FDIL 2.0

Introduction

The FDIL isasmall library for 68K, PPC, and x86 applications that need to create, handle,
modify, and query NewtonScript-compatible objects. Operations are provided viaaC API.
Because the objects the FDIL works on are NewtonScript-compatible, they can be exchanged with
Newton OS devices using communications libraries such as the CDIL.

FDIL Concepts

When devel oping software for Newton OS devices, programmers use the NewtonScript
programming language. NewtonScript is a dynamic, object-oriented language in that objects can be
created and dynamically changed at runtime, and that operations can be performed on them by
sending messages to them.

Software devel opers may find the need to create NewtonScript objects on the desktop instead of
directly on the Newton OS device. For instance, developers creating any sort of desktop
application that provides import/export functionality will need to receive NewtonScript objects
from the Newton device and send NewtonScript objects to the Newton device. They will also need
to extract data from the objects received from the Newton device, and create data that will be sent to
the Newton device. Thus, they will need a Frames-like library on the desktop.

Newton, Inc., already provides such alibrary with the HLFDIL. HLFDIL stands for “High-level
Frames Desktop Integration Library”. The HLFDIL works with the CDIL (* Communications
Desktop Integration Library”) to perform the operations just described. However, there are several
shortcomings of the HLFDIL.:

- Becauseitisa“high-level” library, it lacks support for some low-level operations. The
HLFDIL was designed to integrate with existing desktop products, and thus works with
data models common in those products. But those data models are often at odds with the
data models that NewtonScript object-savvy programs should adopt.

- TheHLFDIL ismemory intensive. It alocates alot of memory for each object, reducing
the total number of objects that an application can manipulate.

- TheHLFDIL isnot comprehensive in the kinds of objects it supports. For instance, it
doesn’t support large-binary objects or object compression.

- TheHLFDIL provides no support for nested aggregate objects (such as frames or arrays
that contain other arrays or frames).

For all these reasons, the FDIL was developed as alternative to the HLFDIL.

Examples

Preliminary documentation 1 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

NewtonScript developers use objects al the time. Even statements such as:

local mylnteger := 5;

result in an object being created. Internally, an object is created and assigned the value of 5. A
desktop developer using the FDIL would use the following code to perform the same operation:

FD_Handle myInteger = FD_Makelnt(5);

In NewtonScript, a developer may then use “mylinteger” asthe value of adot in aframe (frames
and the other kinds of NewtonScript-supported objects are described in the next section). They
would probably use something like the following:

local myFrame := { aNumber: mylnteger, anotherNumber: 12 };
The equivaent using the FDIL APl would be:

FD_Handle myFrame = FD_MakeFrame();
FD_SetFrameSlot(myFrame, "aNumber™, mylnteger);
FD_SetFrameSlot(myFrame, "anotherNumber'™, FD_Makelnt(12));

In this example, wefirst create an empty frame. Next, we add the first lot. The name of the dlot is
specified by the string passed as the second parameter. The value of the dot is specified in the third
parameter. Here, we pass the NewtonScript integer created earlier. The second ot isadded in a
similar fashion.

The desktop application could then save this object to disk for later, or send it to a companion
application running on a Newton OS device. The desktop application could use the CDIL to send
the object with something like the following:

DIL_Error WriteCallback(const void* buf, long amt, void* userData)
{

CD_Handle pipe = (CD_Handle) userData;

DIL_Error err = CD_Write(pipe, buf, &amt, 0);

return err;

}

DIL_Error SendObjectToNewton(FD_Handle myObject)

{
CD_Handle myPipe = MyGetCDILHandle();
FD_Flatten(myObject, WriteCallback, myPipe);
return FD_GetError();

}

In this example, SendObjectToNewton calls FD_Flatten to stream out the object in a Frames-
compatible bytestream format. This bytestream can then be written to some destination viaaclient-
supplied callback function. In our example, the callback function writes the bytestream to a seridl,
TCP/IP or ADSP pipe managed by aCD_Handle. A NewtonScript application using the
appropriate endpoint object can then read and resurrect the object on the Newton OS device.

The developer could have just as easily specified a callback that wrote the bytes to disk. Operations

Preliminary documentation 2 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

for reading bytestreams and resurrecting objects from them are performed similarly.

The Objects

NewtonScript supports a number of different kinds of objects. These object types can be grouped
into asimple taxonomy. At the top level, there are four object types:

Integer objects

- Immediate objects

- Pointer objects

- Magic pointer objects

Integer, immediate, and magic pointer objects can be thought of as “value objects’, while pointer
objects can be thought of as “reference objects’.

Value objects are objects that are right there in your hand. They are analogous to scalar types that
you find in C/C++, such as “char”, “short”, “int”, and “long”, as well as“float” and “double”.
Assigning one value object to another value object essentially makes a copy of that object. After
make such an assignment, a change made to one object does not affect the other object.

Reference objects are actualy references to areal object that resides elsewhere (in the case of the
FDIL, these objects are alocated on the application’ s heap). They are analogous to the pointers
you'd find in C/C++, such as “void*” and “char*”. Copying one reference object to another
doesn't actually copy the object; it just copies the reference to the object. After making such an
assignment, making a change to the object through one reference will be noticed when accessing
the object through the other reference.

Integer Objects

Integer objects are just that: objects containing integral values. The integers are stored in a 30-bit
field, allowing them arange of -536,870,912...536,870,911.

Immediate Objects

Immediate objects are other integral objects that aren’t exactly integers. Immediates are broken
down into four sub-types:

- Specia immediates

- Character immediates
- Boolean immediates
- Reserved immediates

Special immediates are generadly used internally to the Frames library. The only kind of special
immediate devel opers are likely to encounter isthe NIL object. The NIL object islike a* nothing
object” or a“different from everything else” object. It is often returned from functions that can’t
performed the required task (like find and return a requested object) or as a parameter to a function
when no other meaningful value can be passed (sSmilar to passing zero or NULL as a parameter in

Preliminary documentation 3 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

C/C++ programs). See the NewtonScript Programmer’ s Reference for more information on

NewtonScript’s “nil” keyword.

Character immediates contain single Unicode characters. In practice, these aren’t used much.
Developers manipulating text instead often use the routines that manipulate Unicode strings.

Boolean immediates comprise the small set of objects containing FALSE and TRUE. In practice,
FALSE is never used. Instead, functions accepting or returning FALSE values instead use NIL.
TRUE can be used wherever anon-NIL value is needed, though need for such avaueisrare.

Support for reserved immediates is provided by the Frames and FDIL libraries, though their
function has not yet been defined.

Pointer Objects

Pointer objects comprise the set of non-scalar type objects. These are the kinds of complex objects
that would be allocated on a heap in programs developed with C or C++. They can range from
simple binary objects containing unformatted or client-defined data to complex aggregate objects
such as frames (an aggregate object is an object containing references to other objects).

Pointer objects can be broken down into four sub-types:

- Binaries

- Arrays

- Frames

- Indirect binaries

A binary object is analogous to a block of memory allocated returned by the Standard C Library
function malloc. It isaraw, unformatted block of memory. The user can store any sort of data into
it they like. Except for afew cases (described later), the FDIL will not ook into that object and
attempt to interpret its contents.

An array object is avariable-size object whose contents are divided into a series of other objects.
Each divisioniscaled a“dot”. Objects can be inserted into an array or appended to the end of an
array. A single object or arange of objects can be removed from an array (with the remaining
objects moving up in the array to take their place). Once an object has been added to an array, it can
be replaced with another object. Arrays can beiterated to visit al their elements.

A frameisakin to adictionary or associative array. It isa collection of objects where elements are
stored as key/value pairs. Rather than using an index to retrieve avalue that’ s been added to a
frame (as you would with an array), you specify the key used when the value was added to the
frame. Any number of values can be added to aframe, but only one value can be associated with
any one key. This means that all keys added to aframe must be unique. As mentioned earlier, keys
are symbol objects. After akey/value pair has been added to aframe, its key can be used to retrieve
the value associated with it, remove the value from the frame, replace the value in the frame, or test
whether or not akey/value pair existsin the frame. Frames can be iterated to visit al key/value
pairs.

Anindirect binary is one where the the contents of the binary are stored “elsewhere’. Flexible

Preliminary documentation 4 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

support is provided in Frames for indirect binaries where “elsewhere’ can take on several different
forms. The FDIL supports just one kind of indirect binary: the large binary.

A large binary object issimilar to abinary object in that it is araw, unformatted block of memory.
It differs from aregular binary object in that it may not al fit into memory at once. To support such
objects, the FDIL can optionally compress the object’ s data when it is not being accessed, or swap
parts of the object to and from disk.

The FDIL usesregular binary objects to implement the following additional kinds of objects:

- Floating point number
- String
- Symbol

A floating point number object is an 8-byte binary object containing an IEEE-754 floating point
value. When using the FDIL library, it isimportant that you set any applicable compiler options for
generating | EEE-754 floating point compatible code.

A string object is a variable-size object containing an array of Unicode characters. The array of
charactersisterminated with aNULL (zero) value.

A rich string isavariation of astring. A rich string is a string containing embedded “ink”, which is
uninterpreted strokes created by the user of aNewton OS device. The FDIL does not support the
extraction or interpretation of ink, and functions returning the characters of a string will contain
either OxF700 or Ox1A in the place of the embedded ink, depending on whether you are extracting
16-bit or 8-bit characters.

A symbol object is avariable-size object used as atoken or identifier. Most often it isused as adot
name or object class (object classes are described later). It is composed of ASCII characters with
values between 32 and 127 inclusive, excluding the vertical bar (‘|') and backslash (*\'). A symbol
must also be shorter than 254 characters. When symbols are compared to each other, a case-
insensitive comparison is performed.

All symbols created by the FDIL are remembered internaly. If a client requests the creation of a
symbol that’s aready been created, areferenced to that previously created symbol isreturned. If
the requested symbol has not been previoudly created, it is created, added to an internal table, and
returned to the client. Thus, only one instance of any unique symbol ever exists.

Magic Pointer Objects

Magic pointer objects are a mechanism used for late object binding. When a programmer devel ops
their NewtonScript application on the desktop using a development environment such as the
Newton Toolkit (NTK), they often need to create references to objects that exist only in the
Newton device ROM. Because there can be no direct reference from an object on the desktop to an
object in aNewton device ROM, a“magic pointer” is used as a placeholder when the developer’s
package s created. Later, when the package is downloaded and executed, the magic pointer is used
to lookup the real object in the ROM.

Whilethe FDIL client isnot likely to face the need of creating a magic pointer object, support for

Preliminary documentation 5 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

them is provided for completeness.

Object Classes

All objects have a class associated with them. The classis used to help identify the type of object.
For non-pointer objects, this classisimplicit and cannot be changed. For most pointer objects, the
class can be set (or changed from its default if that classis normally created with a default).

Often, aclassis specified with a symbol object. However, there are cases where a class can be
NIL, or whereit is an integer object or even an immediate object. Generally, you should not worry
about what kind of object aclassis. Instead, you should use the predicate functions provided by
the FDIL API, or compare an object’s class to the standard set of classes exported by the FDIL.
Only in rare cases should you need to dissect an object’s class.

The following table lists the objects type just described and their associated classes.

Object type Class

Integer kFD_Syminteger
Character kFD_SymChar
Boolean kFD_SymBoolean
Other immediate kFD_SymWeird_Immediate
Frame kFD_SymFrame *
Array kFD_SymArray *
String kFD_SymString *
Symbol kFD_SymSymbol
Binary kKFD_NIL *

Large binary kFD_NIL *
MagicPointer kFD_SymMagicPointer

* The classes of these object types can be changed by the FDIL client, so the values shown here
are the default classes.

Library Reference

Data Types

FD_Handle

All objects created and managed by the FDIL are referenced viathe FD_Handle type. When objects
are created and returned to the user, the creating function returns an FD_Handle. In the non-debug
version of thelibrary, an FD_Handle is merely along integer, making it avery lightweight data
type. In the debug version of the library, FD_Handleis an 8-byte struct, with the additional 4 bytes
being a pointer to internal debugging data structures.

DIL_Error

Preliminary documentation 6 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

A signed long used to return error codes generated by the FDIL.

DIL_WideChar
Thereis currently no de facto standard for the Unicode character type. Some development
environments define UniChar; some don’t. Some devel opment environments define wchar_t; some

don’t. Of those that define wchar_t, some define it as a 16-bit value, others as an 8-bit value. The
FDIL supports Unicode characters as unsigned 16-bit values, and defines DIL_WideChar as such.

FD_ImmediateType

An enumerated type describing the four different types of immediate objects.

FD_CompressionType

An enumerated type describing the three different types of large binary compression.

Using The Library

DIL_Error FD_Startup(void);

Initializes the FDIL. Y ou must call thisfunction before calling any other FDIL function. It
isgenerally called just once at the beginning of your application, but can be called more
than once as long as an equal number of callsto FD_Shutdown are aso made.

Example:
BOOL CMyApp::Initlnstance()
{
FD_Startup();
DIL_Error err = FD_GetError();
}
Error codes:

kDIL_OutOfMemory

DIL_Error FD_Shutdown(void);

Closesthe library. All memory alocated by the FDIL since FD_Startup was called is
dedll ocated.

Example:

int CMyApp::Exitlnstance()

Preliminary documentation 7 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Shutdown();
return CWinApp::Exitlnstance();
}

Error codes:
kFD_FDILNotlInitialized

DIL_Error FD_GetError(void);

Returns a value indicating the success or failure of the last operation performed by an FDIL
function. Robust applications should check the result of FD_GetError after calling any
FDIL function that can reasonably be expected to fail.

Example:
FD_Handle myObject = FD_MakeBinary(10 * 1024 * 1024, NULL);

if (FD_GetError() != kDIL_NoError)
/* an error occurred */;

Creating Objects

FD_Handle FD_Makelnt(long);

Creates an integer object from the given value, returning the newly created object. The
value of the integer can be between -536,870,912...536,870,911, inclusive.

Example:
FD_Handle mylnt = FD_Makelnt(100);
Error Codes:

kFD_FDILNotInitiaized
kFD_VaueOutOfRange

FD_Handle FD_MakeReal (double);

Creates afloating point object from the given vaue, returning the newly created object. The
value can be any valid IEEE-754 floating point value.

NOTE: When using the FDIL library, it isimportant that you set any applicable compiler
options for generating |EEE-754 floating point compatible code. For example, when
compiling a68K program with CodeWarrior, make sure the "8-byte Doubles' optionis
turned on.

Example:

Preliminary documentation 8 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Handle myReal = FD_MakeReal (10.0);

Error Codes:
kFD_FDILNotInitiaized
kDIL_OutOfMemory

FD_Handle FD_MakeString(const char¥*);
FD_Handle FD_MakeWideString(const DIL_WideChar*);

Creates a binary object containing a NULL-terminated Unicode string, returning the newly
created object. FD_MakeString takes as input a NUL L-terminated series of ASCI|
characters (in other words, a*“C string”), converts them into Unicode characters, and stores
them in an appropriately sized binary object. FD_MakeWideChar merely copiesthe NULL-
terminates series of Unicode charactersinto an appropriately sized binary object. In both
cases, the resulting object contains Unicode characters terminated with aNULL, and the
object’sclassiskFD_SymsString.

Example:

FD_Handle myStringl
FD_Handle myString2

FD_MakeString(''Some text');
FD_MakeWideString(L"Some wide text');

Error Codes:
kFD_FDILNotlInitialized
kDIL_OutOfMemory
kFD_NULL Pointer

FD_Handle FD_MakeSymbol (const char¥*);

Returns a symbol corresponding to the given string, creating it if necessary. Symbols are a
pooled resource: once created, a symbol is added to an internal table. Subsequent requests
to create a new symbol from the same text resultsin areference to the previoudly created
symbol to be returned.

In the exampl es shown below, only the first two callsto FD_MakeSymbol result in the
creation of new symbols. Since the third call to FD_MakeSymbol specifies the same text as
the first call, the object returned references the same object referenced by mySymbol 1. In
the fourth call to FD_MakeSymboal, text is specified that differs from that passed in the
second call only in the capitalization of the characters. Because symbol text istreated in a
case-insensitive fashion, no new symbol is created, and areference to the symbol
referenced by mySymbol2 is returned.

Example:
FD_Handle mySymbol1l
FD_Handle mySymbo 12
FD_Handle mySymbol3
FD_Handle mySymbo 14

FD_MakeSymbol ("'mySlotNamel™);
FD_MakeSymbol (""'mySlotName2');
FD_MakeSymbol (""mySlotNamel');
FD_MakeSymbol ("*"MyS10tNaMe2') ;

Error Codes:

Preliminary documentation 9 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

kFD_FDILNotlnitialized
kDIL_OutOfMemory
kFD_NULL Pointer
kFD_Symbol ToolL.ong
kFD_lllegal CharlnSymbol

FD_Handle FD_MakeArray(long size, const char* cls);

Creates an array large enough to hold the given number of elements, returning the newly
created object. All of theinitial elements are set to kFD_NIL. Thelength of the array is not
fixed; it can be changed implicitly with callsto FD_InsertArraySlot, FD_AppendArraySiot,
and FD_RemoveArraySlot, or explicitly with acall to FD_Setl ength.

The class of the array is specified with the second parameter. Passing NULL resultsin the
array being given adefault class. Passing in anything else is passed internally to
FD_MakeSymbol, and the result is used as the class.

Example:
FD_Handle myArrayl
FD_Handle myArray2

FD_MakeArray (100, "myArray');
FD_MakeArray (0, NULL); /* Zero’s OK */

Error Codes:
kFD_FDILNotInitidized
kDIL_OutOfMemory
kFD_VaueOutOfRange

FD_Handle FD_MakeFrame(void);

Creates an empty frame, returning the newly created object. Initiadly, the frame contains no
contents. They must be added with callsto FD_SetFrameSlot.

Example:
FD_Handle myFrame = FD_MakeFrame();

Error Codes:
kFD_FDILNotlInitialized
kDIL_OutOfMemory

FD_Handle FD_MakeBinary(long size, const char* cls);

Creates araw, unformatted binary object of the given size, returning the newly created
object. The contents of the object can later be accessed by calling FD_GetBinaryData.

The class of the binary object is specified with the second parameter. Passing NULL
resultsin the binary object being given a default class. Passing in anything else is passed
internally to FD_MakeSymbol, and the result is used as the class.

Example:

Preliminary documentation 10 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Handle myBinaryl
FD_Handle myBinary2

FD_MakeBinary (1000, "myObj'");
FD_MakeBinary(0, NULL); /* Zero’s OK */

Error Codes:
kFD_FDILNotInitiaized
kDIL_OutOfMemory
kFD_VaueOutOfRange

FD_Handle FD_MakeChar(char);

FD_Handle FD_MakeWideChar(DIL_WideChar);
Creates a character object from the given character, returning the newly created object.
FD_MakeChar first converts the given character from ASCII to Unicode before creating the
object. FD_MakeWideChar uses the given Unicode character when creating the object.
In the examples below, myCharl and myChar2 end up containing equal character objects.
Example:

FD_Handle myCharl
FD_Handle myChar2

FD_MakeChar("a®);
FD_MakeWideChar(L"a");

Error Codes:
kFD_FDILNotlnitialized

FD_Handle FD_Makelmmediate(long type, long value);

Creates the specified type of immediate object based on the given value, returning the
newly created object. Thisis alow-level function that you should rarely, if ever, call. The
kinds of immediate objects applications are likely to require are character objects (which can
be created with the FD_MakeChar and FD_MakeWideChar function), NIL objects (which
can be accessed through the kFD_NIL constant), or boolean objects (the sole type of which
can be access through the KFD_ True constant).

Note that in the following examples, the call to FD_Makelmmediate that crestes a character
object does not perform ASCII to Unicode conversion on the given character. That higher-
level operation is performed only by FD_MakeChar.

Example:
FD_Handle myNIL = FD_Makelmmediate(kFD_ImmedSpecial, 0);
FD_Handle myTrue = FD_Makelmmediate(kFD_ImmedBoolean, 1);
FD_Handle myChar = FD_Makelmmediate(kFD_ImmedChar, "a");

Error Codes:
kFD_FDILNotlInitialized
kFD_VaueOutOfRange

FD_Handle FD_MakeMagicPointer(long value);

Preliminary documentation 11 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

Creates amagic pointer object based on the given value, returning the newly created value.
Itisnot likely that you should need to call thisfunction; it is provided for compl eteness
only. The only kind of applications that would need to create this kind of object would be a
development environment, which needs to build application packages that reference ROM
objects.

Each value that can be passed to FD_MakeMagicPointer corresponds to a different well-
known object in ROM (such as the protoApp object). The list of values and objects they
correspond to is not documented or provided here. Y ou might want to try badgering DTS
for them, but they might just laugh at you.

Example:
FD_Handle myMP = FD_MakeMagicPointer(157); /> protoApp */

Error Codes:
kFD_FDILNotInitiaized
kFD_VaueOutOfRange

FD_Handle FD_MakeLargeBinary(long size, const char* objClass,
long compressionType);

Creates alarge binary object of the given size, returning the newly created object. Whether
or not the object’ s datais compressed internaly is determined by the compressed
parameter. Management for the large binary’ s data is performed by the functions specified
in the FD_L argeBinaryProcs data structure established by the FD_SetLargeBinaryProcs
function. For more information on these functions, see the section “Large Binary Object
Functions’.

Example:
FD_Handle myLB = FD_MakelLargeBinary(500 * 1024L, "MyBlob",
kFD_NoCompression);

Error Codes:
kFD_FDILNotlnitialized
kDIL_OutOfMemory
kFD_ErrorCreatingStore
kFD_VaueOutOfRange

Disposing of Objects

DIL_Error FD_Dispose(FD_Handle);
DIL_Error FD_DeepDispose(FD_Handle);

After you are through with an object, you will likely need to dispose of it. Passing an
FD_Handleto FD_Dispose will dispose of that object’s memory. FD_Dispose does a
shallow dispose. In other words, if the object you passto it is an aggregate object such as
an array or aframe, the referenced sub-objects are not disposed. In order to dispose of the
whole kit-and-kaboodle, call FD_DeepDispose.

Preliminary documentation 12 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Dispose and FD_DeepDispose can be called on any type of object. The functionswill
guery the type of object and act appropriately. For instance, passing an integer object to
FD_Dispose won't do anything, as integer objects are not heap-based objects and don’t
need to be disposed. Calling FD_DeepDispose on a string will dispose of the string’s
memory, but no attempt will be made to dispose of any sub-objects, as strings don’t have
sub-objects. Calling either function on a symbol won't do anything, as symbols are pooled
and shared; actually deleting a symbol could create dangling references el sewhere in the

system.

Example:
FD_Handle mylnt = FD_Makelnt(5);
FD_Dispose(mylnt); /* Sets mylnt to NIL */

FD_Handle myReal = FD_MakeReal (5);
FD_Dispose(myReal); /* Frees memory, sets myReal to NIL */

FD_Handle myString = FD_MakeString(""Hello");
FD_Handle myArray = FD_MakeArray(l, NULL);
FD_SetArraySlot(myArray, 0, myString);
FD_Dispose(myArray); /* myString still exists */

myArray = FD_MakeArray(l, NULL);

FD_SetArraySlot(myArray, 0, myString);

FD_DeepDispose(myArray); /* Both myArray and myString are
disposed of. However, only myArray
is set to NIL; myString now ref-
erences a disposed object, so
watch out! */

FD_Handle mySymbol = FD_MakeSymbol ("'mySlotName');
FD_Dispose(mySymbol); /* mySymbol set to NIL, but no memory
is actually freed. */

Error Codes:
kFD_FDILNotlInitialized
kFD_PointerObjectlsFree

long FD_AllocatedMemory(void);

Returns the total amount of memory allocated by the FDIL, including that occupied by
created objects and that used by internal data structures. This function can be useful to track
how much memory is used by particular objects, or by the FDIL sub-system in general.

Example:
long allocatedl = FD_AllocatedMemory();
FD_Handle myObj = FD_MakeFrame();
long allocated2 = FD_AllocatedMemory();

printf("An empty frame eats up %ld bytes.\n",
allocated2 - allocatedl);

Error Codes:

Preliminary documentation 13 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

kFD_FDILNotlnitialized

Testing Objects

int FD_IsInt(FD_Handle);

Returns whether or not an object is an integer object. Only objects created with
FD_Makelnt will cause this function to return true.

Example:
FD_Handle mylnt = FD_Makelnt(5);
int result = FD_IsInt(mylnt); // returns TRUE
result = FD_IsInt(kFD_NIL); // returns FALSE
Error Codes:

kFD_FDILNotlInitialized

int FD_IsPointerObject(FD_Handle);

Returns whether or not an object is a pointer object. Objects created with FD_MakeRedl,
FD_MakeString, FD_MakeWideString, FD_MakeSymbol, FD_MakeArray,
FD_MakeFrame, FD_MakeBinary, and FD_Makel argeBinary will cause this function to

return true.
Example:
FD_Handle myObjl = FD_MakeBinary(5, NULL);
int result = FD_IsPointerObject(myObjl); // returns TRUE
FD_Handle myObj2 = FD_MakeFrame();
result = FD_IsPointerObject(myObj2); // returns TRUE
result = FD_IsPointerObject(kFD_NIL); // returns FALSE

Error Codes:
kFD_FDILNotlInitialized

int FD_IsReal (FD_Handle);

Returns whether or not an object contains a floating point number. Only objects created
with FD_MakeReal will cause this function to return true.

Example:
FD_Handle myReal = FD_MakeReal (5);
int result = FD_IsReal (myReal); // returns TRUE
result = FD_IsReal(kFD_NIL); // returns FALSE
Error Codes:
Preliminary documentation 14 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

kFD_FDILNotlnitialized

int FD_I1sString(FD_Handle);

Returns whether or not an object is a string object. Objects created with FD_MakeString
and FD_MakeWideString will cause this function to return true, as well as any objects for
which FD_1sSubClass(object, "string") will return true.

Example:
FD_Handle myStringl = FD_MakeString("Hello");
int result = FD_IsString(myStringl); // returns TRUE
FD_Handle myString2 = FD_MakeWideString(L"Hello");
result = FD_IsString(myString2); // returns TRUE
result = FD_IsString(kFD_NIL); // returns FALSE

Error Codes:
kFD_FDILNotInitiaized

int FD_IsRichString(FD_Handle);

Returns whether or not an object is arich string object. Rich string objects are string
containing embedded ink. These object cannot be created by the FDIL, nor can the ink be
extracted or interpreted. However, you may receive such objects from a Newton OS device
viathe PDIL, for example, and may need to detect strings that cannot be completely
interpreted.

Example:
FD_Handle myStringl = MyGetStringFromNewt();
it (FD_IsRichString())
MyShowAlert("Warning: string can"t be completely”
“"translated. Some information may be lost");

Error Codes:
kFD_FDILNotInitiaized

int FD_IsSymbol (FD_Handle);

Returns whether or not an object is a symbol object. Only objects created with
FD_MakeSymbol will cause this function to return true,

Example:
FD_Handle mySymbol = FD_MakeSymbol ("'mySlotName');
int result = FD_IsSymbol (mySymbol); // returns TRUE
result = FD_IsSymbol (kFD_NIL); // returns FALSE
Error Codes:
Preliminary documentation 15 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

kFD_FDILNotlnitialized

int FD_IsArray(FD_Handle);

Returns whether or not an object isan array object. Only objects created with
FD_MakeArray will cause this function to return true.

Example:
FD_Handle myArray = FD_MakeArray(5, NULL);
int result = FD_IsArray(myArray); // returns TRUE
result = FD_IsArray(kFD_NIL); // returns FALSE
Error Codes:

kFD_FDILNotlnitialized

int FD_IsFrame(FD_Handle);

Returns whether or not an object is aframe object. Only objects created with
FD_MakeFrame will cause this function to return true.

Example:
FD_Handle myFrame = FD_MakeFrame();
int result = FD_IsFrame(myFrame); // returns TRUE
result = FD_IsFrame(kFD_NIL); // returns FALSE
Error Codes:

kFD_FDILNotlInitialized

int FD_IsBinary(FD_Handle);

Returns whether or not an object isaraw binary object. Objects created with
FD_MakeBinary, FD_MakeRed, FD_MakeString, FD_MakeWideString, and
FD_MakeSymbol will cause this function to return true.

Example:
FD_Handle myBinary = FD_MakeBinary(5, NULL);
int result = FD_IsBinary(myBinary); // returns TRUE

FD_Handle myReal
result

FD_MakeReal (5);
FD_IsBinary(myReal); // returns TRUE

FD_Handle myArray = FD_MakeArray(5, NULL);

result = FD_IsBinary(myArray); // returns FALSE
result = FD_IsBinary(kFD_NIL); // returns FALSE

Error Codes:
Preliminary documentation 16 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

kFD_FDILNotlnitialized

int FD_IsChar(FD_Handle);

Returns whether or not an object is a character object. Objects created with FD_MakeChar,
FD_MakeWideChar, or FD_Makelmmediate (with kimmedChar asthe type) will cause this
function to return true.

Example:
FD_Handle myChar = FD_MakeChar("a®");
int result = FD_IsChar(myChar); // returns TRUE
result = FD_IsChar(kFD_NIL); // returns FALSE
Error Codes:

kFD_FDILNotlnitialized

int FD_IsFree(FD_Handle);

Returns whether or not an object reference refers to a deleted pointer object. FD_Objects
containing non-pointer objects such asintegers or NIL cause this function to return false.

NOTE: Thisfunction may return false, even if the object originally referenced by the given
FD_Handle was deleted. This can occur, for example, if a new object was allocated in such
away that it the same space previoudly occupied by the deleted object. The FD_Handle will
then effectively refer to the newly created object, causing FD_|IsFree to return false. Thus,
FD_IsFreeismostly useful in the tracking down of object allocation and deletion bugs, and
should probably not be called in shipping code.

Example:
FD_Handle myString = FD_MakeString(""Hello");
FD_Handle myArray = FD_MakeArray(l, NULL);
FD_SetArraySlot(myArray, 0, myString);

int result = FD_IsFree(myString); // returns FALSE
FD_DeepDispose(myArray);
result FD_IsFree(myString); // returns TRUE
result FD_IsFree(myArray); // returns FALSE (myArray was set
// to NIL, which is not a pointer
// object, and so can’t be a
// deleted pointer object).
result = FD_IsFree(kFD_NIL); // returns FALSE

Error Codes:
kFD_FDILNotlnitialized

int FD_IsImmediate(FD_Handle);

Returns whether or not an object is an immediate object. Objects created with

Preliminary documentation 17 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_MakeChar, FD_MakeWideChar, and FD_Makelmmediate will cause this function to
return true.

Example:
FD_Handle mylnt = FD_Makelnt(5);
int result = FD_IsIlmmediate(mylnt); // returns FALSE
result = FD_IsIlmmediate(kFD_NIL); // returns TRUE
Error Codes:

kFD_FDILNotlInitialized

int FD_IsMagicPointer(FD_Handle);
Returns whether or not an object is a magic pointer object. Only objects created with
FD_MakeMagicPointer will cause this function to return true.
Example:
FD_Handle myMP = FD_MakeMagicPointer(157);
int result = FD_IsMagicPointer(myMP); // returns TRUE
result = FD_IsMagicPointer(kFD_NIL); // returns FALSE
Error Codes:
kFD_FDILNotInitiaized
int FD_IsBoolean(FD_Handle);
Returns whether or not an object is aboolean object. Only kFD_True or a boolean object
created with FD_Makelmmediate will cause this function to return true.
Example:
int result = FD_IsBoolean(kFD_True); // returns TRUE
result = FD_IsBoolean(kFD_NIL); // returns FALSE
Error Codes:
kFD_FDILNotInitidized
int FD_IsLargeBinary(FD_Handle);
Returns whether or not an object is alarge binary object. Only objects created with
FD_Makel argeBinary will cause this function to return true.
Example:
FD_Handle myLB = FD_MakelLargeBinary(5, NULL,
kFD_NoCompression);
int result = FD_IsLargeBinary(myLB); // returns TRUE
result = FD_IsLargeBinary(kFD_NIL); // returns FALSE
Error Codes:
kFD_FDILNotInitidized
Preliminary documentation 18 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

int FD_I1sSubClass(FD_Handle, const char®*);

Returns whether or not an object is an instance of the given object class. An object isan
instance of aclassif one of the following conditionsistrue:

1.

2
3.
4,

The specified class is the same as the class returned by FD_GetClass for the given
object.

The object’s class describes a class hierarchy, and the specified classis a prefix of
that hierarchy.

The object’s class is awell-known subclass of the given class.

The specified class is the empty string.

In Newton 2.0 OS and later, an object’ s class can describe a class hierarchy, where each
node of the hierarchy is a subclass name. The subclass names are catenated together,
separated by periods. Thus, if ‘phone is a subclass of 'string, and 'homeOfficePhoneisa
subclass of ‘phone, then a object with the class 'string.phone.homeOfficePhone is
considered to be a string object, a phone object or a home office phone object.

This mechanism did not exist before Newton OS 2.0. In earlier ROMSs, there were lists of
well-known class relationships. The FDIL supports the following:

'string

Exampl

‘address

‘company

'name

title

'phone
'homePhone
‘workPhone
‘faxPhone
‘otherPhone
‘carPhone
'beeperPhone
'mobilePhone
'homeFaxPhone

e

// The number iIn parentheses is the condition under which
// FD_IsSubClass returns TRUE.

int result;

FD_Handle none = FD_MakeBinary(0, NULL);

result = FD_IsSubClass(none, ""); // TRUE (4)

result = FD_IsSubClass(none, "string"); // FALSE

FD_Handle string = FD_MakeString("Fred™);

result = FD_IsSubClass(string, ""); // TRUE (4)

result = FD_IsSubClass(string, "string"); // TRUE (1)

result = FD_IsSubClass(string, '"string.phone"); // FALSE
Preliminary documentation 19 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Handle phonel = FD_MakeString("1-408-974-0701");

FD_SetClass(phonel, "workPhone');

// TRUE (4)
// TRUE (3)
// TRUE (3)

result = FD_IsSubClass(phonel, "");

result = FD_IsSubClass(phonel, *"string");

result = FD_IsSubClass(phonel, "phone™);

result = FD_IsSubClass(phonel, "workPhone™); // TRUE (1)
result = FD_IsSubClass(phonel, "string.phone'); // FALSE
result = FD_IsSubClass(phonel, "string.phone.workPhone');

// FALSE

FD_Handle phone2 = FD_MakeString(""1-408-354-5000");
FD_SetClass(phone2, "string.phone.workPhone');

// TRUE (4)
// TRUE (2)
// FALSE

result = FD_IsSubClass(phone2, "'");

result = FD_IsSubClass(phone2, "string");

result = FD_IsSubClass(phone2, "phone™);

result = FD_IsSubClass(phone2, "workPhone™); // FALSE

result = FD_IsSubClass(phone2, "string.phone"™); // TRUE (2)

result = FD_IsSubClass(phone2, "string.phone.workPhone');
Error Codes:

kFD_FDILNotInitiaized
kFD_PointerObjectlsFree
kFD_NULL Pointer

Extracting Data From Objects

long FD_GetInt(FD_Handle);

Returns the long value stored in the object.

Example:
FD_Handle mylnt = FD_Makelnt(5);
long result = FD_GetInt(mylnt);
Error Codes:

kFD_FDILNotInitiaized
kFD_Expectedinteger

double FD_GetReal (FD_Handle);

Returns the floating point value stored in the object.

Example:
FD_Handle myReal = FD_MakeReal (5);
double result = FD_GetInt(myReal);
Error Codes:

kFD_FDILNotlnitialized

Preliminary documentation 20
Subject to change

// TRUE (1)
// result == 5
// result == 5.0

Copyright © 1997, Newton, Inc.
All rights reserved

kFD_ExpectedRedl

DIL_Error FD_GetString(FD_Handle, char* buffer, long bufLen);

Gets the characters stored in the object. The characters are converted from Unicode to
ASCII and stored in the location indicated by the buffer parameter. At most bufLen
characters are copied. If there’ s enough room, aNULL terminator is added.

Example:
FD_Handle myString = FD_MakeString("'Hello");

char buffer[10];

FD_GetString(myString, buffer, 10); // buffer == "Hello\0"
FD_GetString(myString, buffer, 3); // buffer == "Hel"
Error Codes:

kFD_FDILNotlnitialized
kFD_ExpectedString

kFD_NULL Pointer
kFD_ExpectedNonNegativeVaue

DIL_Error FD_GetWideString(FD_Handle, DIL_WideChar*, long bufLen);

Gets the characters stored in the object. The characters are stored in the location indicated
by the buffer parameter. At most bufLen characters are copied. If there' s enough room, a
NULL terminator is added.

Example:
FD_Handle myString = FD_MakeString("'Hello");
DIL_WideChar buffer[10];
FD_GetWideString(myString, buffer, 10); // buffer == L"Hello\0O"
FD_GetWideString(myString, buffer, 3); // buffer == L"Hel"
Error Codes:

kFD_FDILNotlnitialized
kFD_ExpectedString

kFD_NULL Pointer
kFD_ExpectedNonNegativeVaue

const char* FD_GetSymbol (FD_Handle);

Returns a pointer to the NUL L-terminated characters of the symbol. This pointer should be
used for read-only purposes. It should not be used to change the characters of the symbol.

Example:
FD_Handle mySymbol = FD_MakeSymbol ("'mySlotName');

Preliminary documentation 21 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

const char* symbolText = FD_GetSymbol(mySymbol);
// symbolText == "mySlotName"

printf("”Slot name is: %s\n', symbolText);

Error Codes:
kFD_FDILNotlInitialized
kFD_ExpectedSymbol

void* FD_GetBinaryData(FD_Handle);

Returns a pointer to the contents of araw binary object. Before the pointer can be used to
access (read or write) the contents of the object, it will need to be cast to the appropriate

type.

Note: FD_GetBinaryData cannot be used to get a pointer to the contents of large binary
objects. That’ s because there’ s no guarantee that the entire object can be read into memory
at once. Instance, clients should use FD_ReadFromLargeBinary and
FD_WriteToLargeBinary to access and modify alarge binary’ s contents.

Example:
static const char kMyCRCTable[] = {--- };
FD_Handle myCRCTable = FD_MakeBinary(sizeof(kMyCRCTable),
"CRCTable™);
char* dest = (char*) FD_GetBinaryData(myCRCTable);

for (int ii = 0; i1 < sizeof(kMyCRCTable); ++ii)
dest[ii] = kMyCRCTable[ii];

Error Codes:
kFD_FDILNotlInitialized
kFD_ExpectedBinary

char FD_GetChar(FD_Handle);
DIL_WideChar FD_GetWideChar(FD_Handle);

Returns the characters stored in the given character object. FD_GetChar returns the
character in ASCII form. FD_GetWideChar returns the character in Unicode form.

Example:
FD_Handle myChar = FD_MakeChar("a®");
char asASCl1 = FD_GetChar(myChar); // == "ar
DIL_WideChar asUnicode = FD_GetWideChar(myChar); // == L"a"
Error Codes:

kFD_FDILNotInitialized
kFD_ExpectedChar

int FD_IsNIL(FD_Handle);
int FD_NotNIL(FD_Handle);

Preliminary documentation 22 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

Returns whether or not the given object isequal to NIL. The two functions are
complementary. If FD_IsSNIL returnstrue, FD_NotNIL returnsfalse, and vice-versa.

Error Codes:
kFD_FDILNotlnitialized
kFD_ExpectedChar

FD_Handle FD_ASCIHIString(FD_Handle);

Takes the given string, convertsits contents into ASCII, and returns the result in anew
binary object. You can call FD_GetBinaryData on this new object, cast theresult to a
char*, and treat the result asanormal C string pointer.

Example:
FD_Handle myString = FD_MakeString("'Hello");

FD_Handle asASCIl = FD_ASCIIString(myString);
const char* textPtr = (const char*) FD_GetBinaryData(asASCIIl);
printf("%s, world!I\n", textPtr);

Error Codes:
kFD_FDILNotlInitialized
kDIL_OutOfMemory
kFD_ExpectedString

DIL_Error FD_GetImmediate(FD_Handle, long* type, long* value);

Returns the components of an immediate object. The type parameter will receive one of
kImmedSpecia, klmmedCharacter, kimmedBoolean, or kimmedReserved. The value
parameter will receive the integral value associated with that type of immediate object.

Example:
long type;
long value;
FD_GetImmediate(kFD_NIL, &type, &value);
// type == klmmedSpecial
// value == 0

Error Codes:
kFD_FDILNotlInitialized
kFD_Expectedimmediate

long FD_GetMagicPointer(FD_Handle);

Returns the value associated with the given magic pointer object.

Example:
FD_Handle myMagicPtr = FD_MakeMagicPointer(157);
long value = FD_GetMagicPointer(myMagicPtr); // value == 157
Preliminary documentation 23 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

Error Codes:
kFD_FDILNotlnitialized
kFD_ExpectedMagicPointer

DIL_Error FD_ReadFromLargeBinary(FD_Handle, long offset, void* buffer,
long count);

Reads “count” bytes starting from the given object, starting “offset” bytes from within the
object’ s contents. The bytes are written to the memory pointed to by “buffer”.

Example:
FD_Handle myLB = FD_MakelLargeBinary(500, NULL,
kFD_LZCompression);

char buffer[100];
FD_ReadFromLargeBinary(myLB, 200, buffer, sizeof(buffer));
// Reads the middle 100 bytes from the large binary object

Error Codes:
kFD_FDILNotInitiaized
kFD_ExpectedL argeBinary
kFD_ExpectedNonNegativeVaue
kFD_NULL Pointer
kFD_CouldNotDecompressData
kFD_ErrorReadingFromStore

DIL_Error FD_WriteToLargeBinary(FD_Handle, long offset, const void* buffer,
long count);

Writes “count” bytes of datainto the given object, starting at “offset” bytesinto the object’s
contents. The bytes are read from the memory pointed to by “buffer”.

Example:
static const char kMyCRCTable[] = {.--.- }:
FD_Handle myCRCTable = FD_MakelLargeBinary(sizeof(kMyCRCTable),
NULL, kFD_LZCompression);
FD_WriteToLargeBinary(myCRCTable, 0, kMyCRCTable,
sizeof(kMyCRCTable));

Error Codes:
kFD_FDILNotInitidized
kFD_ExpectedL argeBinary
kFD_ExpectedNonNegativeVaue
kFD_NULL Pointer
kFD_CouldNotCompressData
kFD_ErrorWritingToStore

Array Functions

Preliminary documentation 24 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error FD_InsertArraySlot(FD_Handle array, long pos, FD_Handle item);

Inserts the given object into the array at the specified position. Any objects between that
position and the end of the array are moved down in the array to make room.

Example:
FD_Handle hello
FD_Handle comma
FD_Handle world
FD_Handle array

FD_MakeString(""Hello");
FD_MakeString(", ");

FD_MakeString(“"world™);
FD_MakeArray (0, NULL);

FD_InsertArraySlot(array, 0, world);
// array holds ["world"]

FD_InsertArraySlot(array, 0, hello);
// array holds ["Hello™, "world"]

FD_InsertArraySlot(array, 1, comma);
// array holds ["Hello™, ", ", "world"]

FD_InsertArraySlot(array, 9, KFD_NIL);
// FD_GetError returns kFD_ValueOutOfRange

Error Codes:
kFD_FDILNotlnitialized
kDIL_OutOfMemory
kFD_ExpectedArray
kFD_VaueOutOfRange

DIL_Error FD_AppendArraySlot(FD_Handle array, FD_Handle item);
Appends the given element to the end of the array.

Example:
FD_Handle hello
FD_Handle comma
FD_Handle world
FD_Handle array

FD_MakeString(""Hello");
FD_MakeString(", ");

FD_MakeString("world");
FD_MakeArray(0, NULL);

FD_AppendArraySlot(array, hello);
// array holds ["Hello"]

FD_AppendArraySlot(array, comma);
// array holds ["Hello™, ", "]

FD_AppendArraySlot(array, world);
// array holds ["Hello™, ", ", "world"]

Error Codes:
kFD_FDILNotInitiaized
kDIL_OutOfMemory

Preliminary documentation 25 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

kFD_ExpectedArray
kFD_VaueOutOfRange

FD_Handle FD_RemoveArraySlot(FD_Handle array, long pos);

Removes the object at the given position in the array. Any objects between that position and
the end of the array are moved forward in the array to fill in the vacated dot. The removed
object isreturned to the caller so that the caller can, for example, dispose of the object.

Example:
FD_Handle array = .
// array holds [Hello LM, "world"]

FD_Handle item = FD_RemoveArraySlot(array, 1);
// array holds ["Hello"™, "world"]
// item holds "

Error Codes:
kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_VaueOutOfRange

DIL_Error FD_RemoveArraySlotCount(FD_Handle array, long pos, long count);

Removes “count” slots from the array starting at the given position. Any objects between
that position and the end of the array are moved forward in the array to fill in the vacated
dots. The objects in the removed dlots are not disposed of, so callers should address that
before losing their last references to those objects.

Example:
FD_Handle array = .
// array holds [Hello t,or, "world™]

FD_RemoveArraySlotCount(array, 0, 2);
// array holds ["world"]

Error Codes:
kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_VaueOutOfRange

FD_Handle FD_SetArraySlot(FD_Handle array, long pos, FD_Handle item);

Setsthe array dot at the given position to contain the specified new element. The object
being replaced in the array is returned to the caller so that it can, for example, dispose of the
object. No other array elements are affected, and the size of the array remains unchanged.

Example:
FD_Handle array = ...;

Preliminary documentation 26 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

// array holds ["Hello™, ", ", "world"]

FD_SetArraySlot(array, O,
FD_MakeString("'Wilkommen'™));

// array holds ["Wilkommen™, ™, ', “world"]

// oldHello holds "Hello"

FD_Handle oldHello

FD_Handle oldWorld = FD_SetArraySlot(array, O,
FD_MakeString("welt'));

// array holds ["Wilkommen™, "™, ", "welt"]
// hello holds "Hello™
// oldWorld holds "world"”

Error Codes:
kFD_FDILNotlnitialized
kFD_ExpectedArray
kFD_VaueOutOfRange

FD_Handle FD_GetArraySlot(FD_Handle array, long pos);

Returns the object in the given dot of the array.

Example:
FD_Handle array = .
// array holds [Hello ,o", "world"]

FD_Handle oldHello = FD_GetArraySlot(array, 0);
// array holds ["Hello™, ™, "™, "world"]
// oldHello holds "Hello"”

Error Codes:
kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_VaueOutOfRange

Frame Functions

FD_Handle FD_SetFrameSlot(FD_Handle frame, const char* slotName,
FD_Handle item);

Adds akey/vaue pair to the frame, where the key is specified by “dotName”’ and the value
is specified by “item”. If apair with the specified key already existsin the frame, its
corresponding value object is replaced with “item”, and the old value is returned to the

caler.
Example:
FD_Handle frame = FD_MakeFrame();
// frame holds {}
FD_Handle hello = FD_MakeString("Hello");
Preliminary documentation 27 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

FD_SetFrameSlot(frame, "mySlotName"™, hello);
// frame holds {mySlotName: "Hello"}

FD_Handle world = FD_MakeString("world");

FD_SetFrameSlot(frame, "mySlotName"™, world);
// frame holds {mySlotName: "world"}

Error Codes:
kFD_FDILNotInitiaized
kDIL_OutOfMemory
kFD_ExpectedFrame
kFD_NULL Pointer
kFD_VaueOutOfRange

FD_Handle FD_GetFrameSlot(FD_Handle frame, const char* slotName);

Looksfor the key/value pair identified by “slotName”. If the key isfound in the frame, its
associated value is returned to the caller. If the key cannot be found, KFD_NIL isreturned.

Example:
FD_Handle frame = FD_MakeFrame();
// frame holds {}

FD_Handle hello = FD_MakeString("Hello");

FD_SetFrameSlot(frame, "mySlotName"™, hello);
// frame holds {mySlotName: "Hello"}

FD_Handle result = FD_GetFrameSlot(frame, "mySlotName™);
// result now refers to the same string object as hello

result = FD_GetFrameSlot(frame, "fred");
// No slot named fred, so result gets kFD_NIL

Error Codes:
kFD_FDILNotlInitialized
kFD_ExpectedFrame
kFD_NULL Pointer

int FD_FrameHasSlot(FD_Handle frame, const char* slotName);
Returns whether or not a dlot with the given name exists in the frame.

Example:
FD_Handle frame = FD_MakeFrame();

FD_SetFrameSlot(frame, "mySlotName', KFD_NIL);
// frame holds {mySlotName: NIL}

Preliminary documentation 28 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Handle result = FD_GetFrameSlot(frame, "mySlotName™);
// result gets kFD_NIL, because that’s what’s in the slot

result = FD_GetFrameSlot(frame, "fred");
// result still gets kFD_NIL, because a slot named fred
// doesn’t exist

int exists = FD_FrameHasSlot(frame, "mySlotName');
// exists gets TRUE, because the slot exists

exists = FD_FrameHasSlot(frame, "fred");
// exists gets FALSE, because the slot doesn’t exist

Error Codes:
kFD_FDILNotlnitialized
kFD_ExpectedFrame
kFD _NULL Pointer

FD_Handle FD_RemoveFrameSlot(FD_Handle frame, const char* slotName);

Removes the key/value pair identified by “slotName”. If the entry existed in the frame, then
the value object is returned to the caller. Otherwise, the function returns kFD_NIL.

Example:
FD_Handle frame = ...;
// frame holds {mySlotName: "Hello"}

FD_Handle removed = FD_RemoveFrameSlot(frame, "mySlotName™);
// frame holds {}
// removed holds "Hello"

removed = FD_RemoveFrameSlot(frame, "fred");
// removed now holds kFD_NIL

Error Codes:
kFD_FDILNotlInitialized
kFD_ExpectedFrame
kFD_NULL Pointer

FD_Handle FD_GetIndFrameSlot(FD_Handle frame, long pos);

Allowsthe client to traverse the list of dotsin the frame. By calling FD_GetlndFrameSlot
with values of “pos’ ranging from zero to FD_GetL ength(frame) - 1 (inclusive), the client
can retrieve the contents of al the dotsin the frame.

Note: The order in which the objects are returned is not defined. In particular, you should
not expect to retrieve them in the order in which they were inserted.

Example:
FD_Handle frame = ...;

// frame holds {slotl: "Hello", slot2:", ", slot3:"world"}

Preliminary documentation 29 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FD_Handle valuel = FD_GetIndFrameSlot(frame, 0);
// valuel holds "Hello"

FD_Handle value2 = FD_GetIndFrameSlot(frame, 1);
// value2 holds "

FD_Handle value3 = FD_GetlIndFrameSlot(frame, 2);
// value3 holds "world"

Error Codes:
kFD_FDILNotInitidized
kFD_ExpectedFrame
kFD_VaueOutOfRange

FD_Handle FD_GetIndFrameSlotName(FD_Handle frame, long pos);

Allowsthe client to traverse the list of dotsin the frame, getting the name for each one. By
calling FD_GetIndFrameSlotName with values of “pos’ ranging from zero to

FD_GetL ength(frame) - 1 (inclusive), the client can retrieve the names of all the dotsin the
frame.

Note: The order in which the slot names are returned is not defined. In particular, you
should not expect to retrieve them in the order in which they were inserted.

Example:
FD_Handle frame = ...;
// frame holds {slotl: "Hello", slot2:", ", slot3:"world"}

FD_Handle namel = FD_GetlIndFrameSlotName(frame, 0);
// namel holds "slotl"

FD_Handle name2 = FD_GetlIndFrameSlotName(frame, 1);
// name2 holds "slot2"

FD_Handle name3 = FD_GetIndFrameSlotName(frame, 2);
// name3 holds "slot3"

Error Codes:
kFD_FDILNotInitidized
kFD_ExpectedFrame
kFD_VaueOutOfRange

Pointer Object Functions

DIL_Error FD_SetClass(FD_Handle, FD_Handle oClass);

Sets the class of given object to the specified class. Only classes for non-symbol pointer
objects can be set or changed. In general, classes should be specified as symbol objects.

Preliminary documentation 30 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

However, you can also set aclassto NIL. Additionally, for compatibility with Frames, a
number of undocumented immediate val ues are supported.

Example:
FD_Handle myBinary = FD_MakeBinary(1024, NULL);
FillwithCRCData(myBinary);
FD_SetClass(myBinary, FD_MakeSymbol(""CRC'"));
// ldentifies the binary object to the rest of the
// application as one containing a CRC table.

Error Codes:
kFD_FDILNotlInitialized
kFD_ExpectedPointerObject
kFD_InvalidClass

long FD_GetLength(FD_Handle);

Returns the length of the given object. Only pointer objects have alength. For frames and
arrays, the length is the number of elements they contain. For binary objects and large
binary objects, the length is the number of bytesin the object.

Example:
FD_Handle myArray = FD_MakeArray(0, NULL);
long len = FD_GetLength(myArray); // len == 0
FD_AppendArraySlot(myArray, KFD_NIL);
len = FD_GetLength(myArray); // len == 1
FD_Handle myString = FD_MakeString(""Hello");
len = FD_GetLength(myString); // len == 12
Error Codes:

kFD_FDILNotInitiaized
kFD_ExpectedPointerObject

DIL_Error FD_SetLength(FD_Handle, long newSize);

Sets the length of the object. Only non-frame pointer objects can have their lengths
changed. For arrays, “newSize” specifies the number of dots that should bein the array.
For binaries and large binaries, “newSize” specifies the number of bytes that should be
allocated to the object.

If an array isgrown as aresult of settings its length, additional dots are appended to the
end of the array and set to NIL. If the array is reduced, sots are removed from the end of
the array. If those slots contained pointer objects, then it is up to the client to make sure that
the objects are deleted or otherwise handled before the references to them in the array are

lost.
Example:
FD_Handle hello = FD_MakeString("Hello");
Preliminary documentation 31 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

FD_Handle world = FD_MakeString(*, world");

long sizel
long size2

FD_GetLength(hello);
FD_GetLength(world);

FD_SetLength(hello, sizel + size2 - 2);
memcpy((char*) FD_GetBinaryData(hello) + sizel - 2,
FD_GetBinaryData(world), size2);

// hello ends up with the text "Hello, world”

Error Codes:
kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedPointerObject
kFD_VaueOutOfRange

Any Object Functions

FD_Handle FD_GetClass(FD_Handle);

Returns the class of the given object, according to the following table:

Object type Class
Integer kFD_Syminteger
Character kFD_SymChar
Boolean kFD_SymBoolean
Other immediate kFD_SymWeird_Immediate
Frame kFD_SymFrame *
Array kFD_SymArray *
String kFD_SymString *
Symbol kFD_SymSymbol
Binary KFD_NIL *
Large binary kFD_NIL *
M agicPointer kFD_SymMagicPointer
* The classes of these object types can be changed by the FDIL client, so the values shown
here are the default classes.
Example:
Error Codes:

kFD_FDILNotInitiaized
kFD_PointerObjectlsFree

Large Binary Object Functions

Large binary objects are binary objects whose contents may or may not fit entirely in memory.
They are asolution to the problem of having a restricted NewtonScript object heap on Newton OS

Preliminary documentation 32 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

devices.

Large binary objects relieve demands on the NewtonScript object heap in two ways. First, the
memory to hold the object’ s contents is alocated from a store object, where it can be paged in from
SRAM to DRAM on demand by the Newton OS VMM. Second, the object’ s data can be
compressed whileit is stored in SRAM, being decompressed when paged to DRAM.

On the desktop, large binary objects are handled as similarly as possible. Automatic paging of data
from some backing store to RAM is not possible on all platforms, but behind-the-scenes
compression is, aswell asthe manual paging of datafrom a backing storeto RAM.

Data compression and decompression is handled automatically by the FDIL. The choice of a
backing storeis up to the FDIL client. The saving and restoring of datato and from a backing store
is performed by a set of callback functions associated with the large binary object. The client can
choose to use either a predefined set of callback functions provided by the FDIL, or they can roll
their own. The FDIL provides a set of callback functions that store the large binary datain RAM
(KFD_MemoryStoreProcs) or on disk (kFD_DiskStoreProcs). It also provides a set of functions
that smply discard the data received from the external source (kFD_Null StoreProcs). The client
can use any of these sets when creating a large binary, or they can define their own.

DIL_Error FD_SetLargeBinaryProcs(const FD_LargeBinaryProcs¥*);
Determines the set of callback functions used to handle the data of alarge binary object.
Only objects created subsequent to making the call to FD_Setl argeBinaryProcs (via either a
call to FD_Makel argeBinary or acall to FD_Unflatten) are affected. By defaullt,
kFD_MemoryStoreProcs are used.

FD_LargeBinaryProcsis defined as follows:

struct FD_LargeBinaryProcs

{
DIL_Error (*Create) (void** cookie);
DIL_Error (*SetNumPages) (void** cookie,
long pageCount);
DIL_Error (*ReadPage) (void** cookie,
long pageNum,
FD_PageBuff*);
DIL_Error (*WritePage) (void** cookie,
long pageNum,
const FD_PageBuff*);
DIL_Error (*Destroy) (void** cookie);
};

typedef struct FD_LargeBinaryProcs FD_LargeBinaryProcs;

Each of these functionsis options, and can be set to NULL if no meaningful implementation needs
to be provided.

Each function is called with a*cookie”: apointer to a“void*”. This cookieisfor the sole use of the
set of callback functions. Typically, the Create function allocates some private storage and stores it
in the cookie. The cookie is then passed to SetNumPages, ReadPage, and WritePage, which use it
in whatever way is appropriate. Finally, the Destroy function deletes the cookie.

Preliminary documentation 33 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

The Create function performs any necessary initialization of data private to the
FD_LargeBinaryProcs. If it needsto, it can alocate ablock of memory to hold this private data and
store a pointer to that memory in fCookie.

Thedatain alarge binary object is stored in an integral number of pages. The number of pagesis
determined by the length of the binary object. Asalarge binary object hasits size changed, the
SetNumPages function will be called to allow the private data structuresto be resized as well.

When the FDIL needsto retrieve the partial contents of alarge binary (perhapsin responseto a
FD_ReadFromLargeBinary or aFD_Flatten call), it calls the ReadPage function. ReadPage is
given the number of the page to be returned, and the location of a buffer in which to put it. The
buffer is described by the FD_PageBuff data structure:

#define kPageChunkSize (1024L)
#define kCompressionExtra (288L)

typedef struct FD_PageBuff

{
long flLength;
char fData[kPageChunkSize + kCompressionExtra]; /* Only flLength
bytes used */
}FD_PageBuff;

ReadPage should copy one page of datainto the fData array, and store the number of bytes written
in the fLength field. The page contents and their length should simply be the same as the ones
specified when the page was stored with the WritePage call. If no WritePage call had ever been
made for the requested page, ReadPage should return kFD_L BReadingFromUnwrittenPage. If any
other error occurs while trying to retrieve the page, it should return kFD_ErrorReadingFromStore.
Otherwise, it should return kDIL_NoOError.

WritePage is called to store pages. Its function is merely to take the specified page’ s contents and
size and store them away for later. If an error occurs while saving the data, WritePage should
return KFD_ErrorWritingToStore. Otherwise, it should return kDIL_NoError. WritePage will
never be called with a page number larger than that specified in a previous SetNumPages call.

Before the large binary is deleted, the FDIL will call the Destroy function. Destroy should
deallocate any memory allocated during any previous function calls.

Example:

Following is a C++ example of aset of FD_LargeBinaryProcs that store pages using the
Macintosh Resource Manager. Of course, you should never redlly use the Resource Manager asa
database; thisis an exmple of writing FD_L argeBinaryProcs, not how to properly use the
Resource Manager.

struct ResMgrLBData

{
short fRefNum;

long fNumPages;
Str255 fFileName;

Preliminary documentation 34 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error ResMgrCreate(void** cookie)

{

}

ResMgrLBData* myData = new ResMgrLBData;
if (myData == NULL)
return kDIL_OutOfMemory;

tmpnam((char*) myData->fFileName);
c2pstr((char*) myData->fFileName);
short refNum = OpenResFile(myData->fFileName);
if (refNum < 0)
{

delete myData;

return KFD_ErrorCreatingStore;

}

myData->fRefNum = refNum;
myData->fNumPages = 0;

*cookie = myData;

return kDIL_NoError;

DIL_Error ResMgrSetNumPages(void** cookie, long pageCount)

{

ResMgrLBData* myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum);
SetResLoad(FALSE);
for (long i1 = pageCount; ii < myData->fNumPages; ++ii)
{
Handle hdl = GetResource("page”, ii);
if (hdl)
RemoveResource(hdl);
}
SetResLoad(TRUE);
UseResFile(oldRefNum);

return kDIL_NoError;

DIL_Error ResMgrReadPage(void** cookie, long pageNum,

{

FD_PageBuff* page)
ResMgrLBData* myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum) ;

Handle hdl = GetlResource("page”, pageNum);
UseResFile(oldRefNum) ;

if (rhdl)

// Actually, we should look further; we might be out of memory.

return kFD_LBReadingFromUnwrittenPage;

Preliminary documentation 35 Copyright © 1997, Newton, Inc.
Subject to change

All rights reserved

page->fLength = GetHandleSize(hdl);
BlockMove(*hdl, page->fData, page->fLength);

return kDIL_NoError;

DIL_Error ResMgrWritePage(void** cookie, long pageNum,
const FD_PageBuff* page)

{
ResMgrLBData* myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum) ;
Handle hdl = GetlResource("page”, pageNum);
UseResFile(oldRefNum) ;
if (hdl)
{

SetHandleSize(hdl, page->fLength);

if (MemError(Q))

return kDIL_OutOfMemory;

else

hdl = NewHandle(page->fLength);
if (rhdl)

return kDIL_OutOfMemory;
UseResFile(myData->fRefNum);
AddResource(hdl, "page”, pageNum, "\p'");
short error = ResError();
UseResFile(oldRefNum) ;
if (error)

return KFD_ErrorWritingToStore;

}
BlockMove(page->fData, *hdl, page->flLength);
ChangedResource(hdl);
if (ResError())

return KFD_ErrorWritingToStore;
UpdateResFile(myData->fRefNum) ;
if (ResError())

return KFD_ErrorWritingToStore;

return kDIL_NoError;

DIL_Error ResMgrDestroy(void** cookie)

{
ResMgrLBData* myData = (ResMgrLBData*) *cookie;

CloseResFile(myData->fRefNum) ;

Preliminary documentation 36 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

FSDelete(myData->fFileName, 0);

delete myData;
*cookie= NULL;

return kDIL_NoError;

}
const FD_LargeBinaryProcs gResMgrStoreProcs = {
ResMgrCreate,
ResMgrSetNumPages,
ResMgrReadPage,
ResMgrWritePage,
ResMgrDestroy
3

Object Comparison

int FD_Equal (FD_Handle, FD_Handle);

Returns whether or not two objects are equal to each other. Objects of different types are
never equal. Non-pointer objects are equal if their types and associated integral values are
equal. Pointer objects are equal only if they refer to the same object.

Example:
FD_Handle mylIntl
FD_Handle myInt2 FD_Makelnt(5);
FD_Handle myInt3 FD_Makelnt(100);
FD_Handle myReall = FD_MakeReal (5);
FD_Handle myReal2 = FD_MakeReal (5);

FD_Makelnt(5);

int resultl = FD_Equal(mylntl, mylnt2); // returns TRUE
int result2 = FD_Equal(mylntl, mylInt3); // returns FALSE
int result3 = FD_Equal(myReall, myReal2); // returns FALSE
int result4 = FD_Equal(mylntl, myReall); // returns FALSE

Error Codes:
kFD_FDILNotlInitialized

Object Duplication
FD_Handle FD_Clone(FD_Handle);

Creates a copy of the given object, returning the newly created object. If the object isan
aggregate object (i.e., an array or aframe), only the top-level object is cloned. None of the
child objects are cloned.

Example:
FD_Handle mylntl
FD_Handle myInt2

FD_Makelnt(5);
FD_Clone(mylntl);

Preliminary documentation 37 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

// myInt2 now contains an integer object containing the
// number 5.

FD_Handle myString = FD_MakeString("Hello™");
FD_Handle myArray = FD_MakeArray(0, NULL);

FD_AppendArraySlot(myArray, myString);
FD_Handle myArray2 = FD_Clone(myArray);
FD_DeepDispose(myArray?2);

// myString is now disposed because a reference to it was in
// myArray2 when it was deleted.

Error Codes.
kFD_FDILNotInitidized
kDIL_OutOfMemory
kFD_PointerObjectlsFree

FD_Handle FD_DeepClone(FD_Handle);

Creates a copy of the given object, returning the newly created object. If the object isan
aggregate object (i.e., an array or aframe), all child objects are cloned as well.

Example:
FD_Handle mylntl = FD_Makelnt(5);
FD_Handle myInt2 = FD_DeepClone(mylntl);

// myInt2 now contains an integer object containing the
// number 5.

FD_Handle myString = FD_MakeString(""Hello™");
FD_Handle myArray = FD_MakeArray(0, NULL);

FD_AppendArraySlot(myArray, myString);
FD_Handle myArray2 = FD_DeepClone(myArray);
FD_DeepDispose(myArray?2);

// myString is still OK. It was a duplicate of myString that
// was deleted when myArray2 when was deleted.

Error Codes.
kFD_FDILNotInitidized
kDIL_OutOfMemory
kFD_PointerObjectlsFree

Object Streaming

Preliminary documentation 38 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

Objects (including object hierarchies) can be converted into aflat stream of bytes. This processis
called “flattening”. Flattening is useful for converting your object datainto something that can be
written to disk, or sent over aseria line to a Newton device.

The opposite of flattening is “unflattening”. Unflattening is the process of creating an object or
object hierarchy from the data found in a flattened object stream. Unflattening would be used to
when reading object data from disk or receiving objects from a Newton device.

The client isresponsible for providing low-level callback functions that ultimately read and write
the streamed bytes. The callback functions have the following C prototypes:

typedef DIL_Error (*DIL_WriteProc)(const void* buf, long amt, void* userData);
typedef DIL_Error (*DIL_ReadProc)(void* buf, long amt, void* userData);

The client’ s DIL_WriteProc is called when the FDIL needs to write some bytes. The bytes can be
found at the memory location indicated by “buf”, and the number of bytesispassed in “amt”. The
valuein “userData’ iswhatever the user specified when calling FD_Flatten. If an error occurs, the
DIL_WriteProc can return an error code as the function’sresult, or it can return KDIL_NoError if
no error occurred. The DIL_WriteProc can return ageneric KDIL_ErrorWritingToPipe error code,
or it can return any other non-kDIL_NoError value. Whatever it returnswill be reported to the
caling client viaFD_GetError.

The client'sDIL_ReadProc is called when the FDIL needs bytes from the stream when resurrecting
objects. DIL_ReadProc should provide “amt” bytes, storing them at the memory location indicated
by “buf”. Again, thevalue in “userData’ is whatever the user specified when calling FD_Unflatten.
If an error occurs, the DIL_ReadProc can return an error code, or it can return kDIL_NoError if no
error occurred. The DIL_ReadProc can return a generic kDIL_ErrorReadingFromPipe error code,
or it can return any other non-kDIL_NoError value. Whatever it returns will be reported to the
caling client viaFD_GetError.

DIL_Error FD_Flatten(FD_Handle, DIL_WriteProc, void* userData);

Converts the given object into aflat stream of bytes suitable for saving to disk or for
transmission to a Newton OS device. FD_Flatten just performs the conversion of objects
into bytes; the actual disposition of the bytes is determined by the DIL_WriteProc provided
by the caller.

The userData parameter is passed to the DIL_WriteProc when it is called. It usualy
contains a pointer to data that the DIL_WriteProc needs to complete its job. For instance, it
can contain a FILE* if the DIL_WriteProc writes datato disk, or aCD_Handleif the
DIL_WriteProc sends data to a Newton OS device.

Example:
DIL_Error WriteCallback(const void* buf, long amt,
void* userData)

{
FILE* file = (FILE*) userData;
size_t itemsWritten = fwrite(buf, 1, amt, file);
if (itemsWritten I= amt)
return kDIL_ErrorWritingToPipe;
Preliminary documentation 39 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

return kDIL_NoError;

FD_Handle myObject)

}
DIL_Error WriteObjectToDisk(FILE* file,
{
FD_Flatten(myObject, WriteCallback, file);
return FD_GetError();
}
Error Codes:

kFD_FDILNotlInitialized
kDIL_OutOfMemory
kDIL_ErrorWritingToPipe
kFD_ErrorReadingFromStore

FD_Handle FD_Unflatten(DIL_ReadProc, void* userData);

Creates an object from the bytestream data provided by the caller’ s DIL_ReadProc.
FD_Unflatten doesn’t care where the bytes come from. It is only responsible for using
them to recreate the original objects from which they were formed.

The userData parameter is passed to the DIL_ReadProc when it is called. It usually contains
apointer to data that the DIL_ReadProc needs to complete itsjob. For instance, it can
contain aFILE* if the DIL_ReadProc reads data from disk, or aCD_Handleif the

DIL_ReadProc receives data from a Newton OS device.

, amt, File);

FD_Handle* myObject)

Example:
DIL_Error ReadCallback(void* buf, long amt, void* userData)
{
FILE* file = (FILE*) userData;
size_t itemsRead = fread(buf,
if (itemsRead != amt)
return kDIL_ErrorReadingFromPipe;
return kDIL_NoError;
}
DIL_Error ReadObjectFromDisk(FILE* file,
{
*myObject = FD_Unflatten(ReadCallback, file);
return FD_GetError();
}
Error Codes:

kFD_FDILNotlnitialized
kDIL_OutOfMemory
kDIL_ErrorReadingFromPipe
kFD_UnknownStreamVersion
kFD_StreamCorrupted
kFD_UnsupportedCompression
kFD_UnsupportedStoreVersion
kFD_ErrorCreatingStore

Preliminary documentation 40
Subject to change

Copyright © 1997, Newton, Inc.
All rights reserved

kFD_ErrorWritingToStore

Object Printing

There may be times when you would like atextual representation of your NewtonScript data. Y ou
may like this for debugging purposes (“Just what' s in this frame anyway? Why can't | retrieve the
dot I'm looking for?) or to display to a (particularly sophisticated) user. Converting the
FD_Handleinto atext form isfacilitated through the FD_PrintObject function:

DIL_Error FD_PrintObject(FD_Handle obj, const char* EOLString,
DIL_WriteProc, void* userData);

FD_PrintObject converts an object into some user-readabl e text form. For instance, aframe
will be turned into text looking something like the following:

{
name: “Fred",
age: 15,
phone: L
{
"home,
"555-1212"
3.
{
"work,
"555-2121"
}
1
¥

Asthetext is generated, the DIL_WriteProc is called so that the application can deal with it
asit deemsfit. For instance, the app could buffer all the text into aHandle or CString
object, or it could just turn around and call printf("%s™, str) withit.

Because different platforms and different development environments use different end-of-
line conventions, FD_PrintObject accepts a string containing the EOL sequence you want to
use. Thus, it could be "\n" in MPW, "\r" in CodeWarrior, or "\n\r" in VC++.

Unicode Conversion

The FDIL handlestext as Unicode characters. If the client application works directly with Unicode,
then it can create strings with FD_MakeWideString and retrieve text with FD_GetWideString. If
the client application works only with ASCII characters, it can create strings with FD_MakeString
and retrieve text with FD_GetString or FD_ASCIIString.

For times when those functions aren’t flexible enough, FD_Handle provides the following
Unicode conversion functions.

Preliminary documentation 41 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error FD_ConvertFromWideChar(char* dest, const DIL_WideChar* src,
long numChars);

Converts the characters in the buffer specified by “src” from Unicode to ASCII, storing the
resulting charactersin the buffer specified by “dest”. Only “numChars’ characters are
converted and transferred. No regard is given for NULL terminators.

Unicode characters which have no corresponding character in the destination character set
are converted to Ox1A.

FD_ConvertFromWideChar iswritten in such away that “dest” and “src” can refer to the
start of the same buffer.

Example:
FD_Handle text = FD_GetFrameSlot(frame, "text');

char buffer[1024];
FD_ConvertFromWideChar(buffer, (const DIL_WideChar¥*)
FD_GetBinaryData(text), 1024);

Error Codes:
kFD_FDILNotInitiaized
kFD_NULL Pointer
kFD_ExpectedNonNegativeVaue

DIL_Error FD_ConvertToWideChar(DIL_WideChar* dest, const char* src,
long numChars);

Converts the characters in the buffer specified by “src” from ASCII to Unicode, storing the
resulting charactersin the buffer specified by “dest”. Only “numChars’ characters are
converted and transferred. No regard is given to NULL terminators.

FD_ConvertToWideChar iswritten in such away that “dest” and “src” can refer to the start
of the same buffer.

Example:
char buffer[1024];
FillBuffer(buffer);

FD_Handle text = FD_MakeBinary(1024 * sizeof(DIL_WideChar),
NULL);
FD_ConvertToWideChar((DIL_WideChar*) FD_GetBinaryData(text),
buffer, 1024);

Error Codes:
kFD_FDILNotInitialized
kFD_NULL Pointer
kFD_ExpectedNonNegativeVaue

Preliminary documentation 42 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

DIL_Error FD_SetWideCharEncoding(long encoding);

Appropriate conversion between Unicode and an 8-bit character set requiresthe
specification of the host character set. By default, the Macintosh version of the FDIL
converts using the Macintosh character set, and the Windows version of the FDIL converts
using the Windows character set. Currently, these are the only two character sets
supported.

FD_SetWideCharEncoding changes the specified 8-bit character set. The “encoding”
parameter can be one of kMacEncoding, kWindowsEncoding, or kDefaultEncoding (which
isequal to kMacEncoding on Macintosh platforms, and kWindowsEncoding on Windows

platforms).

Example:
char buffer[100] = "anRYfoD-"; // Extended Mac characters
size_t numChars = strlen(buffer);

FD_SetWideCharEncoding(kFD_MacEncoding) ;
FD_ConvertToWideChar((DIL_WideChar*) buffer, buffer, numChars);

// buffer now contains the characters in Unicode format.

FD_SetWideCharEncoding(kFD_WindowsEncoding) ;
FD_ConvertFromWideChar(buffer, (DIL_WideChar*) buffer, numChars);

// buffer now contains the characters in Windows 8-bit format
// (assuming those characters are defined in the Windows
// character set).

Error Codes:
kFD_FDILNotInitidized
kFD_VaueOutOfRange

Debugging Features

To aid in development, the FDIL comesin two versions: debug and non-debug. The non-debug
version of thelibrary isthe one that should be included in your shipping application. The debug
version can be used during application development to help identify bugs and their source. When
using the debug version of the library, it isimportant that you #define DIL_ForDebug before
including the FDIL.h header file.

NOTE: The definition of FD_Handle changes between the debug and non-debug versions of the
FDIL library. To help ensure that your application links with the correct library, some macro-magic
is performed in the FDIL.h header file. If you link with the incorrect library, your application will
break into the debugger when it calls FD_Startup.

The debug version of the FDIL contains a debugging feature to aid in the tracking of memory

leaks. Through the power of the C/C++ preprocessor, al callsto FDIL functions that result in new
objects being created are instead routed to a parallel set of functions. This parallel set of functions
take as additional parameters the file and line within the file from which the call is being made. This

Preliminary documentation 43 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

information is recorded by the FDIL in the created object. At the end of your application, when all
memory should be cleaned up and allocated objects deleted, you can call an FDIL function to print
out al leaked objects, along with the locations in your program that allocated those objects.

The set of FDIL functions that have a corresponding memory-tracking version is.

long

FD_MakeReal
FD_MakeString
FD_MakeWideString
FD_MakeSymbol
FD_MakeArray
FD_MakeFrame
FD_MakeBinary
FD_Clone
FD_DeepClone
FD_Unflatten

FD_CheckForMemoryLeaks(const char* EOLString, DIL_WriteProc,
void* userData);

Reports any undel eted, user-allocated objects, along with the file and line within the file
containing the function call that allocated that object. Returns as its result the number of
user-allocated objects |eft undel eted.

Because different platforms and different development environments use different end-of-
line conventions, FD_CheckForMemoryL eaks accepts a string containing the EOL
sequence you want to use. Thus, it could be "\n" in MPW, "\r" in CodeWarrior, or "\n\r" in
VC++,

Example:
FD_Startup(); // Line 20 of MyApp.c
FD_MakeFrame(); // Line 22 of MyApp.c

FD_CheckForMemoryLeaks(*"\n", MyPrintFn, myPrintData);
// Prints a message saying that a
// frame was allocated at line 22
// of MyApp.c.

FD_Shutdown(); // Deletes the memory anyway

Error Codes:
kFD_FDILNotlInitialized

Error Codes

kDIL_NoError)
kDIL_ErrorBase (-98000)
/* --- General DIL errors --- */
Preliminary documentation 44 Copyright © 1997, Newton, Inc.

Subject to change All rights reserved

kDIL_OutOfMemory (kDIL_ErrorBase 1)
kDIL_InvalidParameter (kDIL_ErrorBase 2)
kDIL_InternalError (kDIL_ErrorBase 3)
kDIL_ErrorReadingFromPipe (kDIL_ErrorBase 4)
kDIL_ErrorWritingToPipe (kDIL_ErrorBase 5)
/* --- Base error numbers ---

kFD_ErrorBase (kDIL_ErrorBase 400)
/* --- FDIL error numbers ---

/* Hard errors -- you should always be looking for these. */
kFD_UnknownStreamVersion (kFD_ErrorBase 1)
kFD_StreamCorrupted (kFD_ErrorBase 2)
kFD_UnsupportedCompression (kFD_ErrorBase 3)
kFD_CouldNotCompressData (kFD_ErrorBase 4)
kFD_CouldNotDecompressData (kFD_ErrorBase 5)
kFD_UnsupportedStoreVersion (kFD_ErrorBase 6)
kFD_ErrorCreatingStore (kFD_ErrorBase 7)
kFD_ErrorWritingToStore (kFD_ErrorBase 8)
kFD_ErrorReadingFromStore (kFD_ErrorBase 9)

/* Soft errors -- you get these only if you feed in bad data. */
kFD_FDILNotInitialized (kFD_ErrorBase 19)
kFD_Expectedlinteger (kFD_ErrorBase 20)
kFD_ExpectedPointerObject (kFD_ErrorBase 21)
kFD_ExpectedImmediate (kFD_ErrorBase 22)
kFD_ExpectedMagicPointer (kFD_ErrorBase 23)
kFD_ExpectedArray (kFD_ErrorBase 24)
kFD_ExpectedFrame (kFD_ErrorBase 25)
kFD_ExpectedBinary (kFD_ErrorBase 26)
kFD_ExpectedLargeBinary (kFD_ErrorBase 27)
kFD_ExpectedReal (kFD_ErrorBase 28)
kFD_ExpectedString (kFD_ErrorBase 29)
kFD_ExpectedSymbol (kFD_ErrorBase 30)
kFD_ExpectedChar (kFD_ErrorBase 31)
kFD_NULLPointer (kFD_ErrorBase 40)
kFD_ExpectedPositiveValue (kFD_ErrorBase 41)
kFD_ExpectedNonNegativeValue (kFD_ErrorBase 42)
kFD_ValueOutOfRange (kFD_ErrorBase 43)
kFD_SymbolToolLong (kFD_ErrorBase 44)
kFD_l11legalCharlInSymbol (kFD_ErrorBase 45)
kFD_InvalidClass (kFD_ErrorBase 46)
kFD_PointerObjectlsFree (kFD_ErrorBase 47)

/* Internal errors -- you should never see these. */

Preliminary documentation 45
Subject to change

Copyright © 1997, Newton, Inc.
All rights reserved

kFD_LBReadingFromUnwrittenPage (kFD_ErrorBase - 50)

FDIL Internals

This section describes the internal data structures used by the FDIL. It is provided for debugging
purposes only. Do not write shipping code that relies on thisinformation.

In non-debug builds, FD_Handle is defined as along. In debug builds, it is defined as follows:

struct FD_ObjectHeader;
typedef struct FD_Handle

{

long ref;

struct FD_ObjectHeader** entry;
}FD_Handle;

In this structure, “ref” isthe samelong as FD_Handle isin non-debug mode. In the following
discussions, thislong will be referred to simply as“ref”, “the ref”, or “the object ref”.

In either version of the library, the lowest two bits of the ref contain flags determining the kind of
object it represents, according to the following table:

00 = integer

01 = pointer object
10 = immediate

11 = magic pointer

If the object is an integer, then the upper 30 bits of the ref contain the integer’ s value.

If the object is a pointer object, then the upper 30 bits contain an index into an object table. Each
entry in the object able contains a pointer to the actual object located in the application heap.

If the object is an immediate, then the next two low-order bits determine its sub-type:

0010 = special immediate
0110 = character immediate
1010 = boolean immediate
1110 = reserved immediate

In all cases, the upper 28 bits contain an integer value associated with the immediate. For example,
character immediates store the 16-bit Unicode character in the upper 28-hit field.

If the object isamagic pointer, then the magic pointer valueis stored in the upper 30 bits of the ref.

As mentioned earlier, pointer objects contain an index into an object table. Each entry in thetableis
either apointer to an object on the heap, or somefairly illegal valueif the table entry is currently
unused. Thisvalue is 0OXCDCDCDCD on Windows platforms, and Ox50FF8001 on Macintosh
platforms. As objects are created, empty entriesin the table are used up. When all entriesin the
table are full, the table is automatically grown.

Preliminary documentation 46 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

If the object table entry isvalid, it pointsto an object on the heap. Every object is prefixed with the
following data structure:

struct FD_ObjectHeader

{
long flags;
long size; // size of user portion; does not
// include this header

#ifdef FD_TrackMemory
const char* file;
int line;

#endi f

union

{

FD_Handle oClass;
FD_Handle map;

Ju;

// followed by object data: either bytes or an array of FD_Handle
3

The 2 lowest bitsin the “flags” field are used to determine the type of pointer object, according to
the following table:

00 = raw binary object
01 = array

10 = large binary object
11 = frame

The“size” field contains the sizedlin bytesdlof the data that follows the standard object header.
For binary objects, thisisthe number of user bytesin the object. For arrays and frames, thisisthe
number of elementsin the object times sizeof(FD_Handle). For large binary objects, thisis
sizeof(FD_LargeBinaryData).

When an object is allocated, it istagged with the file and line within the file of the statement that
caused the object to be allocated. That information is stored in the next two fields: “file” and “line”.

If the object is anything but a frame, the next field contains the class of that object. If the objectisa
frame, then the next field contains a reference to the frame’ s map object. More on map objects
later.

Following the standard header are the contents of the object, a variable length block of data as
indicated by the “size” field. If the object is alarge binary, the contents contain an
FD_LargeBinaryData structure. If the object isaregular binary, the contents are whatever’s
appropriate for that binary (for example, a string of Unicode characters, or 8 bytes of floating point
number information). If the object is an array, the contents are formatted into an array of
FD_Objects.

If the object is aframe, the contents are also formatted into an array of FD_Objects. This array
contains the value objectsin akey/value pair. The key objects are then stored in a“map”, whichis

Preliminary documentation 47 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

aparale array stored in the“map” field in the FD_ObjectHeader. Any time akey/value pair is
added to aframe, corresponding additions are made to both arrays. Similarly, any time akey/value
pair is removed from aframe, corresponding deletions are made to both arrays.

Because frames don’t have any location reserved for storing the frames class, classinformationis
stored asjust another dot in the frame. The name of the dot is*“class’, the the dlot should contain a
symbol identifying the class.

Because the map isanormal array, it contains al the attributes that a normal array would. This
includes afield in its FD_ObjectHeader reserved for holding a class object. However, maps use
thisfield as a series of bitflags instead. The bits are defined as follows:

Il zero = plain map
map is sorted
map s shared

map has _proto slot

A NP

None of these bit flags are currently supported in the FDIL ; al maps created by the FDIL contain
zero in thisfield.

Byteswapping Issues

The FDIL isalibrary that runs on big-endian (ala Macintosh and Newton) and little-endian (ala
Intel and Apple][) architectures. Because the objectsit creates and manages interoperate with
Newton devices, there are some byteswapping issues clients on little-endian machines should
watch out for.

The FDIL is pretty good about keeping most byteswapping issues hidden internally. For instance,
when streaming out an integer object to the Newton, the FDIL byteswapsit before sending it.
When creating larger objects for which endiannessis an issue (such as Unicode strings an floating
point objects), the FDIL performs the appropriate byteswapping at creation time. This means that
clients calling FD_GetBinaryData on such objects will have to take into account the fact that the
datais stored in big-endian format.

About the only time this might be an issue iswhen calling FD_ConvertToUnicode and
FD_ConvertFromUnicode. These two functions are essentially exported versions used internally
by FD_MakeString, FD_GetString, and FD_ASCIIString. As such, they expect to work on
Unicode characters stored in big-endian format. Since that’ s the way datais normally stored in
objects, everything should be OK. But clientstrying to interpret the datain little-endian format are
doomed to failure. For instance, aclient calling FD_GetBinaryData on an object containing
Unicode characters and passing the resulting pointer to WideCharToMultiByte will recieve
unintended results.

Preliminary documentation 48 Copyright © 1997, Newton, Inc.
Subject to change All rights reserved

