open to negotiation between
the Newton and the hardware (opCode:opSetNegotiate) .
A required option must be exactly what is specified, whereas a nego-
tiable option means you can accept something less that what is
asked for. An example of a negotiated option is the baud rate setting
shown in the previous example. You are asking for a connection of
9600 bps, but since this is a negotiable option you can accept a data
rate of less than 9600.

As you can also see from the example, the third component of a
configOptions array is the data slot. This slot is usually
another frame which provides the necessary information for the
option being set. You must read the documentation in the Newton
Programmer’s Guide, Chapter 14, to find out what data (if any) is

February 1995 Newton Technology Journal

18

needed for each option.
While you typically set the options once when defining an end-

point, they may change later as you instantiate and connect the
endpoint (or even later after sending or receiving data, though this
is not recommended). However, it is far more common to set the val-
ues once when defining the endpoint and leave them thereafter.

You should also beware that not all options can be successfully
changed after the endpoint is instantiated. Which ones cannot be
changed? This has not yet been documented so if you wish to try this,
beware, as you might crash unexpectedly. Just to make it interesting,
the success or failure of changing an option is dependent on the com-
munication tool in use ; what works with one endpoint may not work
with another.

Note that you may add other slots to your endpoint. As you will
see later, there are at least a couple more slots you will typically want
to add in order to receive data and handle endpoint specific excep-
tions.

As discussed in the previous section, before connecting an end-
point to a service you must first instantiate it, in order to create a
NewtonScript object and to open the correct communication tool.
You do this by sending the Instantiate message to the end-
point. For example:

mySerialEndpoint:Instantiate(mySerialEndpoint, nil);

The second argument is an optional set of configOptions
similar to those just discussed. By specifying nil for this argument,
you are simply using the ones defined in mySerialEndpoint.

Having instantiated the endpoint, you can now connect it by
sending the Connect message:

mySerialEndpoint:Connect(nil, nil);

Here the first argument is a frame which describes the address of
the thing you wish to connect to; in the case of a serial endpoint,
you need no address as you are connecting to the device on the
other end of the cable. However for a modem endpoint, this would
probably be the phone number you wanted to dial; an AppleTalk
connection would have the NBP of the entity you wished to connect
to. An example of an address frame might be:

anAddress:= {
type:'address,
label:kCMARouteLabel,
opCode:opSetRequired,
data:{addressType:kNamedAppleTalkAddress,

addressData:"LlamaFarm:LlamaServer@*"}

The second argument is again an opportunity to change the end-
point options and as with Instantiate, you typically pass a
nil value.

In most cases this is all that is necessary to connect an endpoint,
and if successful, you would now be open for business. However, as
detailed in the related article in this issue, since infrared beaming is
half-duplex (cannot send and receive at the same time), the receiving
device must send a Listen message to its endpoint before a con-
nection can be established.

Sending Data
There are two endpoint methods which may be used to send data

out from the Newton: Output and OutputFrame. The
OutputFrame method is used to send flattened frames; that is,
NewtonScript frames in which all of the references have been
resolved into a stream of bytes. While this is useful, it relies on both
sender and receiver knowing that a frame is coming. Since the exact
format of a flattened frame is not documented, this method is gener-
ally only useful when sending between two Newtons.

For this reason Output is usually used in all cases except for
Newton-to-Newton communications. The exact format of the
Output and OutputFrame methods is as follows:

Output(data, flags)
OutputFrame (data, flags)

where the data argument is the data being sent and the flags
argument is used to control output in the infrared case. Other than
in infrared communications then, the flag argument will be nil .

The data which can be sent using Output includes Newton
strings, integers, and binary arrays. In the case of strings all outgo-
ing data will go through a Unicode-to-ASCII translation, as all
Newton strings are kept internally in Unicode (16-bit character val-
ues) format, but it is assumed that any external device will be expect-
ing ASCII. If you wish to send the raw values without this translation
you can send an array of character values. Since the array is not a
string, it will be sent as raw Unicode values.

Currently this Unicode-to-ASCII translation is the only translation
available and is the default, but in the future you may be able to
specify your own translation tables.

In NewtonScript, integers are represented as 30-bit values.
However, when integers are sent from the Newton, only the least sig-
nificant byte is actually sent. This means that to send a 30-bit value
you must send 4 values, one for each byte in the integer. This is
shown below:

ep:Output(len >> 24, nil) // output 1st (MSB) byte

ep:Output(len >> 16, nil) // output 2nd byte

ep:Output(len >> 8, nil) // output 3rd byte

ep:Output(len, nil); // output 4th (LSB) byte

To use OutputFrame, you simply pass a reference to the frame
you wish to send as the data and again use a nil for the flags arg u-
ment unless you are sending the frame over an infrared link. A brief
example of this is shown here:

aFrame:={ slot1:4, slot2:"abcd" };
mySerialEndpoint:OutputFrame(aFrame,nil);

When outputting data, you should flush the output channel in
order to avoid losing data in an internal buffer if something should
go wrong. This is done by sending the message FlushOutput
to the endpoint.

Receiving Data
To receive data through an endpoint you must set up a special

Newton Technology Journal February 1995

19

frame called an inputSpec that has in it a method that will be called
when a certain input condition is reached. The input conditions are
described in this frame as well.

You then use the method SetInputSpec(inputSpec) to
notify the endpoint that this is the inputSpec you want for
future input. Note that you may (and probably will) change the
inputSpec that is current as your application runs. Complex
state machines created by chaining inputSpec s will be dis-
cussed in a future article.

An example inputSpec is shown in here:

receiveNameSpec:= {
inputForm: 'string,
endCharacter: unicodeCR,
InputScript: func (theEndpoint, inputStr)
begin

baseView.nameSlot:=inputStr;
end

};

This inputSpec will now be discussed in detail.
There are a number of conditions that can be used as triggers for

the input method. The commonest of these is to use a single character
specified as by the endCharacter slot of the inputSpec
frame. This essentially keys the InputScript method to be called
when the character specified is received. In this case the character is a
carriage return.

The inputForm slot defines what the expected input will be.
In this case the 'string symbol specifies that the input is expected
to be characters and, since the Newton uses the Unicode character
set for strings, the input will be automatically converted to Unicode
from ASCII.

The InputScript slot is the method that is called when the
trigger condition (in this case an incoming carriage return charac-
ter) occurs. It is common for an inputSpec ’s InputScript to
activate a different inputSpec .

There are several other triggers that may be used — the most
common is setting an input length of characters received. This is
done by setting a slot in the inputSpec frame called
byteCount with an integer value that specifies the number of
input characters to be received before calling the InputScript .

There are other ways to handle input which will not be covered
here. However, an important point in all input schemes is that the
sender and the receiver must know what to expect. In other words,
they must have a higher-level protocol to coordinate the format and
meaning of successive data received.

You set the inputSpec as the one currently in use with the
following code:

ep:SetInputSpec (receiveNameSpec);

NEWTON SERIAL & MODEM COMMUNICATIONS

As described earlier in this article, all Newton communications
software is directed through an endpoint. Connection, input and
output are all channeled through this virtual software device. An
endpoint can handle many forms, including infrared and AppleTalk,

but this article is devoted to its form as a serial and modem service.
On the hardware front, the Newton is equipped with a serial plug
(mini DIN-8) which allows it to link via a cable to either a desktop
computer serial port or to a modem.

Serial communication may be used to move data to and from a
desktop computer or a data-gathering device such as a scientific
probe or an industrial sensor.

Modem communications can be used to hook into the myriad ser-
vices now being provided worldwide, including the Internet, and for
sending data to an office LAN, or placing an order with the local gro-
cery store.

Serial Communications
The endpoint in NewtonScript is the key to linking your applica-

tion to the outside world. As has been shown earlier in this article,
the endpoint is an interchangeable object that allows your code to
talk to remote devices, without requiring you to make changes in
your application code.

The minimum definition of a serial communications endpoint
includes a statement that it is an asynchronous service, and an
option describing the speed of the communications link, its parity
and number of data and stop bits.

mySerialEndpoint := {
_proto:protoEndPoint,
configOptions: [

{ label: kCMSAsyncSerial,
type: 'service,
opCode: opSetRequired },

{ label: kCMOSerialIOParms,
type: 'option,
opCode: opSetNegotiate,
data: { bps: k9600bps,

dataBits: k8DataBits,
stopBits: k1StopBits,
parity: kNoParity },

],
};

Note that all names starting with k , such as
kCMSAsyncSerial are defined system constants. Also note
that if the value of opCode is opSetNegotiate (another
system defined constant), it means that when the requested values
such as 9600 baud, are not available, a reasonable substitute will be
accepted. The Newton supports asynchronous speeds from 300
baud up to 57,600 baud.1

In the bps slot you can use any of the following:

CONSTANT VALUE
k300bps 300
k600bps 600
k1200bps 1200
k2400bps 2400
k4800bps 4800
k7200bps 7200
k9600bps 9600
k12000bps 12000
k14400bps 14400
k19200bps 19200
k38400bps 38400
k57600bps 57600

February 1995 Newton Technology Journal

20

In the dataBits slot, you can use the following constants:

CONSTANT VALUE
(# of Data Bits)

k5DataBits 5
k6DataBits 6
k7DataBits 7
k8DataBits 8

In the stopBits slot, you can use the following constants:

CONSTANT VALUE
(# of Stop Bits)

k1StopBits 0
k1pt5StopBits 1
k2StopBits 2

In the parity slot, you can use the following constants:

CONSTANT VALUE
kNoParity 0
kOddParity 1
kEvenParity 2

Flow Control
Flow control for the serial endpoint can be handled by either soft-

ware or hardware. For example, to use XON/XOFF software control for
your endpoint, add the following options to the configOptions
array:

{ label: kCMOInputFlowControlParms,
type: 'option,
opCode: opSetNegotiate,
data: { xonChar: unicodeDC1,

xoffChar: unicodeDC3,
useSoftFlowControl: true,

useHardFlowControl: nil } },
{ label: kCMOOutputFlowControlParms,

type: 'option,
opCode: opSetNegotiate,
data: { xonChar: unicodeDC1,

xoffChar: unicodeDC3,
useSoftFlowControl: true,

useHardFlowControl: nil } },

You may well recognize UnicodeDC1 as control-Q or ASCII 13hex,
and UnicodeDC3 as control-S or ASCII 11hex. Note that software
handshaking can drop characters if a modem is overrun, (that is, if a
modem is overrun before the XOFF can be sent) so for high transfer
rates, hardware handshaking may be necessary and is supported in
the Newton.

The following constants are useful for specifying Unicode characters:

CONSTANT VALUE
unicodeNUL $\u0000
unicodeSOH $\u0001
unicodeSTX $\u0002
unicodeETX $\u0003
unicodeEOT $\u0004
unicodeENQ $\u0005
unicodeACK $\u0006
unicodeBEL $\u0007

unicodeBS $\u0008
unicodeHT $\u0009
unicodeLF $\u000A
unicodeVT $\u000B
unicodeFF $\u000C
unicodeCR $\u000D
unicodeSO $\u000E
unicodeSI $\u000F
unicodeDLE $\u0010
unicodeDC1 $\u0011
unicodeDC2 $\u0012
unicodeDC3 $\u0013
unicodeDC4 $\u0014
unicodeNAK $\u0015
unicodeSYN $\u0016
unicodeETB $\u0017
unicodeCAN $\u0018
unicodeEM $\u0019
unicodeSUB $\u001A
unicodeESC $\u001B
unicodeFS $\u001C
unicodeGS $\u001D
unicodeRS $\u001E
unicodeUS $\u001F

Compression
To improve the performance of serial communications, a number

of compression features have been added under the general heading
of MNP. To create a serial endpoint with MNP compression, you must
specify a different service — "kCMSMNPID" — and add three
options: one to allocate a buffer for MNP compression; one to specify
the type of MNP compression you want; and one to set the rate for
data transfers.

mySerialMNPEndpoint := {
_proto:protoEndpoint,
configOptions: [
{ label: kCMSMNPID,

type: 'service,
opCode: opSetRequired },

{ label: kCMOSerialIOParms,
type: 'option,
opCode: opSetNegotiate,
data: { bps: k9600bps,

dataBits: k8DataBits,
stopBits: k1StopBits,
parity: kNoParity } },

{ label: kCMOMNPAllocate,
type: option,
opCode: opSetRequired,
data: kMNPDoAllocate},

{ label: kCMOMNPCompression,
type: 'option,
opCode: opSetRequired,
data: kMNPCompressionV42bis},

{ label: kCMOMNPDataRate,
type: 'option,
opCode: opSetRequired,
data: k9600bps},

],
};

The kCMOMNPAllocate option specifies whether you want a
buffer allocated for MNP compression; possible data slot values are as
follows:

CONSTANT MEANING
kMNPDoAllocate allocate buffer

Newton Technology Journal February 1995

21

kMNPDontAllocate do not allocate buffer

The kCMOMNPCompressionoption specifies which MNP
compression to use; possible data slot values are as follows:

CONSTANT MEANING
kMNPCompressionNone connect with no compression
kMNPCompressionMNP5 connect with MNP 5 compression
kMNPCompressionV42bis connect with V42bis compression

If you specified kMNPDontAllocate for the
kCMOMNPAllocate option, you must specify
kMNPCompressionNone for the compression type. If you
specified kMNPDoAllocate , you need to specify either
kMNPCompressionMNP5 or
kMNPCompressionV42bis .

There is a “fall-back” mechanism whereby if you request MNP
V42bis compression and it isn’t available, the modem tool will try
MNP5 compression. If MNP5 compression is unavailable, the endpoint
will be created without MNP compression.

STATE MACHINES AND INPUTSPECS

So far this article has dealt with a single state state machine, in
which all incoming data is expected to be of the same type (strings),
and terminated with the same character (a carriage return). In
Newton communications, each state is represented by a separate
inputSpec . An inputSpec is a frame which is usually kept as
a slot in the endpoint and which defines how incoming data is to be
decoded, terminated and handled upon receipt. As an
inputSpec handles its received data, it can change the state to
another inputSpec , so that the next input stream will be han-
dled in a different fashion.

To demonstrate how multiple states can interact, an example cre-
ated by Apple PIEDTS is included. The example application is called
Serial Protocol; it handles a handshake protocol, a command state
and a message-receiving mode.

ep := {
_proto: protoEndpoint,
_parent: self,
...,
// this is just the initial handshaking part to make sure that both ends are alive
// this would be set as the starting inputSpec in the connect method
// ep:SetInputSpec(ep.waitforACK);

waitforACK:
{

InputForm: 'string,
discardAfter: 4, // only expecting 3 characters and the ?
endCharacter: $?, // ACK? expected

InputScript: func(endpoint, s) begin
if (StrPos(s, "ACK?", 0)) then // was it ACK?
begin

endpoint:SetInputSpec(endpoint.waitForFUNCTION);
// the main state

endpoint:Output("ACK", nil); // send response
endpoint:FlushOutput();

end
end,

},

// This is the generic dispatcher state, other end sends something
// ending with ! and the Newton will serve.

waitForFUNCTION:
{

InputForm: 'string,
discardAfter: 10,
endCharacter: $!, // expects a '!' as end of the command

InputScript: func(endpoint, s)
begin

if(StrPos(s, "CARD!", 0)) then // card function
begin

endpoint:Output(endpoint:DumpNameSoup(), nil);
// Send names in cards

endpoint:Output(unicodeCR, nil);
endpoint:Output(unicodeLF, nil);
endpoint:FlushOutput();

end;

if(StrPos(s, "NAME!", 0)) then // name function
begin

// Call the Name function (just a wrapper around
// userConfiguration.name)

endpoint:Output(endpoint:DumpName(), nil);
endpoint:Output(unicodeCR, nil);
endpoint:Output(unicodeLF, nil);
endpoint:FlushOutput();

end;

if(StrPos(s, "SIZE!", 0)) then // size function
begin

//Send size of internal storage
endpoint:Output(endpoint:DumpSize(), nil);
endpoint:Output(unicodeCR, nil);
endpoint:Output(unicodeLF, nil);
endpoint:FlushOutput();

end;

if(StrPos(s, "SEND!", 0)) then //String sending fcn
begin

// switch to receive string state
endpoint:SetInputSpec(endpoint.waitForSTRING);

end;

if(StrPos(s, "BYE!", 0)) then // bye function
begin

endpoint:Output("Bye", nil); // send response
endpoint:FlushOutput();

end;
end,

},
// our special string handling state for receiving messages

waitForSTRING:
{

InputForm: 'string,
discardAfter: 200, // maximum length of message
endCharacter: $>, // terminate message with >

InputScript: func(endpoint, s)
begin

// back to the main
endpoint:SetInputSpec(endpoint.waitForFUNCTION);

endpoint:SendOverInfo(s); // handle the message sent
endpoint:Output("OK!", nil); // send response
endpoint:FlushOutput();

end,
}.
};

After making a successful connection, the inputSpec would
be set to waitForACK . As this inputSpec is triggered by
the incoming data stream, it switches the inputSpec to
waitForFunction . This inputSpec checks the content of
the command that was sent and executes an appropriate method
based on the command received.

Several of these messages, such as DumpNameSoupare
being sent to the endpoint (endpoint:DumpNameSoup

February 1995 Newton Technology Journal

22

) , but these methods are not in the endpoint.
To find them, you have to look further back in the endpoint defin-

ition, where there is a _parent slot defined as self (_par-
ent: self). Since the endpoint is usually defined in the context
of the base view, the parent of the endpoint is therefore the base
view. Now, when messages are sent to the endpoint and are not rec-
ognized, they are passed on to its parent, the base view, where all
the data-handling methods are defined.

UPLOAD/DOWNLOAD FILES/SOUPS

In the desktop world, data files tend to have a structure with field
names and records which are often converted to tab-delimited text.
The Newton stores data in soups using entries of frames with slots
for the field names.

This means that to pass files generically between these two envi-
ronments, the first state you must define is the interchange of field
and slot names. The second state would be to pass the number of
records or entries which you intend to transfer. The third state to
define is the actual passing of a record or entry. The final state
would be some form of confirmation that all the data has been trans-
ferred successfully.

Trace the flow of the code to see how the state is changed from
one inputSpec to another.

getFieldNames:
{
inputForm: 'string,
endCharacter: unicodeETX, // not a character found in a field name

inputScript: func(endpoint, s)
begin

endpoint:SetInputSpec(getNumberOfRecords);
endpoint:SetUpSoup(s); // create soup frame based on field names

end,
},

getNumberOfRecords:
{
inputForm: 'byte,
byteCount: 4,

inputScript: func(endpoint, b)
begin

endpoint:SetInputSpec(getRecords);
//assemble integer of number of records
local num := b[0]<<24 + b[1]<<16 + b[2]<<8 + b[3];
endpoint:SetMaxCounter(num); // note number in a baseview slot

end,
},

getRecords:
{
inputForm: 'string,
endCharacter: unicodeCR // end of record

inputScript: func(endpoint, r)
begin

endpoint:AddRecord(r); // make a soup entry
if endpoint:GetMaxCounter() then // check number of entries

endpoint:SetInputSpec(checkTransfer);
end,
},

checkTransfer:
{
inputForm: 'byte,
byteCount: 4,

inputScript: func(endpoint, b)
begin

//assemble integer of total bytes sent
local num := b[0]<<24 + b[1]<<16 + b[2]<<8 + b[3];
if endpoint:CheckBytesSent(num) then

endpoint:Output("OK",nil)
else

endpoint:Output("NOK",nil);
end,
},

In this case, the state machine starts out expecting to receive a
string terminated by the ETX character. This string is expected to
have the names of the slots in the soup which is being downloaded.
When this string is received, you change the input state machine to
use the inputSpec getNumberOfRecords. This expects
a stream of 4 bytes that can be assembled into an integer describing
how many records will be downloaded. After these bytes are
received, the state machine transitions to the getRecords
inputSpec, which will successively accept carriage-return-termi-
nated strings. These are expected to hold the tab-delimited fields
which will be put into the appropriate slots. This inputSpec will
remain in use until the expected number of records are received,
after which you transition to the transferCheck
inputSpec. This inputSpec expects a 4-byte number
describing the number of records sent; these should match the
number-of-records value received earlier.

This example shows the way to build a state machine, but obvi-
ously it is only the tip of the iceberg. For example, no provision is
made to detect the type of the fields and no error handling is in
place. It does show a typical multi-state state machine and how it is
built.

MODEM COMMUNICATIONS

The modem endpoint is almost identical to the serial endpoint,
since the underlying medium is still serial.

myModemEndpoint := {
_proto:protoEndPoint,
configOptions: [

{ label: kCMSModemID,
type: 'service,
opCode: opSetRequired },

{ label: kCMOSerialIOParms,
type: 'option,
opCode: opSetNegotiate,
data: { bps: k9600bps,

dataBits: k8DataBits,
stopBits: k1StopBits,
parity: kNoParity },

],
};

Modem endpoints support all the compression options dis-
cussed so far. An additional option that can be specified is error
control; this is done using either the internal MNP (class 4) stan-
dard, or the external modem’s built-in error control. Note that the
opCode is set as required, so if you want the endpoint defined
even when error correction is not available, you must also specify
the none option.

{ label: kCMOModemECType,
type: option,

Newton Technology Journal February 1995

23

opCode: opSetRequired,
data: kModemECProtocolMNP + kModemECProtocolNone

},

The kCMOModemECTypeoption specifies which error correc-
tion method to use; possible data slot values are as follows:

CONSTANT MEANING

kModemECProtocolNone connect with no error
correction

kModemECProtocolMNP connect with internal MNP
(class 4)

kModemECProtocolExternal connect using external
modem’s built in error
control

Other options specific to modems are dialing preferences. Yo u
specify these preferences by adding the
kCMOModemDialing option to the configOptions
array.

{ label: kCMOModemDialing,
type: 'option,
opCode: opSetRequired,
data: { speakeron: nil,

detectdialtone: true,
waitforcarrier: 60, },

The first three preferences in the table can be set by a user in the
Modem section of the Newton preferences. The rest have the default
values shown below:

SLOT NAME DEFAULT VALUE
speakerVolume preferences
detectDialtone preferences
dtmfToneDialing preferences
speakerOn true
detectBusy true
manualDial nil
waitForCarrier 55 (seconds)
waitBeforeBlinddial 3 (seconds)
commaDelay 1 (second)
ringToAnswerAfter 2 (seconds, if listening)

Note that "default value" does not mean they are automatically
set. Instead, these are the defaults that Apple uses for its applica-
tions. For the preferences in particular it is necessary to fetch the
appropriate values from the system soup and use them to set modem
options.

The last slot name is used when the endpoint has been sent the
message Listen , instead of Connect . This will allow the
Newton to answer an incoming call. The more usual use is to con-
nect by making an outgoing call for which you will have to specify a
phone number. The phone address is specified in an address option
frame.

modemAddress: {
label: kCMARouteLabel,
type: 'address,
opCode: opSetRequired,
data: { addressType: kPhoneNumber,

addressData: "9,555-1212" }
}

This address option frame may be stored anywhere, but for conve-
nience sake, it is usual to keep it in the endpoint. To make a modem con-
nection, you provide the address as an argument to the Connect
method.

ep:Connect(ep.modemAddress,nil);

The modem endpoint currently supports only the Newton
modem. It is anticipated that in the future, other modems will also
be supported.

Connecting a Newton to an outside service through a modem
leaves you vulnerable to problems with external equipment over
which you have limited control. This possibility can hang your
Newton if the Connect method never returns. If the hang is in
the buttonClickScript, this usually manifests as a highlight-
ed button, leading a user to think the machine is gone forever. To
avoid this problem, you should start the connection through a
deferred action method and check on its progress using a delayed
action method.

Connect as follows:

AddDeferredAction(func(ep) ep:Connect(ep.modemAddress),
[ep]);

To check on the progress of the connection, use an endpoint
variable vConnected set by Connect :

AddDelayedAction(func(endpoint) begin
if not endpoint.vConnected then
GetRoot:Confirm("", "Problems connecting,

Continue?”",
endpoint, 'MAbortConnection);

end,
[ep] ,
10000); // give it 10 seconds to make connection

Then add a method MAbortConnection to the endpoint,
which Confirm will call. Remember that after aborting the con-
nection, you must wait for a short pause before disposing of the
endpoint.

MAbortConnection: func(OK) begin
if not OK then begin

ep:Abort();
AddDelayedAction(func(endpoint)

endpoint:Dispose(),[ep],
2500);

end;
end,

You may also want to use the system global ioBusy a s
described in the Q&A document on the Newton Developer CD #4.

Once a modem connection has been successfully completed, you
may well need to navigate through one or more routing systems
before making connection with one of the public e-mail services.
This sequence is part of a CCL (communication command language).
To navigate this pathway, you will need to know what the routing
codes are and how they respond. With this, you can build the

N

If you have an idea for an article you'd like to
write for Newton Technology Journal, send it via

internet to: piesysop@applelink.apple.com
or AppleLink: PIESYSOP

Newton Developer Programs
Apple offers two programs for Newton developers—the Newton Associates Program and the Newton
Partners Program. The Newton Associates Program is a low cost, self-help development support program.
The Newton Partners Program is designed for developers who need expert-level development support via
electronic mail. Both programs provide focused Newton development information and discounts on devel-
opment hardware, software, and tools—all of which can reduce your organization’s development time and
costs.

Newton Partners Program
This expert-level development support program helps developers
create products and services compatible with Newton products.
Newton Partners receive all Newton Associates Program features, as
well as programming-level development support via electronic
mail, discounts on five additional Newton development units, and
participation in select marketing opportunities.

With this program’s focused approach to the delivery of Newton-
specific information, the Newton Partners Program, more than ever,
can help keep your projects on the fast track and reduce develop-
ment costs.

Expert Newton Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton development units

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton products

Marketing Activities
• Participation in select Apple-sponsored marketing and PR activi-

ties

All Newton Associates Program Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing

Newton Associates Program
This program is specially designed to provide low-cost, self-help
development resources to Newton developers. Participants gain
access to online technical information and receive monthly mailings
of essential Newton development information. With the discounts
that participants receive on everything from development hardware
to training, many find that their annual fee is recouped in the first
few months of membership.

Self-Help Technical Support
• Online technical information and developer forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal
• Newton Developer CD, which may include:

– Newton Sample Code
– Newton System Software
– Newton tools and utilities
– Marketing and business information

• Apple Directions—The Developer Business Report

Savings on Hardware, Tools, and Training
• Discounts on certain development-related Apple hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog
• Starcore Affiliate Label Program availability

For Information on All Apple Developer
Programs
Call the Developer Support Center for information or an appli-
cation. Developers outside the United States and Canada
should contact their local Apple office for information about
local programs.

Developer Support Center at (408) 974-
4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P

